LECTURE 6: PRACTICE EXERCISES

$$
\text { MAT-67 SPRING } 2024
$$

Abstract. These practice problems correspond to the 6 th lecture of MAT-67 Spring 2024, delivered on April 12th 2024.

The following are practice problems. They are not to be submitted, they are for your own practice. Solutions will be posted soon.

Problem 1. Consider the following subspace $U_{1}, U_{2} \subseteq V$. In each example, compute their intersection $U_{1} \cap U_{2}$, their sum and decide whether the sum is a direct sum or not.
(1) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{2}$ given by

$$
\begin{aligned}
& U_{1}=\left\{\left(x_{1}, x_{2}\right) \in V: x_{1}+4 x_{2}=0\right\} \subseteq V, \\
& U_{2}=\left\{\left(x_{1}, x_{2}\right) \in V: 3 x_{1}-x_{2}=0\right\} \subseteq V .
\end{aligned}
$$

(2) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{2}$ where U_{1} is the unique subspace containing the vector $(1,3) \in \mathbb{R}^{2}$ (and not equal to V) and U_{2} is the unique subspace containing the vector $(-2,7) \in \mathbb{R}^{2}$ (and not equal to V).
(3) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{2}$ where U_{1} is the unique subspace containing the vector $(1,3) \in \mathbb{R}^{2}$ (and not equal to V) and U_{2} is the unique subspace containing the vector $(-2,-6) \in \mathbb{R}^{2}$ (and not equal to V).
(4) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{3}$ where U_{1} is the unique subspace containing the vectors $(1,3,-2),(0,5,7) \in \mathbb{R}^{2}$ (and not equal to $\left.V\right)$ and $U_{2}=\left\{x_{1}=\right.$ $\left.0, x_{2}+x_{3}=0\right\}$.
(5) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{4}$ given by

$$
\begin{gathered}
U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V: x_{1}+4 x_{2}-x_{3}=0\right\} \subseteq V \\
U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V: 3 x_{1}-x_{2}=0, x_{4}=0\right\} \subseteq V
\end{gathered}
$$

(6) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{4}$ given by

$$
\begin{gathered}
U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V: x_{1}+4 x_{2}-x_{3}=0, x_{4}=0\right\} \subseteq V \\
U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V: 3 x_{1}-x_{2}=0, x_{2}+x_{4}=0, x_{1}+x_{3}=0\right\} \subseteq V
\end{gathered}
$$

(7) The subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}[x]$ given by

$$
\begin{aligned}
U_{1} & =\{p(x) \in \mathbb{R}[x]: p(0)=0\}, \\
U_{2} & =\{p(x) \in \mathbb{R}[x]: p(3)=0\}
\end{aligned}
$$

Problem 2. Consider the two subspaces $U_{1}, U_{2} \subseteq V=\mathbb{R}^{3}$ given by

$$
\begin{gathered}
U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+3 x_{2}=0\right\} \\
U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+x_{2}+x_{3}=0\right\} .
\end{gathered}
$$

Show that $U_{1} \cap U_{2}=W$, where W is the unique vector subspace $W \subseteq V$ that contains the vector $(3,-1,-2) \in V$ but W is not equal to V.

Problem 3. Let $U \subseteq V$ be the subspace of $V=\mathbb{R}^{4}$ given by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V: x_{1}+3 x_{2}-x_{4}=0,5 x_{3}+x_{4}=0\right\} .
$$

Find two different subspaces $W_{1}, W_{2} \subseteq V$ such that $U \oplus W_{1}=V$ and $U \oplus W_{2}=V$.

Problem 4. Let $U \subseteq V$ be the subspace of $V=\mathbb{R}^{5}$ given by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in V: x_{1}+3 x_{2}-x_{4}+x_{5}=0\right\} .
$$

Show that for any vector $v \in V$ such that $v \notin U$, then $V=U \oplus W_{v}$ where W_{v} is the subspace $W_{v}=\{w \in V: w=\alpha \dot{v}$, for some $\alpha \in \mathbb{R}\}$.

