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The Many Aspects of Counting

Lattice Points in Polytopes ?

Abstract. A wide variety of topics in pure and applied mathematics involve
the problem of counting the number of lattice points inside a convex bounded
polyhedron, for short called a polytope. Applications range from the very
pure (number theory, toric Hilbert functions, Kostant’s partition function in
representation theory) to the most applied (cryptography, integer programming,
contingency tables). This paper is a survey of this problem and its applications. We
review the basic structure theorems about this type of counting problem. Perhaps
the most famous special case is the theory of Ehrhart polynomials, introduced
in the 1960s by Eugène Ehrhart. These polynomials count the number of lattice
points in the different integral dilations of an integral convex polytope. We discuss
recent algorithmic solutions to this problem and conclude with a look at what
happens when trying to count lattice points in more complicated regions of space.

1. Introduction

The main actors of this story are convex polytopes (e.g. cubes, triangles, and
their high dimensional analogues) and the points with integer coordinates
that lie inside them, i.e. their lattice points. The convex polytopes we care
about here will most likely be encoded in a computer, and for this reason
they will be represented as the sets of non-negative solutions of a system of
linear equations Ax = b, for suitable integral matrix A and vector b. This
is not at all a restrictive formulation; any system of linear inequalities and
equalities with rational coefficients can be put into this form (the books [7,
53,60] are good references for many concepts used here). We will start now
setting up our mathematical tale:

Given a polytope P = {x : Ax = b, x ≥ 0}, specified by d × n integral
matrix A and an integral d-vector b, i.e. P = {x : Ax = b, x ≥ 0}, our goal

? The author gratefully acknowledges the financial support received from NSF
grant DMS-0309694, an Alexander von Humboldt fellowship, and the UC Davis
Chancellor’s fellow Award.
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is to count how many lattice points are inside P. We are in fact interested
on the counting function

φA(b) = #{x : Ax = b, x ≥ 0, x integral}.

This is the function that counts the number of lattice points inside con-
vex polytopes given in terms of a fixed matrix A and a right-hand-side
vector b that is possibly changing or consists of variables. In the first part
of this survey I hope to convince you that the functions φA are very useful
and natural. As we will see applied mathematicians often work with fixed
b and would perhaps prefer fast evaluation of φA(b) for fixed values of b.
Pure mathematicians, on the other hand, would perhaps prefer to compute
explicit exact formulas in terms of variables bi.

Take the following example. If A = [3, 5, 17] then we have a plane inter-
secting the nonnegative orthant, as presented in Figure 1, the polytope P
is a triangle (embedded in three-dimensional space). It gives us a function
φA(n) = #{(x, y, z) : 3x + 5y + 17z = n, x ≥ 0, y ≥ 0, z ≥ 0}. Thus,
for example, φA(58) = 9, φA(101) = 25, φA(1110) = 2471, etc. For us a
fine general formula for φA(b) could be the generating function whose terms
encode the different values of φA:

∞
∑

n=0

φA(n)tn =
1

(1 − t17) (1 − t5) (1 − t3)
.

x

y

z

A=[3,5,17]   

Fig. 1. Lattice points on a spatial triangle.

In the second part of the survey, I will outline the structure theory
of the counting functions φA(b) and some useful algorithms to compute
φA(b) involving rational functions. By the way, whenever I say counting, I
mean exact counting. There is a rich and exciting theory of estimation and
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approximation, but that is a different story (see for example [27,38,59]).
Now we present

2. Applications

2.1. in Applied Mathematics:

– Let us begin with two puzzles about coins and cars. A curious cashier
may wonder: How many ways are there to give change of 10 dollars
into pennies (p), nickels (n), dimes (d), quarters (q), using exactly 100
coins? The answer is equivalent to the number of solutions of the system
of linear equations

p + 5n + 10d + 25q = 10000, p + n + d + q = 100,

where p, n, d, q are nonnegative integral numbers. This is a reasonable
exercise, but do not be fooled into thinking that problems with few
constraints are always easier than those with many equations. Even with
just one single row for the matrix A there are hard instances that cannot
be solved so by mere brute force enumeration (i.e. trying to list all
possibilities). For instance, from the article [1], a very hard instance
is {(x, y, z, w, v) ∈ R5

≥0 : 12223x+12224y+36674z+61119w+85569v =
89643481}.
We can imagine x, y, x, w, v are the five (integral) quantities of cars or
trucks, from five different models, with weights (in kilograms) 12223,
12224, etc. and we are supposed to completely fill in a ferry boat with
maximal capacity of 89643481 kilograms. How many ways are there to
do this? This is like filling a sack with objects up to the maximum ca-
pacity; this is why problems with a single-row matrix receive the name
of knapsack problems. Knapsack problems are geometrically the simplest
possible since their polytopes are simplices, the generalization of trian-
gles for higher dimensions. Note that the counting problem can easily
be turned into an optimization problem if we just ask: How can we fit
the most cars?

– Continuing with optimization problems. Suppose you have a computer
network between Berlin and Magdeburg. You are interested to send as
many email messages as possible given its layout. In Figure 2 (A), Berlin
and Magdeburg are represented as nodes 1 and 6 respectively. The other
four nodes represent nearby cities within the network. Every time we
send an e-mail, if it enters a node, it has to leave that node (conditions
bi = 0 means no loss of information). There is also some capacity as-
sociated to each connecting phone line or internet cable that limits the
number of messages we can send (e.g. between node 2 and 4 there is a
capacity c24 of 5 messages).
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Fig. 2. A simple network.
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Fig. 3. All integral maximum flows in the network.

Classical and widely-known theorems [53] indicate that the largest num-
ber of email messages one can send for this example is 11. But how
many distinct optimal solutions are there? It turns out that there are
exactly 9 ways to route 11 emails in this small network (see Figure
3 (B)). In general, if G is a network with n nodes and m arcs, with
integer-valued capacities for the arcs and excess function for the nodes
(namely c : arcs(G) → Z≥0 and b : nodes(G) → Z). A flow is a function
f : arcs(G) → Z≥0 so that, for any node x, the sum of flow values
in outgoing arcs minus the sum of values in incoming arcs equals b(x),
and 0 ≤ f(i, j) ≤ c(i, j). We may be interested on knowing all maxi-
mal integral-valued flows or at least many of them. This is equivalent
to counting the number of lattice points of a flow polytope (see [6] and
references therein). This may be relevant for the security of communica-
tion networks, if we have only one or a few optimal solutions, this may
indicate some kind of weakness in case of an attack [5].

– Suppose you are a compiler designer, then you would typically worry
about how often is a certain instruction I of the computer code executed?
Take for instance the following toy example (this program has really no
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particular meaning, it simply repeats instruction I a few times depending
on values of N and M):

void proc(int N, int M)

{

int i,j;

for (i=2N-M; i<= 4N+M-min(N,M), i++)

for(j=0; j<N-2*i; j++)

I;

}

Clearly, the number of times we reach instruction I would depend on
N,M. In terms of these parameters the set of all possible solutions is
given by the number of lattice points inside of parametric polygons. In
our toy example these are described by the linear conditions

{(i, j) ∈ Z
2 : i ≥ 2N−M, i ≤ 4N+M−min(N, M), j ≥ 0, j−2i ≤ N−1}.

The answers to many questions about the computer performance or
resource allocation available while compiling code with nested loops de-
pends on counting lattice points of polytopes. Examples include how
many memory locations are touched during a loop? How many cache
misses does a loop generate? How much memory is dynamically allo-
cated by a portion of code? See more details and references in [20,33,
45].

– Statistics is a topic where integral data tables are studied and generated
a plenty. Take for instance the following 3-dimensional table of format
2×3×3 given below. Table 1 has been extracted from the 1990 decennial
USA census. Visit the web page of the U.S. census http://factfinder.
census.gov/ where you can extract your own contingency tables!
There are a variety of statistical questions where one may consider the
“totals margins” (e.g. total number of white male respondents was 329,
the number of chinese females is one, etc.) as fixed and we may wish to
study the space of all integral tables that satisfy these sum restrictions
on their entries. For example, counting those tables is closely related
to the problem of sampling such a table uniformly at random or with
respect to other probability distribution model. Another application is
when we want to decide whether two of the traits of the statistic, say,
income and race, are independent of each other. Several tests of inde-
pendence depend on counting the integral tables in question. See [25,
30] and its references. The spaces of tables with fixed marginal totals
are again polytopes, the so called transportation polytopes. The lattice
points inside transportation polytopes receive the name of contingency
tables. For example, if we consider our census table above, there are 18
entries possible depending on gender (f, m), race (w, b, c), and income
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Gender = Male
Income Level

Race ≤ $10, 000 > $10000 and ≤ $25000 > $25000 Total

White 96 72 161 329

Black 10 7 6 23

Chinese 1 1 2 4

Total 107 80 169 356

Gender = Female
Income Level

Race ≤ $10, 000 > $10000 and ≤ $25000 > $25000 Total

White 186 127 51 364

Black 11 7 3 21

Chinese 0 1 0 1

Total 197 135 54 386

Table 1. Three-way cross-classification of Gender, Race, and Income for a selected
U.S. census tract. Source: 1990 Census Public Use Microdata Files.

values (1, 2 or 3). Since we fixed the “line” sums, we have, for example,
a linear equation

xm,w,1 + xm,w,2 + xm,w,3 = 329

that explains that the number of white males is 329 when we add the
three categories of income. There is a similar equation xm,b,2 + xf,b,2 =
14 that indicates the number of blacks (female and male) with middle
income must be 14. Altogether we will have 21 linear equations and
18 non-negative variables (one for each combination of possible gender,
race, income) describing the polytope. How many integral points does it
contain?

2.2. in Pure Mathematics

– Many combinatorial structures can be counted as lattice points of poly-
topes. For example, matchings on graphs [46], t-designs [51], linear ex-
tensions of posets [56], and of course magic squares! Magic squares are
square arrays of nonnegative integer numbers where the sums along each
row, column, or diagonal is a constant, the so called magic sum. In Figure
4 we see an example of a 4 × 4 magic square with magic sum 24.
How many 4×4 magic squares with sum s are there? Denote by f4×4(s)
the number of 4 × 4 magic squares with magic sum s. Using the latest
methods for counting lattice points we can present a nice formula for
f4×4(s) (and other magic objects [3]):
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Fig. 4. A 4 × 4 magic square.







1
480 s7 + 7

240 s6 + 89
480 s5 + 11

16 s4 + 49
30 s3 + 38

15 s2 + 71
30 s + 1 if 2|s,

1
480 s7 + 7

240 s6 + 89
480 s5 + 11

16 s4 + 779
480 s3 + 593

240 s2 + 1051
480 s + 13

16 if 2 6 |s.

In other words f4×4(1) = 8,f4×4(2) = 48, f4×4(3) = 200, f4×4(4) =
675, f4×4(5) = 1904, etc. All values can be read from the two-case
formula, which is applied according with the parity of the magic sum.
This formula, given in finitely many polynomial pieces, is a good example
of a quasipolynomial [57]. We will come back to this later. The important
thing to notice right now is that f4×4(s) is again one of our functions
φA(b) for a polytope which is almost a transportation polytope: The
matrix A is read off from the row, column, and diagonal sums for the
entries of a 4× 4 magic array. Our polytope lives in sixteen dimensional
space, and b is just s(1, 1, . . . , 1).

– Researchers have observed that polytopes play a special role in represen-
tation theory (e.g. [16,21,41,42]). One example of such polytopes comes
from the Gelfand-Tsetlin patterns which arise in the representation the-
ory of glnC. What is a Gelfand Tsetlin pattern? It is a triangular array of
numbers x = (xij)1≤i≤j≤n satisfying that xij ≥ 0, for 1 ≤ i ≤ j ≤ n; and
xi,j+1 ≥ xij ≥ xi+1,j+1, for 1 ≤ i ≤ j ≤ n − 1. xin = λi if 1 ≤ i ≤ n, for
λ ∈ Rn. Given λ, µ ∈ Zn, the Gelfand–Tsetlin polytope GT (λ, µ) ⊂ Xn is
the convex polytope of GT-patterns (xij)1≤i≤j≤n satisfying in addition

that x11 = µ1; and
∑j

i=1 xij −
∑j−1

i=1 xi,j−1 = µj , for 2 ≤ j ≤ n.
The importance of GT-polytopes stems from a classic result of I. M.
Gelfand and M. L. Tsetlin, which states that the number of integral
lattice points in the Gelfand–Tsetlin polytope GT (λ, µ) equals the di-
mension of the weight µ subspace of the irreducible representation of
glnC with highest weight λ. If you are not familiar with representation
theory let me also say that the lattice points of Gelfand-Tsetlin polytopes
also have a nice combinatorial interpretation as semi-standard tableaux
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of of shape λ and content µ. The number of such tableaux is a Kostka
number.

1 1

22

3 1 1 2

2 3

Fig. 5. An example of two tableaux with content (2, 2, 1) and shape (3, 2).

It is well known that the structure of a complex semisimple Lie algebra
g can be obtained from the discrete geometric information given by the
root system [31]. Polytopes derived from the root system of g and their
lattice points appear in the study of a tensor product decomposition into
irreducibles. If we consider a simple g-module Vλ with highest weight λ
results of Berenstein and Zelevinsky [16] indicate that the multiplicity of
the simple module Vλ in the tensor product Vµ ⊗ Vν for given dominant
weights λ, µ, ν is equal to the number of lattice points inside certain
polytopes. Also related are the Kostant’s partition function which ap-
pear in many classical formulas such as Steinberg’s formula [31]. They
can also be seen naturally as counting lattice points of certain polytopes.

– Another area of application is computational commutative algebra [48].
Given a finite set of monomials m1,m2,..., mk in C[x1, x2, . . . , xn] one
can consider the ring C[m1, m2, . . . , mk] generated by those monomials
(i.e. like the usual polynomial ring but powers of the monomials mi

replace powers of variables). Algebraists are interested on the Hilbert
series of this ring with respect to various gradings (ways of measuring
the degree of a monomial). The Hilbert series are generating functions
for the vector space dimensions of the graded pieces of the ring. Barvinok
and Woods [10] have recently shown that Hilbert series of a monomial
algebra for the finest Z

n grading can be computed in polynomial time,
via lattice point counting techniques, when the number of variables is
fixed. Yet another connection to commutative algebra is the computation
of Gröbner bases of toric ideals [22]. These, like usual vector space bases,
allow many important calculations about the ideal.

3. The Main Structure Theory

By now I hope you are convinced of the interesting nature of the count-
ing function φA(b), and maybe you wish to learn more about it. I will
present what I would call the structure theory of these functions. The
functions φA(b) are so basic and natural that one can easily believe their



The Many Aspects of Counting Lattice Points in Polytopes ?? 9

study goes back to Gauss, Euler or even earlier. Surprisingly the first di-
rect investigations of φA(b) date back to the 1960’s work of Eugène Ehrhart
(1906-2000) [28,29] (with Pick’s theorem as an sporadic earlier particular
case). Ehrhart was a man with artistic and mathematical talents. As a
lycée teacher he did many of his investigations as an amateur mathemati-
cian. To read more about him see the tribute written by Philippe Clauss
http://icps.u-strasbg.fr/~clauss/Ehrhart.html.

Fig. 6. Eugène Ehrhart (1906-2000).

Ehrhart began by considering the case when b changes as a single-
parameter dilation, i.e. b = λv for a fixed vector v. Geometrically this can
be interpreted as inflating or dilating the associated polytope while leaving
the angles and proportions fixed. More precisely, let P be a convex poly-
tope in Rd. For each integer n ≥ 1, define the dilation of P by n as the
polyhedron nP = {nq : q ∈ P} (see Figure 7). Thus for P a d-polytope,
Ehrhart studied the particular case of φA(b) given by the counting func-
tion i(P, n) = #(nP ∩ Zd) = #{q ∈ P : nq ∈ Zd}. This is the number of
lattice points in the dilation nP of P . Similarly, if P ◦ denotes the relative
interior of P , i.e. i(P ◦, n) = #{q ∈ P − ∂P : nq ∈ Zd}. Let us take the
simplest ever example, a unit square (see Figure 7). the reader can easily
verify i(P, n) = (n+1)2 and i(P ◦, n) = (n−1)2. In fact, for a d-dimensional
unit cube we have i(P, n) = (n + 1)d.
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P 3P
Fig. 7. Dilating a unit square.

But if we just slightly translate the square to have non-integer coordi-
nates, say vertices with coordinates −1/2, 1/2, the task of computing i(P, n)
becomes more complicated. The correct description is given by the following
theorem (see [29,47,57] and the many references therein).

Theorem 1. Let P be a convex d-dimensional rational polytope. Then for
the univariate function i(P, n) there exists an integer N > 0 and polynomi-
als f0, f1, . . . , fN−1 such that i(P, n) = fi(n) if n ≡ i modulo N . We say
that i(P, n) is the Ehrhart quasipolynomial of P , in the dilation variable n.
Moreover the non-zero polynomial components fi have degree d = dim(P )
and their leading term equals the volume of P . When the coordinates of the
vertices of P are integers i(P, n) is given by a single polynomial.

Why is the leading coefficient equal to the volume? Intuitively, dilating
the polytope P is equivalent to leaving P as it is but refining the grid size
of the lattice points. When we count lattice points we are essentially adding
the volumes of tiny unit cubes centered at those lattice points which, as we
refine the grid, approximate better and better the volume of the polytope:
the main principle of the Riemann integral! A lot of the more recent work
about Ehrhart counting functions was motivated by trying to understand
the lower degree coefficients of the polynomial components. See for instance
[12,14,35,47,55]. It is also important to mention that it can certainly happen
that a polytope with non-integral coordinates has an Ehrhart polynomial
[49].

One possible generalization of Ehrhart’s result is to count the lattice
points with weights coming from a weight function f instead of count-
ing them as one, in other words one considers the function i(P, f, n) =
∑

α∈nP∩Zd f(α). For example, if the polytope P is the unit square [0, 1]2,

and the weight function f(x, y) is a polynomial of the form xkyk with
0 ≤ k ≤ 3, the corresponding weighted Ehrhart functions are
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i(P, n) =n2 + 2n + 1 = (n + 1)2,

i(P, xy, n) = 1
4 n4 + 1

2 n3 + 1
4 n2,

i(P, x2y2, n) = 1
9 n6 + 1

3 n5 + 13
36 n4 + 1

6 n3 + 1
36 n2,

i(P, x3y3, n) = 1
16 n8 + 1

4 n7 + 3
8 n6 + 1

4 n5 + 1
16 n4.

The degree of the polynomial i(P, xkyk) is 2k + 2, in general, it will be
the dimension of the polytope plus the degree of the weight function. What
is the leading coefficient now? Can you guess? See [19] for details.

Now we are interested on another generalization, when φA(b) is a mul-
tivariable function, b can change differently in all entries. We present now a
fairly general structure theorem (see [15,58]). To understand the statement
the reader must think of cones. Given a finite set of vectors S, the cone
cone(S) is the collection of all nonnegative linear combinations of elements
of S. We call the set S the generators of the cone. Intuitively, cones look
like ice cream cones, but with flat faces; see Figure 12 for a picture of a
two-dimensional cone. When a cone does not contain a linear subspace we
say the cone is pointed. In that case, we have a minimum set of genera-
tors, which we call the rays of the cone. As practice to familiarize yourself
with cones, observe that the parameter space for φA(b) is cone(A); only for
b ∈ cone(A) the function φA(b) can be non-zero.

Theorem 2. For a d × n integral matrix A and a parameter vector b ∈
cone(A), there exist a finite decomposition of Zd ∩ cone(A) such that φA is
a multivariate polynomial of degree n − d in each piece. The number n − d
is the dimension of the polytope {x : Ax = bx ≥ 0}.

More precisely, cone(A) can be decomposed into convex polyhedral sub-
cones of cone(A), called chambers, such that, for all integral vectors b inside
a chamber the function φA(b) can be written as a fixed polynomial function
of degree n − d in the variables b1, . . . , bd plus a “correction polynomial” of
smaller degree. The correction terms depend periodically on the values of
b1, b2, . . . , bd.

Now we present two examples to illustrate Theorem 2. Let us begin with
the 3 × 6 matrix



12 J. A. De Loera

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

1
2

3

4

5

6

Fig. 8. A two-dimensional slice of cone(A), example one.

A =









2 1 1 0 0 0

0 1 0 2 1 0

0 0 1 0 1 2









.

It is not a surprise that some “periodic” or “modular” components must
appear in the final formulas for φA. For example, observe that any vector
b = (b1, b2, b3) which is a non-negative integer combination of the columns
of A must satisfy b1 + b2 + b3 ≡ 0, mod 2 because all columns of A do. The
cone cone(A) is three dimensional, corresponding to the three entries of b.
For the sake of being able to draw it, I showed only a 2-dimensional slice of
the cone marking the 6 generating columns of A with the numbers 1 to 6.
See Figure 8.

The theorem says there should be finitely many polynomials describing
φA. The cone is decomposed into 12 chambers, in this example the regions
are triangular cones (in Figure 8 represented by triangles). Only 3 polynomi-
als concern the formula of φA for those vectors inside the left-side chamber
shaded in the picture; these are:

φA(b1, b2, b3) =
b2b3

2
+

b2b
2
3

8
−

b2
3

24
+ correction

where

correction =























1 + b2
2 + 2b3

3 if b1 ≡ 0 and b2 ≡ 0 mod 2,

1
2 + b2

2 + 5b3
12 if b1 ≡ 1 and b2 ≡ 1 mod 2,

1
2 + 3b2

8 + 13b3
24 otherwise.
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Fig. 9. The digraph that gives matrix A for example two and the seven chambers
for φA (a two-dimensional representation).

Figure 9 shows a second example where the matrix A is very special.
A is defined to be the node-arc incidence matrix of the digraph on the left
of the figure. Thus A is given by the pairwise differences of standard unit
vectors ei. For instance the last column of A is just e3 − e4 (in this way
we marked the six columns of the matrix in Figure 9). Remarkably, in this
example there is a single polynomial (no correction terms) in each chamber.
Therefore seven polynomials define the whole counting function φA, one
per triangular cone in the figure (there only represented by a triangle). The
reason for this is that the matrix A is totally unimodular [53]. In particular,
the vertices of the polytopes {x : Ax = b, x ≥ 0} are integral for all integral
b. If you recall Theorem 1, you can see φA(tb) is actually a polynomial (not a
quasipolynomial) for any fixed b in the variable t. Of the seven polynomials,
take as an example the one for the biggest triangular cone region, with
corners e1 − e2, e1 − e4, and e3 − e4, it is

φA(b) = (b1 + b2 + 3)(b1 + b2 + 2)(b1 + b2 + 1)/6.

This is valid for all vectors integral b within this triangular cone.

What are these mysterious chambers? Their structure is rather pretty
and worth studying further. Let ∆ be the set of column vectors of the
input matrix A (defining our polytope), this means we consider the column
vectors of the matrix A without multiplicities. The chamber complex is a
special polyhedral subdivision of the cone generated by the nonnegative
linear combinations of elements in ∆, denoted by C(∆). It is defined as the
common refinement of the simplicial cones C(σ) running over all possible
subsets of ∆ which form a basis for Rd. More precisely, denote by Σ∆ the
set of all simplicial cones whose extreme rays, are generated by elements
of ∆, If σ is an element of Σ∆ and ∂σ denotes its boundary and ∂Σ∆ the
union of the boundaries of all simplicial cones, then the complement of Σ∆

inside C(∆) consists of the disjoint union of open convex cells. See Figure
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10 for a two-dimensional slice view of a chamber complex of a pentagonal
cone. The refinement we described gives eleven chambers or regions. One
can think of them as the result of overlapping all the possible triangulations
of the cone. One important fact is that finding the chamber that contains a
particular vector b is equivalent to enumerating the vertices of the polytope
{x : Ax = b, x ≥ 0}.

Fig. 10. The construction of the chamber complex of a pentagonal cone (shown
as a 2-dimensional slice).

4. Actually Counting: Modern Algorithms and Software

Counting lattice points is difficult: We know that when the dimension is
an input variable the problem of detecting a lattice point in polyhedra is
NP -hard [32]. Already counting 2 × n contingency tables is #P -hard [27].
Branch-and-Bound techniques and exhaustive enumeration work to some
extent, but the method gets stuck in surprisingly small problems, e.g. hard
knapsack problems. Exhaustive enumeration techniques are not useful to
derive formulas as they depend on the size of the right-hand-side vector b.

During the 1980’s and 1990’s a new breed of algorithms and counting
formulas were created. They rely on deeper algebraic and analytic properties
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of polyhedra. Some authors emphasize the more algebraic-geometric nature
of the lattice points of polyhedra via the theory of toric varieties, while
others make a much stronger use of complex analysis and convexity (see [9,
6,26,40,43,50,54,52] and the many references within).

Several researchers have even produced software for counting lattice
points in polyhedra. For instance, Lisonek created a Maple package that
works on knapsack type problems [44]. The Beck-Pixton software [13] can
perform fast computations with two-dimensional transportation polytopes.
They have the best computation times for that family of polytopes. Vergne
and collaborators (see [6]) have developed a package special for unimod-
ular matrices which is very fast. Working with general polytopes we have
two programs: one is ehrhart, developed by Clauss, Loechner and Wilde
(http://icps.u-strasbg.fr/Ehrhart/program/). The first implementa-
tion of Barvinok’s algorithm was the software LattE developed at UC Davis
[23,24]. LattE counts lattice points, generates Ehrhart’s quasipolynomials,
and even solves small integer programs. Now we wish to sketch some of the
ideas involved in some the algorithms. As the reader will see we have a bias
for the use of rational functions. We sketch Barvinok’s algorithm first, then
we sketch and refer to other algorithms that use again rational functions. As
of today, these rational-function-based algorithms are the fastest available.

4.1. Barvinok’s algorithm

In 1993 A. Barvinok [8,9] found an algorithm to count integer points in-
side polyhedra. When the dimension is fixed the algorithm can count the
number of lattice points in a polytope in polynomial time on the size of
the input (the size is given by the binary encoding of the data). The key
ideas are using rational functions as efficient data structures and the uni-
modular signed decomposition of polyhedra. Given a convex polyhedron P
(not necessarily a polytope anymore!), we wish to compute the multivariate
generating function

f(P ; x) =
∑

α∈P∩Zd

xα,

where xα = xα1

1 xα2

2 . . . xαd

d . This is an infinite formal power series if P is
not bounded, but if P is a polytope it is a (Laurent) polynomial with one
monomial per lattice point. For example, if we consider a rectangle with
vertices V1 = (0, 0), V2 = (5000, 0), V3 = (0, 5000), and V4 = (5000, 5000)
the generating function f(P ) has over 25,000,000 monomials,

f(P, z1, z2) = 1 + z1 + z2 + z1z
2
2 + z2

1z2 + · · · + z5000
1 z5000

2 .

The representation of f(P ; z1, z2) as monomials is clearly way too long to
be of practical use. But Barvinok’s method instead rewrites it as a compact
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sum of rational functions. For instance, only four rational functions suffice
to represent the over 25 million monomials. Indeed f(P, z1, z2) equals

1

(1 − z1) (1 − z2)
+

z1
5000

(1 − z1
−1) (1 − z2)

+
z2

5000

(1 − z2
−1) (1 − z1)

+
z1

5000z2
5000

(1 − z1
−1) (1 − z2

−1)
.

Note that if we wish to know the number of lattice points in P , and we
knew f(P ; z), we could compute it as the limit when the vector (x1, . . . , xn)
goes to (1, 1, . . . , 1). Similarly the maximum of a linear functional over the
lattice points equals the highest degree of the univariate polynomial one
gets after doing a monomial substitution xi → tci (See [10]). These two
calculations can be difficult because to the poles of the rational functions.
One uses complex analysis (residue calculations) to find the answer.

A beautiful theorem of M. Brion [18] says that to compute the rational
function representation of f(P ; z) it is enough to do it for tangent cones at
each vertex of P . Let P be a convex polytope and let V (P ) be the vertex
set of P . Let Kv be the tangent cone at v ∈ V (P ). This is the (possibly
translated) cone defined by the facets touching vertex v (see Figure 11).
Then the following nice formula holds:

Kv

v

Fig. 11. The tangent cone at vertex v

f(P ; z) =
∑

v∈V (P )

f(Kv; z).

Since it is enough to compute everything for cones, we first explain how
to compute the rational function for the “smallest” cones, simple cones. A
cone is said to be simple if its rays are linearly independent vectors. For
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Fig. 12. A two dimensional cone (its vertex at the origin) and its fundamental
parallelepiped

instance all the tangent cones of the pentagon of Figure 11 are simple.
Obtaining the rational function representation of the lattice points of a
simple cone K ⊂ Rd, is easy (see all details in [55] or in Chapter IV of [57]).
Here is the formula, that one can write directly from the coordinates of the
rays of the cone and its fundamental parallelepiped Π :

f(K; z) =

∑

u∈Π∩Zd zu

(1 − zc1)(1 − zc2) . . . (1 − zcd)
.

Here Π is the half open parallelepiped {x : x = α1c1 + · · · + αdcd, 0 ≤
αi < 1}. We can do a two-dimensional example shown in Figure 12: we have
d = 2 and c1 = (1, 2), c2 = (4,−1). We have:

f(K; z) =
z4
1z2 + z3

1z2 + z2
1z2 + z1z2 + z4

1 + z3
1 + z2

1 + z1 + 1

(1 − z1z2
2)(1 − z4

1z
−1
2 )

.

But what to do if the cone K is not simple? Break it into simple cones!
The wonderful idea of A. Barvinok was noting that, although triangulating
the cone K may be an inefficient way to subdivide the cone (i.e. expo-
nentially many pieces), if one is willing to add and substract cones for fix
dimension d, there exists a polynomial time algorithm which decomposes
a rational polyhedral cone K ⊂ R

d into simple unimodular cones Ki. A
simple cone is unimodular if its fundamental parallelepiped there is a single
lattice point. See Figure 13. In fact, via the decomposition, with numbers
εi ∈ {−1, 1} we can write an expression
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f(K; z) =
∑

i∈I

εif(Ki; z), |I | < ∞.

The index set I is of size polynomial in the input data as long as we
work in fixed dimension.
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Fig. 13. The signed decomposition of a cone into unimodular cones. Two general
steps

4.2. More methods using rational functions

Recall φA(b) = #{x : Ax = b, x ≥ 0, integer}. If we denote by Ai the
columns of the matrix A, then it is easy to see that
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∑

φA(b)zb =
1

∏n
j=1(1 − zAj )

.

It is also fairly easy to see that:

∑

b∈cone(A)∩Zn

φA(b)e−〈b,z〉 =
1

∏

Ai∈A 1 − e−〈Ai,z〉
.

How to invert this equations to recover φA? Some authors have taken
a complex analytic view. For instance, in [13] the integral is evaluated by
repeated application of Cauchy’s integral theorem and clever manipulations.

φA(b) =
1

(2πi)m

∫

|z1|=ε1

· · ·

∫

|zm|=εm

z−b1−1
1 · · · z−bm−1

m

(1 − zA1) · · · (1 − zAd)
dz.

Here 0 < ε1, . . . , εm < 1 are different numbers such that we can expand

all the
1

1 − zMk
into the power series about 0. This method has been applied

very successfully to determine the volumes of Birkhoff polytopes in [13]. The
reader may recall from basic calculus that to integrate rational functions it
was sometimes useful to use a partial fraction decomposition, in order to
simplify the expressions. M. Vergne and collaborators have exploited the
structure of the hyperplane arrangement associated to the columns of the
matrix A, namely

HA =
⋃

Ai column of A

{z ∈ C
r|〈Ai, z〉 = 0}.

This was used to do a nice “simpler fraction” decomposition of the for-
mula 1

Q

n
j=1

(1−z
Aj )

. A subset σ of columns of A is called basic if the elements

Ai ∈ σ form a vector space basis for Rd. For such σ, set

fσ(z) :=
1

∏

Ai∈σ〈Ai, z〉
.

We consider the vector space SA the spanned by such “simple” elements
fσ. Brion and Vergne [19] proved that there is a direct sum decomposition
of the space RA of rational functions whose poles are on the hyperplane
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arrangement HA and SA is one of the summands. The projection map TR :
RA −→ SA is called the total residue map. This projection allows to survive
only simple summands that come from special bases. See [6,19,54] and
references within for more details and implementation.

5. Beyond Polytopes

To conclude this survey we would like to comment on what happens when
we try to extend counting lattice points inside other region of space besides
polytopes. We will see very interesting effects. Consider first the region
K(n) = {(x, y) : 1 ≤ x ≤ n, n

x
≤ y ≤ n} bounded by a hyperbola and lines.

Let L be the open strip properly in between the hyperbolas y = n
x

and
y = n+1

x
, as denoted in Figure 14. Thus L does not include the boundary

of K(n) nor that of K(n + 1). See Figure 14.

x

y

n+1

n

1

1 n n+1

L

K(n)

K(n+1)

Fig. 14. The regions K(n), K(n + 1), and L.

Given all of this, we arrive at the following proposition:

Proposition 1. The number of lattice points inside the planar non-convex
region

R = (K(n + 1)\K(n)) ∪ (K(n)\K(n + 1))

equals 2n + 3 if and only if n is prime.

Here is why: observe that if n is not a prime, then there is at least one
(a, b) such that (a, b) = n and (a, b) is on the lower boundary of K(n) but
(a, b) 6= (n, 1) or (1, n). L has no lattice points otherwise one such (c, d) will
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have n+1
c

> d > n
c
, however, this implies that n < cd < n + 1 which is a

contradiction since no integer can exist between consecutive integers. Thus
the lattice points in the region R are the 2n+1 lattice points along the lines
x = n + 1 and y = n + 1, plus at least four more (a, b), (b, a), (n, 1), (1, n)
along the lower hyperbola. Next suppose n is prime. Again, as we argued
before, we have that the region L does not contribute any lattice points. The
lattice points in the region R are the 2n+1 points along the lines x = n+1
and y = n + 1, plus exactly two more (n, 1), (1, n).

Already a simple variation of the construction with the region K(a, b) =
{(x, y) : 1 ≤ x ≤ a, 1 ≤ y ≤ b, xy ≥ b} allows to count the number
of integer divisors of b in the interval [1, a]. When the sets for which we
count lattice points are arbitrary the problem gets harder and harder as
the dimension of the set grows: Given (a, b, c) positive integers, deciding
whether there is a lattice point in the set {x : ax2 + bx = c, x ≥ 0} is an
NP-complete problem [2]. Finally, deciding whether there is a non-negative
integer root for arbitrary polynomials in Z[x1, . . . , x9] is undecidable, i.e.
roughly speaking there is no computer algorithm to solve this problem for
all instances [39]. Thus we clearly need to be less ambitious!

A convex set C is a set of Euclidean space such that for any pair of points
in C the line segment joining x and y is completely inside C. Polyhedra are
the simplest convex sets in a way. Thus it is natural to ask whether other
convex sets besides polyhedra allow a nice theory of counting lattice points
like the one we outlined in previous sections. Alas, this still contains some
interesting surprises! In a way counting points inside general convex sets is
an older problem. Already Gauss proposed a famous counting problems for
circles [34]:

Fig. 15. Gauss and the circle area approximation problem

Suppose you are given a circle of radius r centered at the origin. How
good is the approximation of the number of lattice points N(r) to the area
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of the circle as r grows? In other words, what is the exact order of magnitude
for the error function N(r) − πr2? The answer is still not known exactly,
although it is supposed to be in between r.5 and r.6301369863 (see [36]).

Counting lattice points in (four dimensional) convex bodies is something
that credit card cyber-thieves would care about too! The reason is the RSA
encryption algorithm relies on the difficulty of factorizing a number of the
form pq with p, q large primes. Here is a way to factorize via counting
lattice points: For an integer number n = pq consider the 4-dimensional
ball B(n) = {x ∈ R4 : x2

1 + x2
2 + x2

3 + x2
4 ≤ n}. Jacobi (see [4,37]) proved

that the number of ways in which a positive integer can be written as a sum
of four squares is eight times the sum of its divisors that are not a multiple
of four. So, for example there are 744 ways of writing 100 as sum of four
squares because 1, 2, 5, 10, 25, 50 are the only divisors of 100 not divisible by
4. Thus if we know that n = pq, and |B(n)| denotes the number of lattice
points in B(n) we have |B(n)| − |B(n− 1)| = 8(1 + p + q + n). Therefore a
factorization of n could be done fast if we knew how to compute |B(n)| fast.
Thus the RSA cryptosystems used in internet transactions could be broken
if you knew how to quickly count lattice points inside four dimensional balls.
This is a very intriguing connection.
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