LECTURE 8: PRACTICE EXERCISES

MAT-67 SPRING 2024

Abstract

These practice problems correspond to the 8th lecture of MAT-67 Spring 2024, delivered on April 17th 2024.

The following are practice problems. They are not to be submitted, they are for your own practice. Solutions will be posted soon.

Recall: Let V be an \mathbb{R}-vector space. Given a vector $w \in V$ and a set of vectors $\left\{v_{1}, \ldots, v_{k}\right\} \in V$, we say that w is a linear combination of $\left\{v_{1}, \ldots, v_{k}\right\}$ if there exists real constants $a_{1}, \ldots, a_{k} \in \mathbb{R}$ such that

$$
w=a_{1} v_{1}+\ldots+a_{k} v_{k} .
$$

Also, independently, recall that the space of $\left\{v_{1}, \ldots, v_{k}\right\}$ is the subspace $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right) \subseteq$ V that contains all linear combinations of $\left\{v_{1}, \ldots, v_{k}\right\}$. We proved in lecture that this is the smallest subspaces containing each $v_{i}, 1 \leq i \leq k$.

Problem 1. Solve the following parts:
(1) Let $V=\mathbb{R}^{4}$. Give an example of a vector $w \in \mathbb{R}^{4}$ and a subset $\left\{v_{1}, v_{2}, v_{3}\right\}$, $v_{i} \in V$, such that w is a linear combination of v_{1}, v_{2}, v_{3} in a unique way.
(2) Let $V=\mathbb{R}^{4}$. Does there exist a vector $w \in \mathbb{R}^{4}$ and a subset $\left\{v_{1}, v_{2}, v_{3}\right\}, v_{i} \in V$, such that w is a linear combination of v_{1}, v_{2}, v_{3} in at least two different ways?
(3) Let $V=\mathbb{R}^{4}$. Does there exist a vector $w \in \mathbb{R}^{4}$ and a subset $\left\{v_{1}, v_{2}, v_{3}\right\}, v_{i} \in V$ such that w is a linear combination of v_{1}, v_{2}, v_{3} in at infinitely many different ways?

Problem 2. For each of the following subspaces $U \subseteq V$, describe a set of vector $\left\{u_{1}, \ldots, u_{k}, \ldots\right\} \in V$ such that $U=\operatorname{span}\left(u_{1}, \ldots, u_{k}, \ldots\right)$. (Note that the set might have to be infinite.)
(1) Let $V=\mathbb{R}^{2}$ and $U=\left\{x_{1}-3 x_{2}=0\right\}$.
(2) Let $V=\mathbb{R}^{3}$ and $U=\left\{x_{1}-4 x_{2}+2 x_{3}=0\right\}$.
(3) Let $V=\mathbb{R}^{3}$ and $U=\left\{x_{1}-4 x_{2}+2 x_{3}, x_{2}-6 x_{3}=0\right\}$.
(4) Let $V=\mathbb{R}^{4}$ and $U=\left\{x_{1}-x_{2}-2 x_{3}+6 x_{4}=0\right\}$.
(5) Let $V=\mathbb{R}^{4}$ and $U=\left\{x_{1}-x_{2}-2 x_{3}+6 x_{4}=0, x_{1}+x_{2}+x_{3}=0\right\}$.
(6) Let $V=\mathbb{R}^{4}$ and $U=\left\{x_{1}-x_{2}-2 x_{3}+6 x_{4}=0, x_{1}+x_{2}+x_{3}=0, x_{1}-7 x_{3}-x_{4}=0\right\}$.
(7) Let $V=\mathbb{R}[x]$ and $U=\{p(x) \in \mathbb{R}[x]: p(0)=0\}$.
(8) Let $V=\mathbb{R}[x]$ and $U=\{p(x) \in \mathbb{R}[x]: p(0)=0, p(1)=0\}$.
(9) Let $V=\mathbb{R}[x]$ and $U=\{p(x) \in \mathbb{R}[x]: p(0)=0, p(1)=0, p(-1)=0\}$.

Problem 3. Let $V=\mathbb{R}^{n}$. Suppose that $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{n-k}\right\}, v_{i}, w_{j} \in V$, are such that

$$
\begin{gathered}
v_{i} \notin \operatorname{span}\left(w_{1}, \ldots, w_{n-k}\right), \quad \forall 1 \leq i \leq k, \text { and } \\
w_{j} \notin \operatorname{span}\left(v_{1}, \ldots, v_{k}\right), \quad \forall 1 \leq j \leq n-k .
\end{gathered}
$$

(1) Show that the following sum is a direct sum:
$\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)+\operatorname{span}\left(w_{1}, \ldots, w_{n-k}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right) \oplus \operatorname{span}\left(w_{1}, \ldots, w_{n-k}\right)$.
(2) Suppose that all the v_{i} are linearly independent among them, and all the w_{j} are linearly independent among them. Show that

$$
V=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right) \oplus \operatorname{span}\left(w_{1}, \ldots, w_{n-k}\right) .
$$

Problem 4. Let $V=\mathbb{R}^{4}$. Solve the following parts.
(1) Give an example of two subsets $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}\right\}, v_{i}, w_{j} \in V$ such that

$$
V=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)+\operatorname{span}\left(w_{1}, w_{2}\right)
$$

but $V \neq \operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \oplus \operatorname{span}\left(w_{1}, w_{2}\right)$.
(2) Give an example of two subsets $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}\right\}, v_{i}, w_{j} \in V$ such that

$$
V=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \oplus \operatorname{span}\left(w_{1}, w_{2}\right) .
$$

(3) Give an example of two subsets $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}\right\}, v_{i}, w_{j} \in V$ such that

$$
V \neq=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)+\operatorname{span}\left(w_{1}, w_{2}\right) .
$$

