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Abstract

We show the following two universality statements on the entry-ranges and Markov
bases of spaces of 3-way contingency tables with fixed 2-margins:

(1) For any finite set D of nonnegative integers, there are r, c, and 2-margins for
(r, c, 3)-tables such that the set of values occurring in a fixed entry in all possible
tables with these margins is D.

(2) For any integer n-vector d, there are r, c such that any Markov basis for
(r, c, 3)-tables with fixed 2-margins must contain an element whose restriction to
some n entries is d.

In particular, the degree and support of elements in the minimal Markov bases
when r and c vary can be arbitrarily large, in striking contrast with 1-margined
tables in any dimension and any format and with 2-margined (r, c, h)-tables with
both c, h fixed.

These results have implications to confidential statistical data disclosure control.
Specifically, they demonstrate that the entry-range of 2-margined 3-tables can con-
tain arbitrary gaps, suggesting that even if the smallest and largest possible values
of an entry are far apart, the disclosure of such margins may be insecure. Thus, the
behavior of sensitive data under disclosure of aggregated data is far from what has
been so far believed. Our results therefore call for the reexamination of aggregation
and disclosure practices and for further research on the issues exposed herein.
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Our constructions also provides a powerful automatic tool in constructing con-
crete examples, such as the possibly smallest 2-margins for (6, 4, 3)-tables with entry-
range containing a gap.

Key words: Contingency tables, Markov bases, statistical data security, sampling
and random generation, confidentiality of statistical data, transportation polytopes

2



1 Introduction

In this article we apply our recently discovered universality of 3-way transportation polytopes

(De Loera and Onn 2004b) to two problems about the space of all contingency tables with fixed

prescribed collections of margins.

The first problem concerns the entry-range problem - the set of all integer values that can occur

in a fixed entry of any table with fixed margins. It is motivated by the practical problem of

confidential statistical data disclosure facing agencies, such as the U.S. Census Bureau, wishing

to maximize public access to information on their database while protecting confidentiality of

individuals whose data is in the base (see for example (Cox 2002; Cox 2003; Duncan et al. 2001;

Gusfield 1988; Irving and Jerrum 1994; Mehta and Patel 1983) and references therein). A com-

mon practice (Duncan et al. 2001), taken by the Bureau (American Factfinder), is to allow ac-

cess to margins of tables according to some aggregation model, but not to the individual entries

themselves. The security of an entry is closely related to the range of values it can attain in

any table with the fixed released collection of margins: if the number of values that can occur

is small, then the entry may be exposed, whereas if it is large, then the entry may be assumed

secure. The common assumption by users of contingency tables and practitioners of data dis-

closure has been that the entry-range is always an interval. Thus, under this assumption, if

the lower and upper bounds on an entry-range (computable by linear programming methods)

are far apart, then the entry is safe. However, our results now show that, even for simple ag-

gregation models, the entry-range can contain arbitrarily large gaps. Thus, the behavior of

sensitive data under disclosure of aggregated data is far from what has been so far believed.

Our results therefore call for the reexamination of aggregation and disclosure practices and for

further research on the issues exposed herein.

The second problem concerns the structure of the Markov basis of an aggregation model - the

set of moves that connects any pair of tables in the model that have the same set of margins.

It is motivated by the problem of sampling the space of tables with fixed collection of margins

according to the model, and estimating various statistics on that space. This topic has been stud-
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ied by many authors, see for example (Aoki and Takemura 2003; Diaconis and Gangolli 1995;

Diaconis and Sturmfels 1998; Dobra 2003; Hoşten and Sullivant 2002) and references therein.

It is well-known that for any 1-margin models (e.g. 2-way tables with all 1-margins known)

the elements of the Markov bases are simple vectors with 0, 1,−1 entries. They have even

been proved to be useful in random generation of contingency tables (see (Cryan et al. 2003;

Cryan et al. 2002) and references therein). In drastic contrast, we show here that Markov bases

of 3-way tables with given 2-margins are forced to contain entries of arbitrarily large size.

The case of 2-margins of 3-way tables this turns out to be, in a sense, the threshold case

between simple models (where the entry-range is always an interval and the degree and support

of the Markov basis elements are bounded) and complex models; we will discuss this below.

Specifically, we consider slim 3-tables, by which we mean tables of format (r, c, 3), that is,

having r rows and c columns where r, c are variable, and fixed depth 3; note that this is the

smallest depth for which the tables are genuinely 3-dimensional: tables of format (r, c, h) of

depth h ≤ 2 with fixed 2-margins are equivalent to 2-dimensional tables. We show the following

statements (the precise formal definitions for the terms appearing in the statements are provided

in following sections).

Theorem 1.1 Universality of entry-range: For any finite set D ⊂ N of nonnegative inte-

gers, there are r, c, and 2-margins for (r, c, 3)-tables such that the set of values occurring in a

fixed entry in all possible tables with these margins is precisely D.

Theorem 1.2 Universality of Markov bases: For any nonnegative integer vector d ∈ Nn,

there are r and c such that any Markov basis for the model of (r, c, 3)-tables with fixed 2-margins

must contain an element whose restriction to some n entries is precisely d. In particular, the

degree and support of elements in the minimal Markov bases when r and c vary can be arbitrarily

large.

Example 1.3 Complex 2-margined 3-tables: The following (possibly smallest) collection

of 2-margins of (6, 4, 3)-tables has entry-range (set of values occurring as the first entry x1,1,1 in

all possible tables with these margins) D = {0, 2}, and hence has a gap. Further, any Markov

basis for 2-margined (6, 4, 3)-tables must contain an element of degree at least d = 2 and hence
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is not square-free.


2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

 ,

 2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

 ,


2 3 2
2 1 2
2 1 2
2 1 2

 .

The margins for this example, and moreover, margins that realize any desired entry-range

D ⊂ N, and an element realizing any desired d ∈ Nn that any minimal Markov basis must

contain, can be automatically constructed following the proofs of Theorem 1.1 and Theorem

1.2. In fact, these procedures have been implemented in a computer and will be soon available

online over the Internet (De Loera and Onn 2004c).

The above universality results for the class of 2-margined 3-tables of format (r, c, h) for any

fixed h ≥ 3 but variable r, c are compatible with the computational intractability of the

problem of deciding the existence of any table of that format with given margins, estab-

lished in (De Loera and Onn 2004a). In contrast, if both c, h are assumed fixed and only r

is variable then the problem is polynomial time solvable (for unary presented margins), see

(De Loera and Onn 2004a). This suggests that the class of models with both c, h fixed and

only r variable is not universal; and indeed, it was recently shown in (Aoki and Takemura 2003;

Hoşten and Sullivant 2003; Santos and Sturmfels 2003) that in this case the degree and sup-

port of any element of a minimal Markov basis can be bounded in terms of c and h only. An

intriguing remaining open problem posed in (De Loera and Onn 2004a) regards the complexity

when both c, h are fixed and only r is variable of deciding the existence of any table with given

binary presented margins.

The proofs of Theorems 1.2 and 1.3 make use of the following result established recently in

(De Loera and Onn 2004b). Roughly speaking it states that any rational convex polytope is in

fact a 3-way transportation polytope:

Proposition 1.4 (De Loera - Onn (De Loera and Onn 2004b)) Any polytope P = {y ∈
R
n
+ : Ay = b} with integer m × n matrix A and integer m-vector b is polynomial-time repre-
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sentable as a 3-way transportation polytope

T = {x ∈ Rr×c×3
+ :

∑
i

xi,j,k = wj,k ,
∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j } ,

with r = O(m2(n+L)2) rows and c = O(m(n+L)) columns, where L :=
∑n
j=1 maxmi=1blog2 |ai,j|c.

Here R+ denotes the set of nonnegative reals. A polytope P ⊂ Rp is representable as a polytope

Q ⊂ Rq if there is an injection σ : {1, . . . , p} −→ {1, . . . , q} such that the coordinate-erasing

projection

π : Rq −→ R
p : x = (x1, . . . , xq) 7→ π(x) = (xσ(1), . . . , xσ(p))

provides a bijection between Q and P and between the sets of integer points Q∩Zq and P ∩Zp.

Before proceeding to prove the above theorems and related statements, we set some terminology.

A d-table of size n = (n1, . . . , nd) is an array of nonnegative integers x = (xi1,...,id), 1 ≤ ij ≤ nj.

For any 0 ≤ k ≤ d and any k-subset J ⊆ {1, . . . , d}, the k-margin of x corresponding to J is

the k-table xJ := (xJij :j∈J) := (
∑
ij :j /∈J xi1,...,id) obtained by summing the entries over all indices

not in J . For instance, the 2-margins of a 3-table x = (xi1,i2,i3) are its line-sums x12, x13, x23

such as x13 = (x13
i1,i3

) = (
∑
i2 xi1,i2,i3), and its 1-margins are its plane-sums x1, x2, x3 such as

x2 = (x2
i2

) = (
∑
i1,i3 xi1,i2,i3).

An aggregation model is a triple M = (d, J, n), where J is a family of subsets of {1, . . . , d} none

containing the other and n = (n1, . . . , nd) is a tuple of positive integers. The model dictates

the collection of margins for d-tables of size n to be specified. Our results concern the models

(3, {12, 13, 23}, (r, c, 3)), that is, slim, (r, c, 3)-tables, with all three of their 2-margins specified.

Note that we do not assume that the data is governed any statistical model. The reader is

referred to (Dobra et al. 2003) for an introduction to the problems that arise when one does

assume, for instance, that the data is a result of i.i.d. draws from any particular statistical

model.

Finally, for an aggregation model M = (d, J, n) and a specified margin collection u = (uJ : J ∈
J) under the model M , the corresponding set of contingency tables with collection of margins

u is

C(M ;u) := {x ∈ Nn1×···×nd : xJ = uJ , J ∈ J } .
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2 Markov Bases

We start with the proof that Markov Bases of 3-way tables are universal as stated in Theorem

1.2. Fix any model M = (d, J, n). A Markov basis for M is a set of integer arrays B(M) ⊆
Z
n1×···×nd that connects every pair of tables having the same margins in the model. More

precisely, every m ∈ B(M) has zero margins (mJ = 0 : J ∈ J), and for any x, y ∈ Nn1×···×nd

with (xJ = yJ : J ∈ J), there is a sequence of elements m1, . . . ,mk in B(M), possibly with

repetitions, such that y = x+
∑k
j=1 m

j and x+
∑i
j=1 m

j is nonnegative for i = 1, . . . , k.

Proof of Theorem 1.2. We need to show that for any n and any nonnegative integer vector d ∈ Nn

there are r and c such that any Markov basis B(M) for the model M := (3, {12, 13, 23}, (r, c, 3))

must contain an element m with the following property: the restriction of m to some n of its

table entries, indexed by some n triples σ(1), . . . , σ(n) ∈ [r] × [c] × [3], coincides with d, that

is, di = mσ(i) for i = 1, . . . , n. Consider the polytope

P := {y ∈ Rn+2
+ : y0 + yn+1 = 1 , dj · y0 − yj = 0 , j = 1, . . . , n } .

By Proposition 1.4, there are r, c and (ui,j), (vi,k), (wj,k) such the corresponding transportation

polytope T represents P . Let σ : {0, 1, . . . , n+ 1} −→ [r]× [c]× [3] be the injection giving that

representation, which in particular embeds yi as xσ(i) for i = 1, . . . , n. The right-hand-side data

for T naturally gives a 2-margin collection u = (u12, u13, u23) by (u12
i,j) := (ui,j), (u13

i,k) := (vi,k)

and (u23
j,k) := (wj,k).

Clearly, the set C(M ;u) of contingency tables is the set of integer points in T , and by Propo-

sition 1.4, T is integer equivalent to P . Now, P contains precisely two integer points, y1 :=

(0, 0, . . . , 0, 1) and y2 := (1, d1, . . . , dn, 0). Let x1, x2 be the corresponding tables in C(M ;u).

Any Markov basis B(M) of M must connect these tables, and since they are the only ones in

C(M ;u), it must be that m := x2 − x1 is in B(M). But then indeed di = mσ(i) for i = 1, . . . , n

as desired.

As pointed out by one of the referees, the above proof can be easily modified to extend Theorem

1.2 to arbitrary integer (and not necessarily nonnegative) vectors, giving the following nice
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corollary.

Corollary 2.1 For any integer vector d ∈ Zn, there are r and c such that any Markov basis

for the model of (r, c, 3)-tables with fixed 2-margins must contain an element whose restriction

to some of its entries is precisely d.

Proof. Let d+, d− ∈ Nn be the positive and negative parts of d defined as usual by d+
i =

max{0, di} and d−i = −min{0, di}. Then the corollary is obtained by simply repeating the

above proof of Theorem 1.2 starting from the polytope

P := {(y, z) ∈ R2(n+1)
+ : y0 +z0 = 1 , d+

j ·y0−yj = 0 , d−j ·z0−zj = 0 , j = 1, . . . , n } .

As usual, this can be lifted to the language of toric ideals in the corresponding algebra C[X] =

C[Xi1,...,id ] of complex polynomials with variables indexed by table entries. Each table x =

(xi1,...,id) lifts to a monomial Xx :=
∏
i1,...,id X

xi1,...,id
i1,...,id

. The model M gives rise to a model toric

ideal IM generated by all binomials coming from pairs of tables x, y with same margins in the

model, that is,

IM := ideal{Xx −Xy : xJ = yJ for all J ∈ J } .

It was shown in (Diaconis and Sturmfels 1998) that a set G of binomials in the toric ideal IM

generates it if and only if the corresponding set of integer arrays B := {x− y : Xx −Xy ∈ G}
is a Markov basis for the model M . This provides a fundamental link between commutative

algebra and aggregation model theory; in particular, a finite Markov basis always exists and is

computable by Gröbner bases methods. Corollary 2.1 has the following interesting implication

on the complexity of “slim 3-way” toric ideals.

Corollary 2.2 Universality of model toric ideals: For any vector d ∈ Zn, there are r, c

such that any minimal generating set of the ideal IM of the model M = (3, {12, 13, 23}, (r, c, 3))

must contain a binomial satisfying the following: one of its monomials restricted to a suitable

subset of variables has multi-degree d+ and its other monomial restricted to a suitable subset of

variables has multi-degree d−.
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3 Entry-range

Next, we consider entry-ranges. Permuting coordinates, we may always consider the first entry

x1, where 1 := (1, . . . , 1). The entry-range of a collection of margins u under model M is the set

R(M ;u) := {x1 : x ∈ C(M ;u)} ⊂ N of values x1 can attain in any table with these margins.

We start with the following characterization of the entry-ranges of 1-margin models in any

dimension and of any format, showing that they are always intervals and hence presumably

secure whenever the lower and upper bounds on the entry-range are far apart.

Proposition 3.1 For any 1-margin model M = (d, {1, 2, . . . , d}, (n1, . . . , nd)) and any collec-

tion of margins u = (u1, . . . , ud) under M , the entry-range is an interval, that is, for some

a, b ∈ N
R(M ;u) = [a, b] := {r ∈ N : a ≤ r ≤ b} .

Proof. It is well known that any such 1-margin model M admits a {0,±1}-valued Markov basis

B(M). Suppose indirectly that there is a collection of margins u under M for which the entry-

range is not an interval. Thus, there are nonnegative integers a and b ≥ a + 2 such that there

are tables x, y ∈ C(M ;u) with x1 = a and y1 = b, but no table z ∈ C(M ;u) with z1 = a + 1.

But then any table z = x +
∑k
j=1 m

j reachable from x by an admissible sequence of elements

m1, . . . ,mk in B(M) must satisfy z1 ≤ a, so x, y are not connected by the Markov basis B(M),

a contradiction.

Our universality result Theorem 1.1 stands in contrast with the situation of Proposition 3.1

for 1-margined models and with recent attempts by statisticians to better understand entry

behavior of slim 3-tables (see e.g. (Cox 2002; Cox 2003; Duncan et al. 2001)), and implies that

entry-ranges of 2-margined slim 3-table models consist of all finite sets of nonnegative integers.

This shows in particular that the entry-range can contain arbitrarily large gaps and so, even

if the lower and upper bounds on the entry-range are far apart, the entry may be vulnerable.

Thus, the behavior of sensitive data under disclosure of aggregated data is far from what has

been so far believed, and this result calls for the reexamination of aggregation and disclosure

practices and for further research on the subject.
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Here is the proof, making use again of Proposition 1.4.

Proof of Theorem 1.1. We need to show that for any finite subset D ⊂ N there are r, c and

2-margins u = (u12, u13, u23) for the model M := (3, {12, 13, 23}, (r, c, 3)) such that the cor-

responding entry-range R(M ;u) equals D. Let then D = {d1, . . . , dn} ⊂ N be any such set.

Consider the polytope

P := {y ∈ Rn+1
+ : y0 −

n∑
j=1

dj · yj = 0 ,
n∑
j=1

yj = 1 } .

By Proposition 1.4, there are r, c and (ui,j), (vi,k), (wj,k) such the corresponding transportation

polytope T represents P . By suitable permutation of coordinates, we can assume that the

injection σ giving that representation satisfies σ(0) = (1, 1, 1), embedding y0 as x1 = x1,1,1.

Again, the right-hand-side data for T naturally gives a 2-margin collection u = (u12, u13, u23)

by (u12
i,j) := (ui,j), (u13

i,k) := (vi,k) and (u23
j,k) := (wj,k). Again, the set C(M ;u) of contingency

tables is the set of integer points in T , and by Proposition 1.4, T is integer equivalent to P .

The entry-range is therefore, as desired,

R(M ;u) = {x1 : x ∈ C(M ;u)}
= {x1 : x ∈ T ∩ Zr×c×3} = {y0 : y ∈ P ∩ Zn+1} = D .

An automatic universal generator and Example 1.3 revisited: The procedures described

in the proofs of Theorems 1.1 and 1.2 have been implemented and will be soon available online,

see (De Loera and Onn 2004c). For instance, the following 2-margins for (16, 11, 3)-tables giving

entry-range D = {0, 2} can be produced that way starting with the polytope in three variables
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P = {y ≥ 0 : y0 − 2y1 = 0, y1 + y2 = 1},

2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0
0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2



,

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 0 0 0 0 2 2 0 0 2 2 0 0 0 0 4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 ,

 4 1 3 6 6 6 6 0 0 0 0
2 3 3 0 0 0 0 2 2 2 2
0 0 0 2 2 2 2 6 6 6 6

 ;

with a suitable human short cut (which has to do with certain choices of parameters in the

construction underlying Proposition 1.4 and which could also be coded with suitable extra

effort), it is possible to get it down to (6, 4, 3)-tables as in Example 1.3.

We conclude with the notion of spectrum. The spectrum of a model M = (d, J, n) is the family

of all entry-ranges of collections of margins under the model,

Spec(M) := {R(M ;u) : u = (uJ : J ∈ J) some margin collection under M} .

The spectrum of a class C of models is the union Spec(C) :=
⋃
M∈C Spec(M) of spectra of its

models.

With this terminology, Theorem 1.1 says that the spectrum of the class of 2-margined slim

3-table models consists of all finite subsets of N and hence the mere computation of lower and

upper bounds on the entry-range does not provide sufficient information for deciding whether

the disclosure of margins is secure or not: thus, further study is necessary in order to quantify

the meaning of safe disclosure in such complex classes of aggregation models. On the other
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hand, Proposition 3.1 says that the spectrum of the class of 1-margined models of any format

consists of intervals only and hence that class is simple and its security is presumably directly

related to the difference between the upper and lower bounds on the entry-range. Finally, the

results of (Hoşten and Sullivant 2003) describe a broad class of hierarchical models for which

the complexity of the spectrum is somewhere in between, indicating some ambiguity regarding

the security of these models. We pose as an interesting research direction the classification of

spectra of classes of models and the determination of the universal ones.

4 Concluding Remarks

As mentioned before, the results of this paper, in particular those in Section 3, indicate that

the behavior of sensitive data under disclosure of aggregated data is far from what has been

so far believed. This calls for the reexamination of aggregation and disclosure practices and for

further research on the issues exposed herein.

In particular, we conclude with the following interesting questions raised by one of the referees.

As pointed out by the referee, the constructions in this paper involve tables with zero margins.

Can the constructions be strengthened to table spaces with no zero margins? Is it possible to

determine whether the universality behavior is frequent or sparse? Is there a class of real data

where this behavior occurs?

Also, as pointed out by the referee, from a practical standpoint, the sample size of a survey or

the number of people who are taken in a census is some fixed amount. How does the complexity

of various aggregation models, in particular 2-margined 3-tables, change if the grand total of

all entries is fixed and the size of the table gets large?
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[Hoşten and Sullivant 2002] Hoşten, S., Sullivant, S.: Gröbner bases and polyhedral geometry

of reducible and cyclic models. J. Combin. Theory Ser. A 100 (2002) 277–301
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