MAT 67: PROBLEM SET 2

DUE TO FRIDAY APR 192024

Abstract

This problem set corresponds to the second week of the course MAT-67 Spring 2024. Solutions were typed by TA Scroggin, please contact tmscroggin - at ucdavis.edu for any comments.

Purpose: The goal of this assignment is to acquire the necessary skills to work with vector spaces. These were discussed during the second week of the course and are covered in Chapter 4 of the textbook.

Task: Solve Problems 1 through 4 below.

Instructions: It is perfectly good to consult with other students and collaborate when working on the problems. However, you should write the solutions on your own, using your own words and thought process. List any collaborators in the upper-left corner of the first page.

You are welcome to use the Office Hours offered by the Professor and the TA. Again, list any collaborators or contributors in your solutions. Make sure you are using your own thought process and words, even if an idea or solution came from elsewhere. (In particular, it might be wrong, so please make sure to think about it yourself.)

Grade: Each graded Problem is worth 25 points, the total grade of the Problem Set is the sum of the number of points. The maximum possible grade is 100 points.

Writing: Solutions should be presented in a balanced form, combining words and sentences which explain the line of reasoning, and also precise mathematical expressions, formulas and references justifying the steps you are taking are correct. If you are using theorems in lecture and in the textbook, make that reference clear. (E.g. specify name/number of the theorem and section of the book.)

Problem 1. Decide whether each of the following sets are \mathbb{R}-vector spaces and prove (or disprove) accordingly. Each item is worth 5 points:
(1) The set \mathbb{R}^{n} with sum and scalar multiplications:

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
c \cdot\left(x_{1}, \ldots, x_{n}\right):=\left(c \cdot x_{1}, \ldots, c \cdot x_{n}\right), \quad \forall c \in \mathbb{R} .
\end{gathered}
$$

(2) Fix a natural number $n \in \mathbb{N}$. The set

$$
P_{\leq n}:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}: \quad\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n}\right\}
$$

of polynomials in one variable x of degree at most n with sum

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}\right):= \\
\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\ldots+\left(a_{n}+b_{n}\right) x^{n}
\end{gathered}
$$

and scalar multiplication
$c \cdot\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right):=c a_{0}+c a_{1} x+c a_{2} x^{2}+\ldots+c a_{n} x^{n}, \quad \forall c \in \mathbb{R}$.
(3) Fix a natural number $n \in \mathbb{N}$. The set

$$
P_{n}:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}: \quad\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n}, \quad a_{n} \neq 0\right\}
$$

of polynomials in one variable x of degree exactly n with sum

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}\right):= \\
\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\ldots+\left(a_{n}+b_{n}\right) x^{n}
\end{gathered}
$$

and scalar multiplication
$c \cdot\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right):=c a_{0}+c a_{1} x+c a_{2} x^{2}+\ldots+c a_{n} x^{n}, \quad \forall c \in \mathbb{R}$.
(4) The set $\mathbb{Q} \subseteq \mathbb{R}$ of rational numbers with sum and scalar multiplications: $q_{1}+q_{2}:=q_{1}+q_{2}$, the usual sum of rational numbers
$c \cdot q:=c \cdot q$, the usual product of a rational number q by a real number c
(5) The set $C(\mathbb{R}, \mathbb{R}):=\{f: \mathbb{R} \longrightarrow \mathbb{R}$ such that f is a map $\}$ of maps from \mathbb{R} to \mathbb{R}, with sum given by

$$
(f+g)(x):=f(x)+g(x)
$$

and scalar multiplication given by

$$
(c \cdot f)(x):=c \cdot f(x) .
$$

Solution.

(1) Yes, this is a vector space.

We check that this space satisfies the vector space conditions. Let $x, y, z \in \mathbb{R}$ where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$, and let $a, b \in \mathbb{R}$.
We rely heavily on the field properties of \mathbb{R}.
(a) Commutativity: We want to show that $x+y=y+x$ for all $x, y \in \mathbb{R}^{n}$.

$$
\begin{aligned}
x+y & =\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right) \\
& =\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
& \left.=\left(y_{1}+x_{1}, \ldots, y_{n}+x_{n}\right) \quad \text { (Commutativity of } \mathbb{R}\right) \\
& =\left(y_{1}, \ldots, y_{n}\right)+\left(x_{1}, \ldots, x_{n}\right) \\
& =y+x .
\end{aligned}
$$

(b) Associativity: We want to show that for all $x, y, z \in \mathbb{R}^{n}$ that $(x+y)+z=$ $x+(y+z)$.

$$
\begin{aligned}
(x+y)+z & =\left[\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)\right]+\left(z_{1}, \ldots, z_{n}\right) \\
& =\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)+\left(z_{1}, \ldots, z_{n}\right) \\
& =\left(\left(x_{1}+y_{1}\right)+z_{1}, \ldots,\left(x_{n}+y_{n}\right)+z_{n}\right) \\
& \left.=\left(x_{1}+\left(y_{1}+z_{1}\right), \ldots, x_{n}+\left(y_{n}+z_{n}\right)\right) \quad \text { (Associativity of } \mathbb{R}\right) \\
& =\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}+z_{1}, \ldots, y_{n}+z_{n}\right) \\
& =\left(x_{1}, \ldots, x_{n}\right)+\left[\left(y_{1}, \ldots, y_{n}\right)+\left(z_{1}, \ldots, z_{n}\right)\right] \\
& =x+(y+z) .
\end{aligned}
$$

(c) Additive identity: $0=(0, \ldots, 0) \in \mathbb{R}^{n}$ where

$$
0+x=(0, \ldots, 0)+\left(x_{1}, \ldots, x_{n}\right)=\left(0+x_{1}, \ldots, 0+x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)=x
$$

(d) Multiplicative identity: $1 \in \mathbb{R}$ and

$$
1 \cdot x=1 \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(1 \cdot x_{1}, \ldots, 1 \cdot x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)=x .
$$

(e) Additive inverses: If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, then we have $-x=\left(-x_{1}, \ldots,-x_{n}\right) \in$ \mathbb{R}^{n} where

$$
\begin{aligned}
x+(-x) & =\left(x_{1}, \ldots, x_{n}\right)+\left(-x_{1}, \ldots,-x_{n}\right) \\
& =\left(x_{1}-x_{1}, \ldots, x_{n}-x_{n}\right)=(0, \ldots, 0)=0 .
\end{aligned}
$$

(f) Distributivity: We want to show that $a \cdot(x+y)=a \cdot x+a \cdot y$ and $(a+b) \cdot x=a \cdot x+b \cdot x$.

$$
\begin{aligned}
a \cdot(x+y) & =a \cdot\left[\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)\right] \\
& =a \cdot\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
& =\left(a\left(x_{1}+y_{1}\right), \ldots, a\left(x_{n}+y_{n}\right)\right) \\
& =\left(a x_{1}+a y_{1}, \ldots, a x_{n}+a y_{n}\right) \\
& =\left(a x_{1}, \ldots, a x_{n}\right)+\left(a y_{1}, \ldots, a y_{n}\right) \\
& =a \cdot\left(x_{1}, \ldots, x_{n}\right)+a \cdot\left(y_{1}, \ldots, y_{n}\right) \\
& =a \cdot x+a \cdot y \\
(a+b) \cdot x & =(a+b) \cdot\left(x_{1}, \ldots, x_{n}\right) \\
& =\left((a+b) \cdot x_{1}, \ldots,(a+b) \cdot x_{n}\right) \\
& =\left(a \cdot x_{1}+b \cdot x_{1}, \ldots, a \cdot x_{n}+b \cdot x_{n}\right) \\
& =\left(a \cdot x_{1}, \ldots, a \cdot x_{n}\right)+\left(b \cdot x_{1}, \ldots, b \cdot x_{n}\right) \\
& =a \cdot\left(x_{1}, \ldots, x_{n}\right)+b \cdot\left(x_{1}, \ldots, x_{n}\right) \\
& =a \cdot x+b \cdot x .
\end{aligned}
$$

Since the space satisfies all the vector space criterion, it is therefore, a vector space.
(2) Yes, this is a vector space.

We show this space satisfies the vector space conditions. Let $a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}, b_{0}+b_{1} x+\cdots+b_{n} x^{n}, c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in P_{\leq n}$ and $\alpha, \beta \in \mathbb{R}$.
(a) Commutativity:

$$
\begin{aligned}
\left(a_{0}+a_{1} x+\ldots a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n} \\
& =\left(b_{0}+a_{0}\right)+\left(b_{1}+a_{1}\right) x+\ldots\left(b_{n}+a_{n}\right) x^{n} \\
& =\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)+\left(a_{0}+a_{1} x+\ldots a_{n} x^{n}\right) .
\end{aligned}
$$

(b) Associativity:

$$
\begin{aligned}
& {\left[\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)\right]+\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right)} \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}+\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right) \\
& =\left(a_{0}+b_{0}+c_{0}\right)+\left(a_{1}+b_{1}+c_{1}\right) x+\cdots+\left(a_{n}+b_{n}+c_{n}\right) x^{n} \\
& =\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(\left(b_{0}+c_{0}\right)+\left(b_{1}+c_{1}\right) x+\cdots+\left(b_{n}+c_{n}\right) x^{n}\right) \\
& =\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left[\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)+\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right)\right] .
\end{aligned}
$$

(c) Additive identity: $0 \in P_{\leq n}$ and

$$
\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+0=a_{0}+a_{1} x+\cdots+a_{n} x^{n} .
$$

(d) Multiplicative identity: $1 \in \mathbb{R}$ and
$1 \cdot\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\left(1 \cdot a_{0}\right)+\left(1 \cdot a_{1}\right) x+\cdots+\left(1 \cdot a_{n}\right) x^{n}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$.
(e) Additive inverse: If $a_{0}+a_{1} x+\ldots a_{n} x^{n} \in P_{\leq n}$, then $-a_{0}-a_{1} x-\cdots-a_{n} x^{n} \in$ $P_{\leq n}$ where

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\ldots a_{n} x^{n}\right)+\left(-a_{0}-a_{1} x-\cdots-a_{n} x^{n}\right) \\
& =\left(a_{0}-a_{0}\right)+\left(a_{1}-a_{1}\right) x+\cdots+\left(a_{n}-a_{n}\right) x^{n} \\
& =0+0 x+\cdots+0 x^{n}=0
\end{aligned}
$$

(f) Distributivity:

$$
\begin{aligned}
\alpha \cdot\left[\left(a_{0}\right.\right. & \left.\left.+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)\right] \\
& =\alpha \cdot\left[\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}\right] \\
& =\alpha \cdot\left(a_{0}+b_{0}\right)+\alpha \cdot\left(a_{1}+b_{1}\right) x+\cdots+\alpha \cdot\left(a_{n}+b_{n}\right) x^{n} \\
& =\left(\alpha \cdot a_{0}+\alpha \cdot b_{0}\right)+\left(\alpha \cdot a_{1}+\alpha \cdot a_{1}\right) x+\cdots+\left(\alpha \cdot a_{n}+\alpha \cdot b_{n}\right) x^{n} \\
& =\left(\alpha \cdot a_{0}+\alpha \cdot a_{1} x+\cdots+\alpha \cdot a_{n} x^{n}\right)+\left(\alpha \cdot b_{0}+\alpha \cdot b_{1} x+\cdots+\alpha \cdot b_{n} x^{n}\right) \\
& =\alpha \cdot\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\alpha \cdot\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
(\alpha+\beta) & \cdot\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=(\alpha+\beta) \cdot a_{0}+(\alpha+\beta) \cdot a_{1} x+\cdots+(\alpha+\beta) \cdot a_{n} x^{n} \\
& =\left(\alpha \cdot a_{0}+\beta \cdot a_{0}\right)+\left(\alpha \cdot a_{1}+\beta \cdot a_{1}\right) x+\cdots+\left(\alpha \cdot a_{n}+\beta \cdot a_{n}\right) x^{n} \\
& =\left(\alpha \cdot a_{0}+\alpha \cdot a_{1} x+\cdots+\alpha \cdot a_{n} x^{n}\right)+\left(\beta \cdot a_{0}+\beta \cdot a_{1} x+\cdots+\beta \cdot a_{n} x^{n}\right) \\
& =\alpha \cdot\left(a_{0}+a_{1} x+\ldots a_{n} x^{n}\right)+\beta \cdot\left(a_{0}+a_{1} x+\ldots a_{n} x^{n}\right)
\end{aligned}
$$

By satisfying the above conditions, $P_{\leq n}$ is a vector space.
(3) No, this is not a vector space.

We provide a counterexample. Let $n=2$, then $1+x+x^{2}, 1+x-x^{2} \in P_{2}$; however, we have that

$$
\left(1+x+x^{2}\right)+\left(1+x-x^{2}\right)=2+2 x \notin P_{2} .
$$

Therefore, since the additive operation is not closed, i.e., the sum of two elements in the space is not in the space, then P_{n} cannot be a vector space.
(4) No, this is not an \mathbb{R}-vector space.

We provide a counterexample. We know that $1 \in \mathbb{Q}$ and that $\pi \in \mathbb{R}$, if \mathbb{Q} is an \mathbb{R} vector space then we should have that $\pi \cdot 1=\pi \in \mathbb{Q}$. However, π is an irrational number and not an element of \mathbb{Q} which is a contradiction.
(5) The set $C(\mathbb{R}, \mathbb{R}):=\{f: \mathbb{R} \longrightarrow \mathbb{R}$ such that f is a map $\}$ of maps from \mathbb{R} to \mathbb{R}, with sum given by

$$
(f+g)(x):=f(x)+g(x)
$$

and scalar multiplication given by

$$
(c \cdot f)(x):=c \cdot f(x)
$$

Problem 2. Consider the \mathbb{R}-vector space $V=\mathbb{R}^{3}$ and the following subspaces

$$
\begin{gathered}
U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{3}=0\right\}, \quad U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{2}+3 x_{1}=0,4 x_{3}-4 x_{2}-12 x_{1}=0\right\} \\
U_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+x_{2}=0,2 x_{2}-x_{3}=0\right\}
\end{gathered}
$$

Each item is worth 5 points. Solve the following parts:
(1) Describe the sums $U_{1}+U_{2}, U_{2}+U_{3}$ and $U_{1}+U_{3}$.
(2) Describe the intersections $U_{1} \cap U_{2}, U_{2} \cap U_{3}$ and $U_{1} \cap U_{3}$.
(3) Show that $V=U_{1} \oplus U_{3}$ is the direct sum of U_{1} and U_{3}.
(4) Write the vector $v=(5,-2,1) \in V$ as $v=u_{1}+u_{3}$, where $u_{1} \in U_{1}$ and $u_{3} \in U_{3}$. (By (3), this decomposition must be unique.)
(5) Find a vector subspace $W \subseteq V$ such that $V=W \oplus U_{2}$.

Solution.

(1) We note that U_{1} is the $x y$-plane in \mathbb{R}^{3} and therefore,

$$
U_{1}:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{1}, x_{2} \in \mathbb{R}\right\}
$$

Now, we solve the system of equations which describe U_{2} and U_{3} so we may write the subsets in terms of the vectors which describe the subspace.

For U_{2}, in the first equation we solve for x_{2} and get $x_{2}=-3 x_{1}$. We plug the value of x_{2} into the second equation to solve for x_{3}, we get

$$
\begin{aligned}
& 4 x_{3}-4\left(-3 x_{1}\right)-12 x_{1}=0 \\
& 4 x_{3}=0 \\
& x_{3}=0
\end{aligned}
$$

Therefore, the subspace U_{2} is defined

$$
U_{2}:=\left\{\left(x_{1},-3 x_{1}, 0\right) \in \mathbb{R}^{3}: x_{1} \in \mathbb{R}\right\}
$$

which is the line $y=-3 x$ in the $x y$-plane passing through the vector $(1,-3,0)$.
As for U_{3}, we solve for x_{1} in the first equation and find that $x_{2}=-x_{1}$. We plug the value of x_{2} into the second equation to find x_{3}

$$
\begin{aligned}
2\left(-x_{1}\right)-x_{3} & =0 \\
-2 x_{1} & =x_{3} .
\end{aligned}
$$

Therefore, the subspace U_{3} is defined

$$
U_{3}:=\left\{\left(x_{1},-x_{1},-2 x_{1}\right) \in \mathbb{R}^{3}: x_{1} \in \mathbb{R}\right\}
$$

which is a line in \mathbb{R}^{3} passing through the vector $(1,-1,-2)$.
Now, we may describe the sums:

$$
\begin{aligned}
U_{1}+U_{2} & =\left\{u_{1}+u_{2}: u_{1} \in U_{1}, u_{2} \in U_{2}\right\} \\
& =\left\{\left(x_{1}, x_{2}, 0\right)+\left(x_{1}^{\prime},-3 x_{1}, 0\right): x_{1}, x_{2}, x_{1}^{\prime} \in \mathbb{R}\right\} \\
& =\left\{\left(x_{1}+x_{1}^{\prime}, x_{2}-3 x_{1}, 0\right): x_{1}, x_{2}, x_{1}^{\prime} \in \mathbb{R}\right\}
\end{aligned}
$$

Since $U_{2} \subseteq U_{1}$ then $U_{1}+U_{2}=U_{1}$

$$
\begin{aligned}
U_{1}+U_{3} & =\left\{u_{1}+u_{3}: u_{1} \in U_{1}, u_{3} \in U_{3}\right\} \\
& =\left\{\left(x_{1}, x_{2}, 0\right)+\left(x_{1}^{\prime},-x_{1}^{\prime},-2 x_{1}^{\prime}\right): x_{1}, x_{2}, x_{1}^{\prime} \in \mathbb{R}\right\} \\
& =\left\{\left(x_{1}+x_{1}^{\prime}, x_{2}-x_{1}^{\prime},-2 x_{1}^{\prime}\right): x_{1}, x_{2}, x_{1}^{\prime} \in \mathbb{R}\right\}
\end{aligned}
$$

We note that $U_{1}+U_{3}=\mathbb{R}^{3}$, since we may write any $(x, y, z) \in \mathbb{R}^{3}$ as a linear combination of vectors in $U_{1}+U_{3}$.

$$
\left\{\begin{array}{l}
x_{1}+x_{1}^{\prime}=x \\
x_{2}-x_{1}^{\prime}=y \\
-2 x_{1}^{\prime}=z
\end{array}\right.
$$

Where $x_{1}=x+\frac{1}{2} z, x_{2}=y-\frac{1}{2} z, x_{1}^{\prime}=-\frac{1}{2} z$.

$$
\begin{aligned}
U_{2}+U_{3} & =\left\{u_{2}+u_{3}: u_{2} \in U_{2}, u_{3} \in U_{3}\right\} \\
& =\left\{\left(x_{1},-3 x_{1}, 0\right)+\left(x_{1}^{\prime},-x_{1}^{\prime},-2 x_{1}^{\prime}\right): x_{1}, x_{1}^{\prime} \in \mathbb{R}\right\} \\
& =\left\{\left(x_{1}+x_{1}^{\prime},-3 x_{1}-x_{1}^{\prime},-2 x_{1}^{\prime}\right): x_{1}, x_{1}^{\prime} \in \mathbb{R}\right\}
\end{aligned}
$$

To completely describe $U_{2}+U_{3}$ we must determine the equation for the plane in \mathbb{R}^{3}, for this we'll need some machinery from MAT 21D. we see that the vector $u_{2}=(1,-3,0) \in U_{2}$ and $u_{3}=(1,-1,-2) \in U_{3}$. We use these vectors to compute the normal vector to plane, then use the fact that the vector $(0,0,0) \in$ $U_{2}+U_{3}$.

$$
\vec{n}=u_{2} \times u_{3}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 0 \\
1 & -1 & 2
\end{array}\right|=6 \hat{i}+2 \hat{j}+2 \hat{k}
$$

Now, we determine the equation for the tangent plane using

$$
\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \cdot \vec{n}=0 .
$$

Here, we let $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$.

$$
\begin{array}{r}
(x, y, z) \cdot(6,2,2)=0 \\
6 x+2 y+2 z=0
\end{array}
$$

Therefore, $U_{2}+U_{3}$ is given by the plane $6 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=0$.
(2) From part (1), we determined that $U_{2} \subseteq U_{1}$, therefore, $U_{1} \cap U_{2}=U_{2}$.

For $U_{1} \cap U_{3}$, we determine when $\left(x_{1}, x_{2}, 0\right)=\left(x_{1}^{\prime},-x_{1}^{\prime},-2 x_{1}^{\prime}\right)$. Since $0=-2 x_{1}^{\prime}$, then $x_{1}^{\prime}=0$ forcing $x_{2}=-x_{1}^{\prime}=0$ and $x_{1}=x_{1}^{\prime}=0$. Therefore, $U_{1} \cap U_{3}=\{0\}$. For $U_{2} \cap U_{3}$, we determine when $\left(x_{1},-3 x_{1}, 0\right)=\left(x_{1}^{\prime},-x_{1}^{\prime},-2 x_{1}^{\prime}\right)$. Since $0=$ $-2 x_{1}^{\prime}$, then $x_{1}^{\prime}=0$ and $x_{1}=0$. Hence, $U_{2} \cap U_{3}=\{0\}$.
(3) Since $U_{1}+U_{3}=\mathbb{R}^{3}$ by part (1) and that $U_{1} \cap U_{3}=\{0\}$ by part (2) we have that $U_{1} \oplus U_{3}=\mathbb{R}^{3}=V$.
(4) Using the equations found in part (1) to show that $U_{1}+U_{3}=\mathbb{R}^{3}$, we have that

$$
\begin{aligned}
& x_{1}=x+\frac{1}{2} z=5+\frac{1}{2}(1)=\frac{11}{2} \\
& x_{2}=y-\frac{1}{2} z=-2-\frac{1}{2}(1)=-\frac{5}{2} \\
& x_{1}^{\prime}=-\frac{1}{2} z=-\frac{1}{2}(1)=-\frac{1}{2} .
\end{aligned}
$$

Therefore,

$$
v=\left(\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{11}{2} \\
-\frac{5}{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
11 \\
-5 \\
0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right) .
$$

(5) Since U_{2} is line in \mathbb{R}^{3} we can consider the vector $u_{2}=(1,-3,0)$ as the normal vector to the plane which describes W, where $(0,0,0)=U_{2} \cap W$. Therefore, the plane is described as

$$
(x, y, z) \cdot(1,-3,0)=x-3 y=0
$$

As a set we have that

$$
W=\left\{\left(3 x_{2}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}, x_{3} \in \mathbb{R}\right\}
$$

Problem 3. From the textbook. Solve the Proof-Writing Exercises (2), (3) and (4) in Page 47 (End of Chapter 4). The first two count 8 points and the last one 9 points.

Solution.

(1) Exercise 4.2: Let V be a vector space over \mathbf{F}, suppose that W_{1} and W_{2} are subspaces of V. Prove that their intersection $W_{1} \cap W_{2}$ is also a subspace of V.

Proof. Given that W_{1}, W_{2} are both subspaces of V then both W_{1} and W_{2} contain 0; therefore, $0 \in W_{1} \cap W_{2}$.

Now, we want to show that if $v_{1}, v_{2} \in W_{1} \cap W_{2}$ then $v_{1}+v_{2} \in W_{1} \cap W_{2}$. If $v_{1}, v_{2} \in W_{1} \cap W_{2}$ then v_{1}, v_{2} are in both W_{1} and W_{2}. By the subspace properties, we know that $v_{1}+v_{2} \in W_{1}$ and $v_{1}+v_{2} \in W_{2}$; hence, $v_{1}+v_{2} \in W_{1} \cap W_{2}$.

Finally, we want to show that if $v \in W_{1} \cap W_{2}$ and $c \in \mathbf{F}$, then $c \cdot v \in W_{1} \cap W_{2}$. Given that W_{1} is a subspace then $c \cdot v \in W_{1}$ and by the same reasoning $c \cdot v \in W_{2}$; hence, $c \cdot v \in W_{1} \cap W_{2}$. Thereby proving that if $W_{1}, W_{2} \subseteq V$ are subspaces, then the intersection $W_{1} \cap W_{2}$ is also a subspace of V.
(2) Exercise 4.3: Prove or give a counterexample to the following claim:

Claim: Let V be a vector space over \mathbf{F}, and suppose that W_{1}, W_{2}, W_{3} are subspaces of V such that $W_{1}+W_{3}=W_{2}+W_{3}$. Then $W_{1}=W_{2}$.

This statement is false.
Let W_{3} be the $x y$-plane and define

$$
\begin{aligned}
W_{1} & :=\left\{\left(x_{1}, 2 x_{1}\right) \in \mathbb{R}^{2}: x_{1} \in \mathbb{R}\right\} \\
W_{2} & :=\left\{\left(x_{1},-3 x_{1}\right) \in \mathbb{R}^{2}: x_{1} \in \mathbb{R}\right\} .
\end{aligned}
$$

Since $W_{1} \subseteq W_{3}$ and $W_{2} \subseteq W_{3}$ then $W_{1}+W_{3}=W_{3}$ and $W_{2}+W_{3}=W_{3}$; however, W_{1} and W_{2} are both distinct lines in the plane, they are not equivalent
as vector subspaces.
(3) Exercise 4.4: Prove or give a counterexample to the following claim:

Claim: Let V be a vector space over \mathbf{F}, and suppose that W_{1}, W_{2}, W_{3} are subspaces of V such that $W_{1} \oplus W_{3}=W_{2} \oplus W_{3}$. Then $W_{1}=W_{2}$.

This statement is false.
Let W_{3} be the $x y$-plane and define

$$
\begin{aligned}
W_{1} & :=\left\{\left(0,0, x_{3}\right) \in \mathbb{R}^{3}: x_{3} \in \mathbb{R}\right\}, \\
W_{2} & :=\left\{\left(0, x_{3}, x_{3}\right) \in \mathbb{R}^{3}: x_{3} \in \mathbb{R}\right\} .
\end{aligned}
$$

Then $W_{1} \oplus W_{3}=\mathbb{R}^{3}$ since $W_{1}+W_{3}=\mathbb{R}^{3}$ and $W_{1} \cap W_{3}=\{0\}$ and $W_{2} \oplus W_{3}=\mathbb{R}^{3}$ since $W_{2}+W_{3}=\mathbb{R}^{3}$ and $W_{2} \cap W_{3}=\{0\}$. However, $W_{1} \neq W_{2}$.

Problem 4. Prove, with an argument, or disprove, with a counter-example, each of the statements sentences below. Each item is worth 5 points.
(1) Let $V=\mathbb{R}^{4}$ consider $U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V: x_{1}+x_{2}=0,2 x_{2}-x_{3}=1\right\} \subseteq V$. Then U is a vector subspace.
(2) Let $V=\mathbb{R}[x]$ and consider $U=\{p(x) \in V: p(5)=0$ and $p(-7)=0\} \subseteq V$. Then U is a vector subspace.
(3) Let $V=\mathbb{R}^{5}$ and consider the subspaces

$$
\begin{gathered}
U_{1}=\left\{x_{1}+x_{2}-4 x_{5}=0,2 x_{2}-3 x_{3}+8 x_{4}=0\right\} \\
U_{2}=\left\{5 x_{2}-7 x_{3}+4 x_{5}=0, x_{1}+7 x_{2}+x_{4}+x_{5}=0, x_{5}+x_{1}=0\right\} .
\end{gathered}
$$

Then $V=U_{1} \oplus U_{2}$.
(4) Let $V=\mathbb{R}^{4}$, then the intersection $U_{1} \cap U_{2}$ of the two planes

$$
\begin{gathered}
U_{1}=\left\{x_{1}-x_{2}+x_{4}=0,7 x_{1}+x_{3}-5 x_{4}=0\right\} \\
U_{2}=\left\{2 x_{1}+x_{3}+10 x_{4}=0, x_{2}+4 x_{3}-15 x_{4}=0\right\}
\end{gathered}
$$

is a line.
(5) Let $V=\mathbb{R}[x]$ and consider the subspaces

$$
\begin{aligned}
& U_{1}=\{p(x) \in V: p(0)=0\}, \\
& U_{2}=\{p(x) \in V: p(1)=0\} .
\end{aligned}
$$

Then $V=U_{1} \oplus U_{2}$.

Solution.

(1) This statement is false.

Using the first equation we find that $x_{2}=-x_{1}$ which allows us to solve for $x_{3}=-2 x_{1}-1$. Therefore,

$$
U=\left\{\left(x_{1},-x_{1},-2 x_{1}-1\right): x_{1} \in \mathbb{R}\right\}
$$

Let $\left(x_{1},-x_{1},-2 x_{1}-1\right),\left(x_{1}^{\prime},-x_{1}^{\prime},-2 x_{1}^{\prime}-1\right) \in U$, then $\left(x_{1},-x_{1},-2 x_{1}-1\right)+$ $\left(x_{1}^{\prime},-x_{1}^{\prime},-2 x_{1}^{\prime}-1\right)\left(x_{1}+x_{1}^{\prime},-\left(x_{1}+x_{1}^{\prime}\right),-2\left(x_{1}+x_{1}^{\prime}\right)-2\right) \notin U$, violating the vector addition property. We may have also shown that this subset is not closed under scalar multiplication.
(2) This statement is true.

First, we determine the form of elements in U. Since $p(5)=0$ then all polynomials which satisfy this condition must be of the form $f(x)=f_{1}(x) \cdot(x-5)$ where $f_{1}(x) \in \mathbb{R}[x]$, i.e., 5 is a root of the polynomial f since $f(5)=f_{1}(5)$. $(5-5)=f_{1}(5) \cdot 0=0$. Note that $f_{1}(5)$ does not necessarily equal 0 . Similarly, polynomials which satisfy the condition that $p(-7)=0$ are of the form $g(x)=g_{1}(x) \cdot(x+7)$ where $g_{1}(x) \in \mathbb{R}[x]$.

Since U is defined to be the set of all polynomials which both satisfy $p(5)=0$ and $p(-7)=0$, then polynomials in this set must be of the form $f(x)(x-5)(x+$ 7) where $f(x) \in \mathbb{R}[x]$,i.e.,

$$
U:=\{f(x)(x-5)(x+7): f(x) \in \mathbb{R}[x]\}
$$

Now, we want to show that U is a vector subspace, i.e., that $0 \in U$ and for all $f(x), g(x) \in U$ and $c \in \mathbb{R}$ we have that $f(x)+g(x) \in U$ and $c \cdot f(x)$. Clearly, $0 \in U$ since the constant 0 function evaluated at 5 and at -7 is the constant function 0 . Now, let $f(x)=f_{1}(x)(x-5)(x+7)$ and $g(x)=g_{1}(x)(x-)(x+7)$, then

$$
\begin{aligned}
f(x)+g(x) & =f_{1}(x)(x-5)(x+7)+g_{1}(x)(x-5)(x+7) \\
& =\left[f_{1}(x)+g_{1}(x)\right](x-5)(x+7)
\end{aligned}
$$

Since $\left.f_{(} x\right)+g_{1}(x) \in \mathbb{R}[x]$, then $f(x)+g(x) \in U$. Finally, we check that $c \cdot f(x) \in U$,

$$
\left.c \cdot f(x)=c \cdot f_{1}(x)(x-5)(x+7)=\left(c \cdot f_{(} x\right)\right)(x-5)(x+7)
$$

Since $c \cdot f_{1}(x) \in \mathbb{R}[x]$, then $c \cdot f(x) \in U$, thus proving that U satisfies the vector subspace conditions.
(3) This statement is true.

We begin by simplifying the sets U_{1} and U_{2} into its vector representation.

For U_{1}, we use the first equation to solve $x_{2}=-x_{1}+4 x_{5}$. Using the second equation we find that

$$
\begin{aligned}
2\left(-x_{1}+4 x_{5}\right)-3 x_{3}+8 x_{4} & =0 \\
-2 x_{1}+8 x_{5}-3 x_{3}+8 x_{4} & =0 \\
x_{4} & =\frac{1}{4} x_{1}+\frac{3}{8} x_{3}-x_{5}
\end{aligned}
$$

We let x_{1}, x_{3}, x_{5} be free variables which allows us to express U_{1} as

$$
U_{1}:=\left\{\left(x_{1},-x_{1}+4 x_{5}, x_{3}, \frac{1}{4} x_{1}+\frac{3}{8} x_{3}-x_{5}, x_{5}\right): x_{1}, x_{3}, x_{5} \in \mathbb{R}\right\}
$$

We note that U_{1} is of real dimension 3 .
For U_{2}, we start by finding $x_{1}=-x_{5}$ from the third equation. Using this fact in the second equation, we obtain

$$
\begin{aligned}
7 x_{2}+x_{4} & =0 \\
x_{2} & =-\frac{1}{7} x_{4}
\end{aligned}
$$

From the first equation we solve for x_{2},

$$
x_{2}=\frac{7}{5} x_{3}-\frac{4}{5} x_{5}
$$

Using the previous two equations allows us to solve for x_{4}

$$
\begin{aligned}
-\frac{7}{4} x_{4} & =\frac{7}{5} x_{3}-\frac{4}{5} x_{5} \\
x_{4} & =-\frac{49}{5} x_{3}+\frac{28}{5} x_{5}
\end{aligned}
$$

Therefore, the set U_{2} is defined

$$
U_{2}:=\left\{\left(-x_{5}, \frac{7}{5} x_{3}-\frac{4}{5} x_{5}, x_{3},-\frac{49}{5} x_{3}+\frac{28}{5} x_{5}, x_{5}\right): x_{1}, x_{5} \in \mathbb{R}\right\}
$$

We note that U_{2} is of real dimension 2 .
Now, we determine the intersection $U_{1} \cap U_{2}$, i.e., we determine when

$$
\left(x_{1},-x_{1}+4 x_{5}, x_{3}, \frac{1}{4} x_{1}+\frac{3}{8} x_{3}-x_{5}, x_{5}\right)=\left(-x_{5}^{\prime}, \frac{7}{5} x_{3}^{\prime}-\frac{4}{5} x_{5}^{\prime}, x_{3}^{\prime},-\frac{49}{5} x_{3}^{\prime}+\frac{28}{5} x_{5}^{\prime}, x_{5}^{\prime}\right) .
$$

We see that $x_{3}=x_{3}^{\prime}, x_{5}=x_{5}^{\prime}$ and $x_{1}=x_{5}^{\prime}=x_{5}$. From the second coordinate

$$
\begin{aligned}
-x_{1}+4 x_{5} & =\frac{7}{5} x_{3}-\frac{4}{5} x_{5} \\
-\left(-x_{5}\right)+4 x_{5} & =\frac{7}{5} x_{3}-\frac{4}{5} x_{5} \\
5 x_{5}+\frac{4}{5} x_{5} & =\frac{7}{5} x_{3} \\
\frac{29}{5} x_{5} & =\frac{7}{5} x_{3} \\
\frac{29}{7} x_{5} & =x_{3} .
\end{aligned}
$$

From the fourth coordinate

$$
\begin{aligned}
\frac{1}{4} x_{1}+\frac{3}{8} x_{3}-x_{5} & =-\frac{49}{5} x_{3}+\frac{28}{5} x_{5} \\
\frac{1}{4}\left(-x_{5}\right)+\frac{3}{8}\left(\frac{29}{7} x_{5}\right)-x_{5} & =-\frac{49}{5}\left(\frac{29}{7} x_{5}\right)+\frac{28}{5} x_{5} \\
\left(-\frac{1}{4}+\frac{3}{8} \cdot \frac{29}{7}-1\right) x_{5} & =\left(-\frac{49}{5} \cdot \frac{29}{7}+\frac{28}{5}\right) x_{5} \\
x_{5} & =0
\end{aligned}
$$

Since $x_{5}=0$ then $U_{1} \cap U_{2}=(0,0,0,0,0)$.
Given that the two subspaces intersect only at the origin, i.e., these two subspaces are linearly independent, and that the dimensions sum to the total dimension of the space, i.e., $\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)=2+3=5=\operatorname{dim}\left(\mathbb{R}^{5}\right)$, then $V=U_{1} \oplus U_{2}$.
(4) This statement is false. These two planes intersect at the point $(0,0,0,0)$.

To see this, we first simplify the sets U_{1} and U_{2} into its vector representation.
For U_{1}, we first solve for $x_{1}=x_{2}-x_{4}$ from the first equation. From the second equation we see that

$$
\begin{aligned}
7\left(x_{2}-x_{4}\right)+x_{3}-5 x_{4} & =0 \\
7 x_{2}-7 x_{4}+x_{3}-5 x_{4} & =0 \\
7 x_{2}+x_{3}-12 x_{4} & =0 \\
x_{3} & =-7 x_{2}+12 x_{4}
\end{aligned}
$$

We let x_{2}, x_{4} be free variables and find that

$$
U_{1}:=\left\{\left(x_{2}-x_{4}, x_{2},-7 x_{2}+12 x_{4}, x_{4}\right): x_{2}, x_{4} \in \mathbb{R}\right\}
$$

For U_{2}, from the second equation we solve for x_{3} and find that

$$
x_{3}=\frac{1}{4} x_{2}+\frac{15}{4} x_{4} .
$$

Using the first equation we find that $x_{1}=-\frac{1}{2} x_{3}-5 x_{4}$. Now, using the equation for x_{3} from the second equation we can further solve for x_{1} in terms of x_{2}, x_{4} which are free variables in the set U_{1}.

$$
\begin{aligned}
x_{1} & =-\frac{1}{2}\left(\frac{1}{4} x_{2}+\frac{15}{4} x_{4}\right)-5 x_{4} \\
& =-\frac{1}{8} x_{2}-\frac{15}{8} x_{4}-5 x_{4} \\
& =-\frac{1}{8} x_{2}-\frac{55}{8} x_{4} .
\end{aligned}
$$

This allows us to write

$$
U_{2}:=\left\{\left(-\frac{1}{8} x_{2}-\frac{55}{8} x_{4}, x_{2}, \frac{1}{4} x_{2}+\frac{15}{4} x_{4}, x_{4}\right): x_{2}, x_{4} \in \mathbb{R}\right\} .
$$

Now, we can see that the two equations

$$
x_{2}-x_{4}=-\frac{1}{8} x_{2}-\frac{55}{8} x_{4}
$$

$$
-7 x_{2}+12 x_{4}=\frac{1}{4} x_{2}+\frac{15}{4} x_{4}
$$

may only be satisfied if both $x_{2}, x_{4}=0$. Therefore, the only point of intersection is $(0,0,0,0)$.
(5) This statement is false.

We provide a counterexample to the fact that $U_{1} \cap U_{2}=\{0\}$. Let $p(x)=$ $x-x^{2}$. Then $p(0)=0-0^{2}=0$ and $p(1)=1-1^{2}=1-1=0$. Therefore, the intersection $U_{1} \cap U_{2} \neq\{0\}$ violating the direct sum requirements.

