
MAT 67: PROBLEM SET 2

DUE TO FRIDAY APR 19 2024

Abstract. This problem set corresponds to the second week of the course MAT-67
Spring 2024. Solutions were typed by TA Scroggin, please contact tmscroggin – at –
ucdavis.edu for any comments.

Purpose: The goal of this assignment is to acquire the necessary skills to work with
vector spaces. These were discussed during the second week of the course and are
covered in Chapter 4 of the textbook.

Task: Solve Problems 1 through 4 below.

Instructions: It is perfectly good to consult with other students and collaborate when
working on the problems. However, you should write the solutions on your own, using
your own words and thought process. List any collaborators in the upper-left corner
of the first page.

You are welcome to use the Office Hours offered by the Professor and the TA. Again,
list any collaborators or contributors in your solutions. Make sure you are using your
own thought process and words, even if an idea or solution came from elsewhere. (In
particular, it might be wrong, so please make sure to think about it yourself.)

Grade: Each graded Problem is worth 25 points, the total grade of the Problem Set
is the sum of the number of points. The maximum possible grade is 100 points.

Writing: Solutions should be presented in a balanced form, combining words and
sentences which explain the line of reasoning, and also precise mathematical expres-
sions, formulas and references justifying the steps you are taking are correct. If you
are using theorems in lecture and in the textbook, make that reference clear. (E.g.
specify name/number of the theorem and section of the book.)
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Problem 1. Decide whether each of the following sets are R-vector spaces and prove
(or disprove) accordingly. Each item is worth 5 points:

(1) The set Rn with sum and scalar multiplications:

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn).

c · (x1, . . . , xn) := (c · x1, . . . , c · xn), ∀c ∈ R.

(2) Fix a natural number n ∈ N. The set

P≤n := {a0 + a1x+ a2x
2 + . . .+ anx

n : (a0, . . . , an) ∈ Rn}
of polynomials in one variable x of degree at most n with sum

(a0 + a1x+ a2x
2 + . . .+ anx

n) + (b0 + b1x+ b2x
2 + . . .+ bnx

n) :=

(a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + . . .+ (an + bn)x

n

and scalar multiplication

c · (a0 + a1x+ a2x
2 + . . .+ anx

n) := ca0 + ca1x+ ca2x
2 + . . .+ canx

n, ∀c ∈ R.

(3) Fix a natural number n ∈ N. The set

Pn := {a0 + a1x+ a2x
2 + . . .+ anx

n : (a0, . . . , an) ∈ Rn, an ̸= 0}
of polynomials in one variable x of degree exactly n with sum

(a0 + a1x+ a2x
2 + . . .+ anx

n) + (b0 + b1x+ b2x
2 + . . .+ bnx

n) :=

(a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + . . .+ (an + bn)x

n

and scalar multiplication

c · (a0 + a1x+ a2x
2 + . . .+ anx

n) := ca0 + ca1x+ ca2x
2 + . . .+ canx

n, ∀c ∈ R.

(4) The set Q ⊆ R of rational numbers with sum and scalar multiplications:

q1 + q2 := q1 + q2, the usual sum of rational numbers

c · q := c · q, the usual product of a rational number q by a real number c

(5) The set C(R,R) := {f : R −→ R such that f is a map} of maps from R to R,
with sum given by

(f + g)(x) := f(x) + g(x)

and scalar multiplication given by

(c · f)(x) := c · f(x).
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Solution.

(1) Y es , this is a vector space.
We check that this space satisfies the vector space conditions. Let x, y, z ∈ R
where x = (x1, . . . , xn), y = (y1, . . . , yn) and z = (z1, . . . , zn), and let a, b ∈ R.
We rely heavily on the field properties of R.
(a) Commutativity: We want to show that x+ y = y + x for all x, y ∈ Rn.

x+ y = (x1, . . . , xn) + (y1, . . . , yn)

= (x1 + y1, . . . , xn + yn)

= (y1 + x1, . . . , yn + xn) (Commutativity of R)
= (y1, . . . , yn) + (x1, . . . , xn)

= y + x.

(b) Associativity: We want to show that for all x, y, z ∈ Rn that (x+ y)+ z =
x+ (y + z).

(x+ y) + z = [(x1, . . . , xn) + (y1, . . . , yn)] + (z1, . . . , zn)

= (x1 + y1, . . . , xn + yn) + (z1, . . . , zn)

= ((x1 + y1) + z1, . . . , (xn + yn) + zn)

= (x1 + (y1 + z1), . . . , xn + (yn + zn)) (Associativity of R)
= (x1, . . . , xn) + (y1 + z1, . . . , yn + zn)

= (x1, . . . , xn) + [(y1, . . . , yn) + (z1, . . . , zn)]

= x+ (y + z).

(c) Additive identity: 0 = (0, . . . , 0) ∈ Rn where

0 + x = (0, . . . , 0) + (x1, . . . , xn) = (0 + x1, . . . , 0 + xn) = (x1, . . . , xn) = x.

(d) Multiplicative identity: 1 ∈ R and

1 · x = 1 · (x1, . . . , xn) = (1 · x1, . . . , 1 · xn) = (x1, . . . , xn) = x.

(e) Additive inverses: If x = (x1, . . . , xn) ∈ Rn, then we have−x = (−x1, . . . ,−xn) ∈
Rn where

x+ (−x) = (x1, . . . , xn) + (−x1, . . . ,−xn)

= (x1 − x1, . . . , xn − xn) = (0, . . . , 0) = 0.
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(f) Distributivity: We want to show that a · (x + y) = a · x + a · y and
(a+ b) · x = a · x+ b · x.

a · (x+ y) = a · [(x1, . . . , xn) + (y1, . . . , yn)]

= a · (x1 + y1, . . . , xn + yn)

= (a(x1 + y1), . . . , a(xn + yn))

= (ax1 + ay1, . . . , axn + ayn)

= (ax1, . . . , axn) + (ay1, . . . , ayn)

= a · (x1, . . . , xn) + a · (y1, . . . , yn)
= a · x+ a · y

(a+ b) · x = (a+ b) · (x1, . . . , xn)

= ((a+ b) · x1, . . . , (a+ b) · xn)

= (a · x1 + b · x1, . . . , a · xn + b · xn)

= (a · x1, . . . , a · xn) + (b · x1, . . . , b · xn)

= a · (x1, . . . , xn) + b · (x1, . . . , xn)

= a · x+ b · x.

Since the space satisfies all the vector space criterion, it is therefore, a vector
space.

(2) Y es , this is a vector space.

We show this space satisfies the vector space conditions. Let a0+a1x+ · · ·+
anx

n, b0 + b1x+ · · ·+ bnx
n, c0 + c1x+ · · ·+ cnx

n ∈ P≤n and α, β ∈ R.
(a) Commutativity:

(a0 + a1x+ . . . anx
n) + (b0 + b1x+ · · ·+ bnx

n) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n

= (b0 + a0) + (b1 + a1)x+ . . . (bn + an)x
n

= (b0 + b1x+ · · ·+ bnx
n) + (a0 + a1x+ . . . anx

n).

(b) Associativity:

[(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)] + (c0 + c1x+ · · ·+ cnx
n)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n + (c0 + c1x+ · · ·+ cnx

n)

= (a0 + b0 + c0) + (a1 + b1 + c1)x+ · · ·+ (an + bn + cn)x
n

= (a0 + a1x+ · · ·+ anx
n) + ((b0 + c0) + (b1 + c1)x+ · · ·+ (bn + cn)x

n)

= (a0 + a1x+ · · ·+ anx
n) + [(b0 + b1x+ · · ·+ bnx

n) + (c0 + c1x+ · · ·+ cnx
n)].

(c) Additive identity: 0 ∈ P≤n and

(a0 + a1x+ · · ·+ anx
n) + 0 = a0 + a1x+ · · ·+ anx

n.

(d) Multiplicative identity: 1 ∈ R and

1 · (a0+ a1x+ · · ·+ anx
n) = (1 · a0)+ (1 · a1)x+ · · ·+(1 · an)xn = a0+ a1x+ · · ·+ anx

n.
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(e) Additive inverse: If a0+a1x+. . . anx
n ∈ P≤n, then −a0−a1x−· · ·−anx

n ∈
P≤n where

(a0 + a1x+ . . . anx
n) + (−a0 − a1x− · · · − anx

n)

= (a0 − a0) + (a1 − a1)x+ · · ·+ (an − an)x
n

= 0 + 0x+ · · ·+ 0xn = 0.

(f) Distributivity:

α · [(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)]

= α · [(a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n]

= α · (a0 + b0) + α · (a1 + b1)x+ · · ·+ α · (an + bn)x
n

= (α · a0 + α · b0) + (α · a1 + α · a1)x+ · · ·+ (α · an + α · bn)xn

= (α · a0 + α · a1x+ · · ·+ α · anxn) + (α · b0 + α · b1x+ · · ·+ α · bnxn)

= α · (a0 + a1x+ · · ·+ anx
n) + α · (b0 + b1x+ · · ·+ bnx

n)

(α + β) · (a0 + a1x+ · · ·+ anx
n) = (α + β) · a0 + (α + β) · a1x+ · · ·+ (α + β) · anxn

= (α · a0 + β · a0) + (α · a1 + β · a1)x+ · · ·+ (α · an + β · an)xn

= (α · a0 + α · a1x+ · · ·+ α · anxn) + (β · a0 + β · a1x+ · · ·+ β · anxn)

= α · (a0 + a1x+ . . . anx
n) + β · (a0 + a1x+ . . . anx

n)

By satisfying the above conditions, P≤n is a vector space.

(3) No , this is not a vector space.
We provide a counterexample. Let n = 2, then 1 + x + x2, 1 + x − x2 ∈ P2;
however, we have that

(1 + x+ x2) + (1 + x− x2) = 2 + 2x ̸∈ P2.

Therefore, since the additive operation is not closed, i.e., the sum of two ele-
ments in the space is not in the space, then Pn cannot be a vector space.

(4) No , this is not an R-vector space.
We provide a counterexample. We know that 1 ∈ Q and that π ∈ R, if Q is
an R vector space then we should have that π · 1 = π ∈ Q. However, π is an
irrational number and not an element of Q which is a contradiction.

(5) The set C(R,R) := {f : R −→ R such that f is a map} of maps from R to R,
with sum given by

(f + g)(x) := f(x) + g(x)

and scalar multiplication given by

(c · f)(x) := c · f(x).

□

Problem 2. Consider the R-vector space V = R3 and the following subspaces

U1 = {(x1, x2, x3) ∈ V : x3 = 0}, U2 = {(x1, x2, x3) ∈ V : x2+3x1 = 0, 4x3−4x2−12x1 = 0}
U3 = {(x1, x2, x3) ∈ V : x1 + x2 = 0, 2x2 − x3 = 0}.

Each item is worth 5 points. Solve the following parts:
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(1) Describe the sums U1 + U2, U2 + U3 and U1 + U3.

(2) Describe the intersections U1 ∩ U2, U2 ∩ U3 and U1 ∩ U3.

(3) Show that V = U1 ⊕ U3 is the direct sum of U1 and U3.

(4) Write the vector v = (5,−2, 1) ∈ V as v = u1+u3, where u1 ∈ U1 and u3 ∈ U3.
(By (3), this decomposition must be unique.)

(5) Find a vector subspace W ⊆ V such that V = W ⊕ U2.

Solution.

(1) We note that U1 is the xy-plane in R3 and therefore,

U1 := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}.
Now, we solve the system of equations which describe U2 and U3 so we may
write the subsets in terms of the vectors which describe the subspace.

For U2, in the first equation we solve for x2 and get x2 = −3x1. We plug the
value of x2 into the second equation to solve for x3, we get

4x3 − 4(−3x1)− 12x1 = 0

4x3 = 0

x3 = 0.

Therefore, the subspace U2 is defined

U2 := {(x1,−3x1, 0) ∈ R3 : x1 ∈ R}
which is the line y = −3x in the xy-plane passing through the vector (1,−3, 0).
As for U3, we solve for x1 in the first equation and find that x2 = −x1. We

plug the value of x2 into the second equation to find x3

2(−x1)− x3 = 0

−2x1 = x3.

Therefore, the subspace U3 is defined

U3 := {(x1,−x1,−2x1) ∈ R3 : x1 ∈ R}
which is a line in R3 passing through the vector (1,−1,−2).
Now, we may describe the sums:

U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2}
= {(x1, x2, 0) + (x′

1,−3x1, 0) : x1, x2, x
′
1 ∈ R}

= {(x1 + x′
1, x2 − 3x1, 0) : x1, x2, x

′
1 ∈ R}

Since U2 ⊆ U1 then U1 + U2 = U1

U1 + U3 = {u1 + u3 : u1 ∈ U1, u3 ∈ U3}
= {(x1, x2, 0) + (x′

1,−x′
1,−2x′

1) : x1, x2, x
′
1 ∈ R}

= {(x1 + x′
1, x2 − x′

1,−2x′
1) : x1, x2, x

′
1 ∈ R}
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We note that U1 + U3 = R3 , since we may write any (x, y, z) ∈ R3 as a linear
combination of vectors in U1 + U3.

x1 + x′
1 = x

x2 − x′
1 = y

−2x′
1 = z

Where x1 = x+ 1
2
z, x2 = y − 1

2
z, x′

1 = −1
2
z.

U2 + U3 = {u2 + u3 : u2 ∈ U2, u3 ∈ U3}
= {(x1,−3x1, 0) + (x′

1,−x′
1,−2x′

1) : x1, x
′
1 ∈ R}

= {(x1 + x′
1,−3x1 − x′

1,−2x′
1) : x1, x

′
1 ∈ R}

To completely describe U2 + U3 we must determine the equation for the plane
in R3, for this we’ll need some machinery from MAT 21D. we see that the
vector u2 = (1,−3, 0) ∈ U2 and u3 = (1,−1,−2) ∈ U3. We use these vectors to
compute the normal vector to plane, then use the fact that the vector (0, 0, 0) ∈
U2 + U3.

n⃗ = u2 × u3 =

∣∣∣∣∣∣
î ĵ k̂
1 −3 0
1 −1 2

∣∣∣∣∣∣ = 6̂i+ 2ĵ + 2k̂

Now, we determine the equation for the tangent plane using

(x− x0, y − y0, z − z0) · n⃗ = 0.

Here, we let (x0, y0, z0) = (0, 0, 0).

(x, y, z) · (6, 2, 2) = 0

6x+ 2y + 2z = 0

Therefore, U2 + U3 is given by the plane 6x+2y+2z=0.

(2) From part (1), we determined that U2 ⊆ U1, therefore, U1 ∩ U2 = U2.

For U1 ∩ U3, we determine when (x1, x2, 0) = (x′
1,−x′

1,−2x′
1). Since 0 = −2x′

1,

then x′
1 = 0 forcing x2 = −x′

1 = 0 and x1 = x′
1 = 0. Therefore, U1∩U3 = {0}.

For U2 ∩ U3, we determine when (x1,−3x1, 0) = (x′
1,−x′

1,−2x′
1). Since 0 =

−2x′
1, then x′

1 = 0 and x1 = 0. Hence, U2 ∩ U3 = {0}.

(3) Since U1 + U3 = R3 by part (1) and that U1 ∩ U3 = {0} by part (2) we have
that U1 ⊕ U3 = R3 = V .

(4) Using the equations found in part (1) to show that U1+U3 = R3, we have that

x1 = x+
1

2
z = 5 +

1

2
(1) =

11

2

x2 = y − 1

2
z = −2− 1

2
(1) = −5

2

x′
1 = −1

2
z = −1

2
(1) = −1

2
.
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Therefore,

v =

 5
−2
1

 =

 11
2
−5

2
0

+

−1
2

1
2
1

 =
1

2

11
−5
0

+
1

2

−1
1
2

 .

(5) Since U2 is line in R3 we can consider the vector u2 = (1,−3, 0) as the normal
vector to the plane which describes W , where (0, 0, 0) = U2 ∩ W . Therefore,
the plane is described as

(x, y, z) · (1,−3, 0) = x− 3y = 0.

As a set we have that

W = {(3x2, x2, x3) ∈ R3 : x1, x3 ∈ R}.

□

Problem 3. From the textbook. Solve the Proof-Writing Exercises (2), (3) and (4)
in Page 47 (End of Chapter 4). The first two count 8 points and the last one 9 points.

Solution.

(1) Exercise 4.2 : Let V be a vector space over F, suppose that W1 and W2 are
subspaces of V . Prove that their intersection W1 ∩W2 is also a subspace of V .

Proof. Given that W1,W2 are both subspaces of V then both W1 and W2 con-
tain 0; therefore, 0 ∈ W1 ∩W2.

Now, we want to show that if v1, v2 ∈ W1 ∩W2 then v1 + v2 ∈ W1 ∩W2. If
v1, v2 ∈ W1∩W2 then v1, v2 are in bothW1 andW2. By the subspace properties,
we know that v1 + v2 ∈ W1 and v1 + v2 ∈ W2; hence, v1 + v2 ∈ W1 ∩W2.

Finally, we want to show that if v ∈ W1∩W2 and c ∈ F, then c ·v ∈ W1∩W2.
Given thatW1 is a subspace then c·v ∈ W1 and by the same reasoning c·v ∈ W2;
hence, c · v ∈ W1 ∩ W2. Thereby proving that if W1,W2 ⊆ V are subspaces,
then the intersection W1 ∩W2 is also a subspace of V .

□

(2) Exercise 4.3 : Prove or give a counterexample to the following claim:
Claim: Let V be a vector space over F, and suppose that W1,W2,W3 are
subspaces of V such that W1 +W3 = W2 +W3. Then W1 = W2.

This statement is false.

Let W3 be the xy-plane and define

W1 := {(x1, 2x1) ∈ R2 : x1 ∈ R},
W2 := {(x1,−3x1) ∈ R2 : x1 ∈ R}.

Since W1 ⊆ W3 and W2 ⊆ W3 then W1 +W3 = W3 and W2 +W3 = W3; how-
ever, W1 and W2 are both distinct lines in the plane, they are not equivalent
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as vector subspaces.

(3) Exercise 4.4 : Prove or give a counterexample to the following claim:
Claim: Let V be a vector space over F, and suppose that W1,W2,W3 are
subspaces of V such that W1 ⊕W3 = W2 ⊕W3. Then W1 = W2.

This statement is false.

Let W3 be the xy-plane and define

W1 := {(0, 0, x3) ∈ R3 : x3 ∈ R},
W2 := {(0, x3, x3) ∈ R3 : x3 ∈ R}.

Then W1⊕W3 = R3 since W1+W3 = R3 and W1∩W3 = {0} and W2⊕W3 = R3

since W2 +W3 = R3 and W2 ∩W3 = {0}. However, W1 ̸= W2.

□

Problem 4. Prove, with an argument, or disprove, with a counter-example, each of
the statements sentences below. Each item is worth 5 points.

(1) Let V = R4 consider U = {(x1, x2, x3, x4) ∈ V : x1+x2 = 0, 2x2−x3 = 1} ⊆ V .
Then U is a vector subspace.

(2) Let V = R[x] and consider U = {p(x) ∈ V : p(5) = 0 and p(−7) = 0} ⊆ V .
Then U is a vector subspace.

(3) Let V = R5 and consider the subspaces

U1 = {x1 + x2 − 4x5 = 0, 2x2 − 3x3 + 8x4 = 0},
U2 = {5x2 − 7x3 + 4x5 = 0, x1 + 7x2 + x4 + x5 = 0, x5 + x1 = 0}.

Then V = U1 ⊕ U2.

(4) Let V = R4, then the intersection U1 ∩ U2 of the two planes

U1 = {x1 − x2 + x4 = 0, 7x1 + x3 − 5x4 = 0},
U2 = {2x1 + x3 + 10x4 = 0, x2 + 4x3 − 15x4 = 0}

is a line.

(5) Let V = R[x] and consider the subspaces

U1 = {p(x) ∈ V : p(0) = 0},
U2 = {p(x) ∈ V : p(1) = 0}.

Then V = U1 ⊕ U2.
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Solution.

(1) This statement is false.

Using the first equation we find that x2 = −x1 which allows us to solve for
x3 = −2x1 − 1. Therefore,

U = {(x1,−x1,−2x1 − 1) : x1 ∈ R}.

Let (x1,−x1,−2x1 − 1), (x′
1,−x′

1,−2x′
1 − 1) ∈ U , then (x1,−x1,−2x1 − 1) +

(x′
1,−x′

1,−2x′
1−1)(x1+x′

1,−(x1+x′
1),−2(x1+x′

1)−2) ̸∈ U, violating the vec-
tor addition property. We may have also shown that this subset is not closed
under scalar multiplication.

(2) This statement is true.
First, we determine the form of elements in U . Since p(5) = 0 then all polyno-
mials which satisfy this condition must be of the form f(x) = f1(x) · (x − 5)
where f1(x) ∈ R[x], i.e., 5 is a root of the polynomial f since f(5) = f1(5) ·
(5 − 5) = f1(5) · 0 = 0. Note that f1(5) does not necessarily equal 0. Simi-
larly, polynomials which satisfy the condition that p(−7) = 0 are of the form
g(x) = g1(x) · (x+ 7) where g1(x) ∈ R[x].

Since U is defined to be the set of all polynomials which both satisfy p(5) = 0
and p(−7) = 0, then polynomials in this set must be of the form f(x)(x−5)(x+
7) where f(x) ∈ R[x],i.e.,

U := {f(x)(x− 5)(x+ 7) : f(x) ∈ R[x]}.

Now, we want to show that U is a vector subspace, i.e., that 0 ∈ U and for all
f(x), g(x) ∈ U and c ∈ R we have that f(x) + g(x) ∈ U and c · f(x). Clearly,
0 ∈ U since the constant 0 function evaluated at 5 and at −7 is the constant
function 0. Now, let f(x) = f1(x)(x− 5)(x+ 7) and g(x) = g1(x)(x−)(x+ 7),
then

f(x) + g(x) = f1(x)(x− 5)(x+ 7) + g1(x)(x− 5)(x+ 7)

= [f1(x) + g1(x)](x− 5)(x+ 7)

Since f(x) + g1(x) ∈ R[x], then f(x) + g(x) ∈ U . Finally, we check that
c · f(x) ∈ U ,

c · f(x) = c · f1(x)(x− 5)(x+ 7) = (c · f(x))(x− 5)(x+ 7).

Since c ·f1(x) ∈ R[x], then c ·f(x) ∈ U , thus proving that U satisfies the vector
subspace conditions.

(3) This statement is true.

We begin by simplifying the sets U1 and U2 into its vector representation.
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For U1, we use the first equation to solve x2 = −x1 + 4x5. Using the second
equation we find that

2(−x1 + 4x5)− 3x3 + 8x4 = 0

−2x1 + 8x5 − 3x3 + 8x4 = 0

x4 =
1

4
x1 +

3

8
x3 − x5.

We let x1, x3, x5 be free variables which allows us to express U1 as

U1 :=

{(
x1,−x1 + 4x5, x3,

1

4
x1 +

3

8
x3 − x5, x5

)
: x1, x3, x5 ∈ R

}
We note that U1 is of real dimension 3.

For U2, we start by finding x1 = −x5 from the third equation. Using this
fact in the second equation, we obtain

7x2 + x4 = 0

x2 = −1

7
x4.

From the first equation we solve for x2,

x2 =
7

5
x3 −

4

5
x5.

Using the previous two equations allows us to solve for x4

−7

4
x4 =

7

5
x3 −

4

5
x5

x4 = −49

5
x3 +

28

5
x5

Therefore, the set U2 is defined

U2 :=

{(
−x5,

7

5
x3 −

4

5
x5, x3,−

49

5
x3 +

28

5
x5, x5

)
: x1, x5 ∈ R

}
.

We note that U2 is of real dimension 2.
Now, we determine the intersection U1 ∩ U2, i.e., we determine when(

x1,−x1 + 4x5, x3,
1

4
x1 +

3

8
x3 − x5, x5

)
=

(
−x′

5,
7

5
x′
3 −

4

5
x′
5, x

′
3,−

49

5
x′
3 +

28

5
x′
5, x

′
5

)
.

We see that x3 = x′
3, x5 = x′

5 and x1 = x′
5 = x5. From the second coordinate

−x1 + 4x5 =
7

5
x3 −

4

5
x5

−(−x5) + 4x5 =
7

5
x3 −

4

5
x5

5x5 +
4

5
x5 =

7

5
x3

29

5
x5 =

7

5
x3

29

7
x5 = x3.
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From the fourth coordinate
1

4
x1 +

3

8
x3 − x5 = −49

5
x3 +

28

5
x5

1

4
(−x5) +

3

8

(
29

7
x5

)
− x5 = −49

5

(
29

7
x5

)
+

28

5
x5(

−1

4
+

3

8
· 29
7

− 1

)
x5 =

(
−49

5
· 29
7

+
28

5

)
x5

x5 = 0

Since x5 = 0 then U1 ∩ U2 = (0, 0, 0, 0, 0).
Given that the two subspaces intersect only at the origin, i.e., these two

subspaces are linearly independent, and that the dimensions sum to the total
dimension of the space, i.e., dim(U1) + dim(U2) = 2 + 3 = 5 = dim(R5), then
V = U1 ⊕ U2.

(4) This statement is false. These two planes intersect at the point (0, 0, 0, 0).

To see this, we first simplify the sets U1 and U2 into its vector representation.

For U1, we first solve for x1 = x2 − x4 from the first equation. From the
second equation we see that

7(x2 − x4) + x3 − 5x4 = 0

7x2 − 7x4 + x3 − 5x4 = 0

7x2 + x3 − 12x4 = 0

x3 = −7x2 + 12x4

We let x2, x4 be free variables and find that

U1 := {(x2 − x4, x2,−7x2 + 12x4, x4) : x2, x4 ∈ R}.
For U2, from the second equation we solve for x3 and find that

x3 =
1

4
x2 +

15

4
x4.

Using the first equation we find that x1 = −1
2
x3−5x4. Now, using the equation

for x3 from the second equation we can further solve for x1 in terms of x2, x4

which are free variables in the set U1.

x1 = −1

2

(
1

4
x2 +

15

4
x4

)
− 5x4

= −1

8
x2 −

15

8
x4 − 5x4

= −1

8
x2 −

55

8
x4.

This allows us to write

U2 :=

{(
−1

8
x2 −

55

8
x4, x2,

1

4
x2 +

15

4
x4, x4

)
: x2, x4 ∈ R

}
.

Now, we can see that the two equations

x2 − x4 = −1

8
x2 −

55

8
x4
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−7x2 + 12x4 =
1

4
x2 +

15

4
x4

may only be satisfied if both x2, x4 = 0. Therefore, the only point of intersec-
tion is (0, 0, 0, 0).

(5) This statement is false.

We provide a counterexample to the fact that U1 ∩ U2 = {0}. Let p(x) =
x− x2. Then p(0) = 0− 02 = 0 and p(1) = 1− 12 = 1− 1 = 0. Therefore, the
intersection U1 ∩ U2 ̸= {0} violating the direct sum requirements.

□


