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Abstract

We show that any rational convex polytope is polynomial-time representable as a three-way line-
sum transportation polytope of “slim” (r, c, 3) format. This universality theorem has important
consequences for linear and integer programming and for confidential statistical data disclosure.

We provide a polynomial-time embedding of arbitrary linear programs and integer programs in
such slim transportation programs and in bitransportation programs. Our construction resolves
several standing problems on 3-way transportation polytopes. For example, it demonstrates that,
unlike the case of 2-way contingency tables, the range of values an entry can attain in any slim
3-way contingency table with specified 2-margins can contain arbitrary gaps. Our smallest such
example has format (6, 4, 3).

Our construction provides a powerful automatic tool for studying concrete questions about
transportation polytopes and contingency tables. For example, it automatically provides new
proofs for some classical results, including a well-known “real-feasible integer-infeasible” (6, 4, 3)-
transportation polytope of M. Vlach, and bitransportation programs where any feasible bitrans-
portation must have an arbitrarily large prescribed denominator.

1 Introduction

Transportation polytopes, their integer points (called contingency tables by statisticians), and their
projections, have been used and studied extensively in the operations research, mathematical pro-
gramming literature (see e.g. [1, 2, 5, 17, 20, 23, 24, 28, 29] and references therein) and in the
context of secure statistical data management by agencies such as the U.S. Census Bureau [27] (see
e.g. [3, 4, 9, 10, 13, 18, 22] and references therein).
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We start right away with the statement of the main theorem of this article. Its proof will be
the subject of Section 3. Some of the many implications of the main theorem for linear and integer
programming, combinatorial optimization, and confidential statistical data disclosure will be discussed
in Section 2. The consequences include the solution of several long-standing open questions stated by
Vlach in 1986 [28]. Following a common convention we denote by R≥0 the nonnegative reals.

Theorem 1.1 Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time representable as a

“slim” 3-way transportation polytope, i.e. of smallest possible depth three:

T = {x ∈ Rr×c×3
≥0 :

∑
i

xi,j,k = wj,k ,
∑

j

xi,j,k = vi,k ,
∑

k

xi,j,k = ui,j } .

By saying that a polytope P ⊂ Rp is representable as a polytope Q ⊂ Rq we mean in the strong
sense that there is an injection σ : {1, . . . , p} −→ {1, . . . , q} such that the coordinate-erasing projection

π : Rq −→ Rp : x = (x1, . . . , xq) 7→ π(x) = (xσ(1), . . . , xσ(p))

provides a bijection between Q and P and between the sets of integer points Q ∩ Zq and P ∩ Zp. In
particular, if P is representable as Q then P and Q are isomorphic in any reasonable sense: they are
linearly equivalent and hence all linear programming related problems over the two are polynomial-
time equivalent; they are combinatorially equivalent hence have the same facial structure; and they
are integer equivalent and hence all integer programming and integer counting related problems over
the two are polynomial-time equivalent as well. The polytope T in the theorem is a 3-way transporta-
tion polytope with specified line-sums (ui,j), (vi,j), (wi,j) (2-margins in the statistical context to be
elaborated upon below). The arrays in T are of size (r, c, 3), that is, they have r rows, c columns,
and “slim” depth 3, which is best possible: 3-way line-sum transportation polytopes of depth ≤ 2 are
equivalent to ordinary 2-way transportation polytopes which are not universal.

An appealing feature of Theorem 1.1 is that the defining system of T has only {0, 1}-valued
coefficients and depends only on r and c. Thus, every rational polytope has a representation by one
such system, where all information enters through the right-hand-side (ui,j), (vi,j), (wi,j).

To demonstrate the concrete nature of our transformation, the procedure that converts any given
data A, b to data (ui,j), (vi,j), (wi,j) giving the representation of Theorem 1.1 has been implemented
in a computer program and is now available on-line over the Internet [26].
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2 Some Consequences of Theorem 1.1

We now discuss some of the consequences of Theorem 1.1, first presented in ipco 10 [7]. The procedures
for automatically constructing desired structures and examples such as those given in each of the
following subsections are being implemented and will be available on-line at [26] as well.

2.1 Universality of Transportation Polytopes: Solution of Vlach’s Problems

As mentioned above, there is a large body of literature on the structure of various transportation
polytopes. In particular, in the comprehensive paper [28], M. Vlach surveys some ten families of
necessary conditions published over the years by several authors (including Schell, Haley, Smith,
Moràvek and Vlach) on the line-sums (ui,j), (vi,j), (wi,j) for a transportation polytope to be nonempty,
and raises several concrete problems regarding these polytopes. Specifically, [28, Problems 4,7,9,10]
ask about the sufficiency of some of these conditions. Our results show that transportation polytopes
(in fact already of slim, (r, c, 3), arrays) are universal and include all polytopes. This indicates that the
answer to each of Problems 4,7,9,10 is negative. Problem 12 asks whether all dimensions can occur as
that of a suitable transportation polytope: the affirmative answer, given very recently in [15], follows
also at once from our universality result.

Our construction also provides a powerful tool in studying concrete questions about transportation
polytopes and their integer points, by allowing to write down simple systems of equations that encode
desired situations and lifting them up. Here is an example to this effect.

Example 2.1 Vlach’s rational-nonempty integer-empty transportation: using our construc-
tion, we automatically recover the smallest known example, first discovered by Vlach [28], of a
rational-nonempty integer-empty transportation polytope, as follows. We start with the polytope
P = {y ≥ 0 : 2y = 1} in one variable, containing a (single) rational point but no integer point. Our
construction represents it as a transportation polytope T of (6, 4, 3)-arrays with line-sums given by the
three matrices below; by Theorem 1.1, T is integer equivalent to P and hence also contains a (single)
rational point but no integer point.

1 0 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
1 0 0 1 0 1

 ,

 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1

 ,


1 1 1
1 1 1
1 1 1
1 1 1

 .

Returning to the Vlach problems, [28, Problem 13] asks for a characterization of line-sums that
guarantees an integer point in T . In [18], Irving and Jerrum show that deciding T ∩ Zr×c×h 6= ∅ is
NP-complete, and hence such a characterization does not exist unless P=NP. Our universality result
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strengthens this to slim arrays of smallest possible constant depth 3; we have the following immediate
corollary of Theorem 1.1.

Corollary 2.2 Deciding if a slim, (r, c, 3), transportation polytope has an integer point is NP-complete.

A comprehensive complexity classification of this decision problem under various assumptions on the
array size and on the input, as well as of the related counting problem and other variants, are in [6].

The last Vlach problem [28, Problem 14] asks whether there is a strongly-polynomial-time algo-
rithm for deciding the (real) feasibility T 6= ∅ of a transportation polytope. Since the system defining
T is {0, 1}-valued, the results of Tardos [25] provide an affirmative answer. However, the existence
of a strongly-polynomial-time algorithm for linear programming in general is open and of central
importance; our construction embeds any linear program in an (r, c, 3) transportation program in
polynomial-time, but unfortunately this process is not strongly-polynomial. Nonetheless, our con-
struction may shed some light on the problem and may turn out useful in sharpening the boundary
(if any) between strongly and weakly polynomial-time solvable linear programs.

2.2 Universality for Approximations

The representation manifested by Theorem 1.1 allows to represent an arbitrary integer programming
problem min{cy : y ∈ Nn : Ay = b} as a problem of finding minimum cost integer transportation

min{
∑
i,j,k

pi,j,kxi,j,k : x ∈ Nr×c×3 ,
∑

i

xi,j,k = wj,k ,
∑

j

xi,j,k = vi,k ,
∑

k

xi,j,k = ui,j } ,

by simply extending the cost vector c by zeros to a cost array p. In particular, the feasible (inte-
ger) solutions y to the original problem are in cost-preserving bijection with the feasible (integer)
transportations x (that is, cy = px for any corresponding pair). This shows that the representation
preserves approximations, and that minimum cost transportation problems of slim format (r, c, 3) are
universal for approximation as well. In particular, any nonapproximability result, say, for the maxi-
mum clique problem [14], lifts at once to the slim minimum cost transportation problem: just start
with an integer programming formulation of the maximum clique problem with {0, 1}-valued right
hand side vector b, and lift it up. We get the following hardness-of-approximation result.

Corollary 2.3 Under the assumption P 6=NP, there is an ε > 0 such that there is no polynomial time
(rc)ε-approximation algorithm for the minimum cost slim (r, c, 3) line-sum transportation problem.

We do not attempt here to provide the largest possible ε. Note, of course, that in particular, unless
P=NP, there is no constant ratio approximation for the problem (the problem is not in the class Apx).
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2.3 Confidential Statistical Data Disclosure: Entry-Range

Next, we briefly discuss some of the applications to statistical model theory: a comprehensive treat-
ment can be found in [8]. A central goal of statistical data management by agencies such as the
U.S. Census Bureau is to maximize public access to information on their data base while protecting
confidentiality of individuals whose data is in the base. A common practice [10], taken in particular
by the Bureau [27], is to allow the release of some margins of tables in the base but not the individual
entries themselves. The security of an entry is closely related to the range of values it can attain in
any table with the fixed released collection of margins: if the range is “simple” then the entry may be
exposed, whereas if it is “complex” the entry may be assumed secure.

In this subsection only, we use the following notation, which is common in statistical applications.
A d-table of size n = (n1, . . . , nd) is an array of nonnegative integers x = (xi1,...,id), 1 ≤ ij ≤ nj . For
any 0 ≤ k ≤ d and any k-subset J ⊆ {1, . . . , d}, the k-margin of x corresponding to J is the k-table
xJ := (xJ

ij :j∈J) := (
∑

ij :j /∈J xi1,...,id) obtained by summing the entries over all indices not in J . For
instance, the 2-margins of a 3-table x = (xi1,i2,i3) are its line-sums x12, x13, x23 such as x13 = (x13

i1,i3
) =

(
∑

i2
xi1,i2,i3), and its 1-margins are its plane-sums x1, x2, x3 such as x2 = (x2

i2
) = (

∑
i1,i3

xi1,i2,i3).
A statistical model is a tripleM = (d,J , n), where J is a set of subsets of {1, . . . , d} none containing

the other and n = (n1, . . . , nd) is a tuple of positive integers. The model dictates the collection of
margins for d-tables of size n to be specified. Our results concern the models (3, {12, 13, 23}, (r, c, 3)),
that is, slim, (r, c, 3)-tables, with all three of their 2-margins specified.

For any model M = (d,J , n) and any specified collection of margins u = (uJ : J ∈ J ) under the
model M, the corresponding set of contingency tables with collection of margins u is

C(M;u) := {x ∈ Nn1×···×nd : xJ = uJ , J ∈ J } .

Clearly, this set is precisely the set of integer points in the corresponding transportation polyhedron.
Finally, we define entry-ranges. Permuting coordinates, we may always consider the first entry

x1, where 1 := (1, . . . , 1). The entry-range of a collection of margins u under a model M is the set
R(M;u) := {x1 : x ∈ C(M;u)} ⊂ N of values x1 can attain in any table with these margins.

Often, the entry-range is an interval and hence “simple” and vulnerable, that is, for some a, b ∈ N,
R(M;u) = {r ∈ N : a ≤ r ≤ b}. For instance, as shown in [8], this indeed is the case for any 1-margin
model M = (d, {1, 2, . . . , d}, (n1, . . . , nd)) and any collection of margins u = (u1, . . . , ud) under M.

In striking contrast with this situation and with recent attempts by statisticians to better under-
stand entry behavior of slim 3-tables (cf. [3, 4, 10]), we have the following surprising consequence of
Theorem 1.1, implying that entry-ranges of 2-margined slim 3-table models consist of all finite sets of
nonnegative integers and hence “complex” and presumably secure. For the proof, see [8].
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Corollary 2.4 Universality of entry-range: For any finite set D ⊂ N of nonnegative integers,
there are r, c, and 2-margins for (r, c, 3)-tables such that the set of values occurring in a fixed entry in
all possible tables with these margins is precisely D.

Example 2.5 Gap in entry-range of 2-margined 3-tables: Applying our automatic universal
generator [26] to the polytope P = {y ≥ 0 : y0 − 2y1 = 0, y1 + y2 = 1} in three variables, we obtain
the following 2-margins for (16, 11, 3)-tables giving entry-range D = {0, 2},

2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0
0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2



,

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 0 0 0 0 2 2 0 0 2 2 0 0 0 0 4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 ,

 4 1 3 6 6 6 6 0 0 0 0
2 3 3 0 0 0 0 2 2 2 2
0 0 0 2 2 2 2 6 6 6 6

 ;

with a suitable “human” short cut it is possible to get it down to the following (possibly smallest)
collection of margins for (6, 4, 3)-tables giving again the entry-range D = {0, 2} with a gap,

2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

 ,

 2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

 ,


2 3 2
2 1 2
2 1 2
2 1 2

 .

Further applications of Theorem 1.1 to statistical model theory are discussed in [8]; these include
important consequences for Markov bases of 2-margined slim 3-way models (recall that a Markov basis
is a set of moves that connects any pair of tables in the model that have the same set of margins, and
is needed for the design of a random walk on the space of tables with fixed margins to address the
problems of sampling and estimating various statistics on this space; see [8] for more details).

We conclude this subsection with the notion of spectrum. The spectrum of a model M = (d,J , n)
is the family of all entry-ranges of collections of margins under the model,

Spec(M) := {R(M;u) : u = (uJ : J ∈ J ) some margin collection under M} .
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The spectrum of a class C of models is the union Spec(C) :=
⋃
M∈C Spec(M) of spectra of its models.

With this terminology, Corollary 2.4 says that the spectrum of the class of 2-margined slim 3-table
models consists of all finite subsets of N and hence that class is “universal”. An interesting research
direction is the classification of spectra of classes of models and the determination of universal ones.

2.4 Universality of the Bitransportation Problem

Another remarkable immediate consequence of Theorem 1.1 is the universality of the following bi-
transportation problem: given supply vectors s1, s2 ∈ Rr

≥0, demand vectors d1, d2 ∈ Rc
≥0, and capacity

matrix u ∈ Rr×c
≥0 , find a pair of nonnegative “transportations” x1, x2 ∈ Rr×c

≥0 satisfying supply and
demand requirements

∑
j xk

i,j = sk
i ,
∑

i x
k
i,j = dk

j , k = 1, 2, and capacity constraints x1
i,j + x2

i,j ≤ ui,j .
In other words, find x1, x2 ≥ 0 such that xk has row-sum sk and column-sum dk for k = 1, 2, and
x1 + x2 ≤ u.

Corollary 2.6 Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time representable as a

bitransportation polytope

F = { (x1, x2) ∈ Rr×c
≥0 ⊕ Rr×c

≥0 : x1
i,j + x2

i,j ≤ ui,j ,∑
j

xk
i,j = sk

i ,
∑

i

xk
i,j = dk

j , k = 1, 2 } .

The proof is an easy adjustment of that of Theorem 3.3, and is provided in §3.5. The theorem remains
valid if we take all supplies to have the same value sk

i = U , i = 1, . . . , r, k = 1, 2; further, all capacities
ui,j can be taken to be {0, U}-valued, giving a stronger statement.

The bitransportation problem gives at once a very simple two-commodity flow network as follows:
start with the directed bipartite graph with vertex set I ] J , |I| = r, |J | = c, and arc set I × J with
capacities ui,j , and augment it with two sources a1, a2 and two sinks b1, b2, and with arcs (ak, i), i ∈ I,
(j, bk), j ∈ J , k = 1, 2 with capacities u(ak, i) := sk

i , u(j, bk) := dk
j . The feasible bitransportations are

then precisely the two-commodity flows of maximal total value. This implies a result first obtained by
A. Itai [19]: every linear program is polynomially equivalent to a two-commodity flow problem. It is
worth noting that our transformation is much simpler than Itai’s. In particular, the above network is
exceedingly special: every dipath has length three and is of the form (ak, i, j, bk) for some k ∈ {1, 2},
i ∈ I and j ∈ J , and involves only one “interesting” arc ij. Further, each such arc ij carries flow of
each commodity on precisely one path.

Our construction allows automatic generation of bitransportation programs with integer supplies,
demands and capacities, where any feasible bitransportation must have an arbitrarily large prescribed
denominator, in contrast with Hu’s celebrated half-integrality theorem for the undirected case [16].
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Example 2.7 Bitransportations with arbitrarily large denominator: Fix any positive integer
q. Start with the polytope P = {y ≥ 0 : qy = 1} in one variable containing the single point
y = 1

q . Our construction represents it as a bitransportation polytope F with integer supplies, demands
and capacities, where y is embedded as the transportation x1

1,1 of the first commodity from supply
vertex 1 ∈ I to demand vertex j ∈ J . By Corollary 2.6, F contains a single bitransportation with
x1

1,1 = y = 1
q . For instance, for q = 3 we get the bitransportation problem with the following data,

u =



1 0 0 1 0 0 1 0
0 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1
0 0 1 0 0 1 1 0
1 0 0 0 0 1 0 1


, s1 =



1
1
1
1
1
1


, s2 =



1
1
1
1
1
1


,

d1 = ( 1 1 1 1 1 1 0 0 ) , d2 = ( 0 0 0 1 1 1 2 1 ) ,

which has the following unique, {0, 1
3 , 2

3}-valued, bitransportation solution:

x1 =
1
3



1 0 0 2 0 0 0 0
0 2 0 1 0 0 0 0
0 1 0 0 2 0 0 0
0 0 2 0 1 0 0 0
0 0 1 0 0 2 0 0
2 0 0 0 0 1 0 0


, x2 =

1
3



0 0 0 1 0 0 2 0
0 0 0 2 0 0 0 1
0 0 0 0 1 0 2 0
0 0 0 0 2 0 0 1
0 0 0 0 0 1 2 0
0 0 0 0 0 2 0 1


.

By Corollary 2.6, any (say, feasibility) linear programming problem can be encoded as such a
bitransportation problem (unbounded programs can also be treated by adding to the original system
a single equality

∑n
j=0 yj = U with y0 a new “slack” variable and U derived from the Cramer’s rule

bound). Thus, any (hopefully combinatorial) algorithm for the bitransportation problem will give
an algorithm for general linear programming. There has been much interest lately (A. Levin, [21])
in combinatorial approximation algorithms for (fractional) multiflows, e.g. [11, 12]; these yield, via
Corollary 2.6, approximation algorithms for general linear programming, which might prove a useful
and fast solution strategy in practice. Details of this will appear elsewhere.

3 The Three-Stage Construction

Our construction consists of three stages which are independent of each other as reflected in Lemma
3.1 and Theorems 3.2 and 3.3 below. Stage one, in §3.1, is simple preprocessing based on standard
scaling ideas, in which a given polytope is represented as another whose defining system involves only
small, {−1, 0, 1, 2}-valued, coefficients, at the expense of increasing the number of variables. This
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enables us to make the entire construction run in time polynomial in the size of the input. However,
for systems with small coefficients, such as in the examples above, this may result in unnecessary
blow-up and can be skipped. Stage two, in §3.2, represents any rational polytope as a 3-way trans-
portation polytope with specified plane-sums and forbidden-entries. In the last stage, in §3.3, any
plane-sum transportation polytope with upper-bounds on the entries is represented as a slim 3-way
line-sum transportation polytope. In §3.4 these three stages are integrated to give Theorem 1.1, and
a complexity estimate is provided to close the presentation.

3.1 Preprocessing: Coefficient Reduction

Let P = {y ≥ 0 : Ay = b} where A = (ai,j) is an integer matrix and b is an integer vector. We
represent it as a polytope Q = {x ≥ 0 : Cx = d}, in polynomial-time, with a {−1, 0, 1, 2}-valued
matrix C = (ci,j) of coefficients, as follows. Consider any variable yj and let kj := max{blog2 |ai,j |c :
i = 1, . . . m} be the maximum number of bits in the binary representation of the absolute value of
any ai,j . We introduce variables xj,0, . . . , xj,kj

, and relate them by the equations 2xj,i − xj,i+1 = 0.
The representing injection σ is defined by σ(j) := (j, 0), embedding yj as xj,0. Consider any term
ai,j yj of the original system. Using the binary expansion |ai,j | =

∑kj

s=0 ts2s with all ts ∈ {0, 1}, we
rewrite this term as ±

∑kj

s=0 tsxj,s. To illustrate, consider a system consisting of the single equation
3y1 − 5y2 + 2y3 = 7. Then the new system is

2x1,0 −x1,1 = 0
2x2,0 −x2,1 = 0

2x2,1 −x2,2 = 0
2x3,0 −x3,1 = 0

x1,0 +x1,1 −x2,0 −x2,2 +x3,1 = 7

.

It is easy to see that this procedure provides the sought representation, and we get the following.

Lemma 3.1 Any rational polytope P = {y ≥ 0 : Ay = b} is polynomial-time representable as a
polytope Q = {x ≥ 0 : Cx = d} with {−1, 0, 1, 2}-valued defining matrix C.

3.2 Representing Polytopes as Plane-Sum Entry-Forbidden Transportation Poly-

topes

Let P = {y ≥ 0 : Ay = b} where A = (ai,j) is an m × n integer matrix and b is an integer vector:
we assume that P is bounded and hence a polytope, with an integer upper bound U (which can be
derived from the Cramer’s rule bound) on the value of any coordinate yj of any y ∈ P .
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For each variable yj , let rj be the largest between the sum of the positive coefficients of yj over all
equations and the sum of absolute values of the negative coefficients of yj over all equations,

rj := max

(∑
k

{ak,j : ak,j > 0} ,
∑

k

{|ak,j | : ak,j < 0}

)
.

Let r :=
∑n

j=1 rj , R := {1, . . . , r}, h := m+1 and H := {1, . . . , h}. We now describe how to construct
vectors u, v ∈ Zr, w ∈ Zh, and a set E ⊂ R×R×H of triples - the “enabled”, non-“forbidden” entries
- such that the polytope P is represented as the corresponding transportation polytope of r × r × h

arrays with plane-sums u, v, w and only entries indexed by E enabled,

T = {x ∈ Rr×r×h
≥0 : xi,j,k = 0 for all (i, j, k) /∈ E , and∑

i,j

xi,j,k = wk ,
∑
i,k

xi,j,k = vj ,
∑
j,k

xi,j,k = ui } .

We also indicate the injection σ : {1, . . . , n} −→ R × R × H giving the desired embedding of the
coordinates yj as the coordinates xi,j,k and the representation of P as T (see paragraph following
Theorem 1.1).

Basically, each equation k = 1, . . . ,m will be encoded in a “horizontal plane” R × R × {k} (the
last plane R × R × {h} is included for consistency and its entries can be regarded as “slacks”); and
each variable yj , j = 1, . . . , n will be encoded in a “vertical box” Rj ×Rj ×H, where R =

⊎n
j=1 Rj is

the natural partition of R with |Rj | = rj , namely with Rj := {1 +
∑

l<j rl, . . . ,
∑

l≤j rl}.
Now, all “vertical” plane-sums are set to the same value U , that is, uj := vj := U for j = 1, . . . , r.

All entries not in the union
⊎n

j=1 Rj × Rj × H of the variable boxes will be forbidden. We now
describe the enabled entries in the boxes; for simplicity we discuss the box R1 × R1 ×H, the others
being similar. We distinguish between the two cases r1 = 1 and r1 ≥ 2. In the first case, R1 = {1}; the
box, which is just the single line {1}×{1}×H, will have exactly two enabled entries (1, 1, k+), (1, 1, k−)
for suitable k+, k− to be defined later. We set σ(1) := (1, 1, k+), namely embed y1 = x1,1,k+ . We
define the complement of the variable y1 to be ȳ1 := U − y1 (and likewise for the other variables).
The vertical sums u, v then force ȳ1 = U − y1 = U − x1,1,k+ = x1,1,k− , so the complement of y1

is also embedded. Next, consider the case r1 ≥ 2. For each s = 1, . . . , r1, the line {s} × {s} × H

(respectively, {s} × {1 + (smod r1)} × H) will contain one enabled entry (s, s, k+(s)) (respectively,
(s, 1 + (smod r1), k−(s)). All other entries of R1 × R1 ×H will be forbidden. Again, we set σ(1) :=
(1, 1, k+(1)), namely embed y1 = x1,1,k+(1); it is then not hard to see that, again, the vertical sums u, v

force xs,s,k+(s) = x1,1,k+(1) = y1 and xs,1+(smod r1),k−(s) = U − x1,1,k+(1) = ȳ1 for each s = 1, . . . , r1.
Therefore, both y1 and ȳ1 are each embedded in r1 distinct entries.

To clarify the above description it is helpful to visualize the R×R matrix (xi,j,+) whose entries are
the vertical line-sums xi,j,+ :=

∑h
k=1 xi,j,k. For instance, if we have three variables with r1 = 3, r2 =
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1, r3 = 2 then R1 = {1, 2, 3}, R2 = {4}, R3 = {5, 6}, and the line-sums matrix x = (xi,j,+) is

x1,1,+ x1,2,+ 0 0 0 0
0 x2,2,+ x2,3+ 0 0 0

x3,1,+ 0 x3,3,+ 0 0 0
0 0 0 x4,4,+ 0 0
0 0 0 0 x5,5,+ x5,6,+

0 0 0 0 x6,5,+ x6,6,+


=



y1 ȳ1 0 0 0 0
0 y1 ȳ1 0 0 0
ȳ1 0 y1 0 0 0
0 0 0 U 0 0
0 0 0 0 y3 ȳ3

0 0 0 0 ȳ3 y3


.

We now encode the equations by defining the horizontal plane-sums w and the indices k+(s), k−(s)
above as follows. For k = 1, . . . ,m, consider the kth equation

∑
j ak,jyj = bk. Define the index sets

J+ := {j : ak,j > 0} and J− := {j : ak,j < 0}, and set wk := bk +U ·
∑

j∈J− |ak,j |. The last coordinate
of w is set for consistency with u, v to be wh = wm+1 := r ·U −

∑m
k=1 wk. Now, with ȳj := U − yj the

complement of variable yj as above, the kth equation can be rewritten as

∑
j∈J+

ak,jyj +
∑

j∈J−

|ak,j |ȳj =
n∑

j=1

ak,jyj + U ·
∑

j∈J−

|ak,j | = bk + U ·
∑

j∈J−

|ak,j | = wk.

To encode this equation, we simply “pull down” to the corresponding kth horizontal plane as many
copies of each variable yj or ȳj by suitably setting k+(s) := k or k−(s) := k. By the choice of rj there
are sufficiently many, possibly with a few redundant copies which are absorbed in the last hyperplane
by setting k+(s) := m + 1 or k−(s) := m + 1. For instance, if m = 8, the first variable y1 has r1 = 3
as above, its coefficient a4,1 = 3 in the fourth equation is positive, its coefficient a7,1 = −2 in the
seventh equation is negative, and ak,1 = 0 for k 6= 4, 7, then we set k+(1) = k+(2) = k+(3) := 4 (so
σ(1) := (1, 1, 4) embedding y1 as x1,1,4), k−(1) = k−(2) := 7, and k−(3) := h = 9.

This way, all equations are suitably encoded, and we obtain the following theorem.

Theorem 3.2 Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time representable as a

plane-sum entry-forbidden 3-way transportation polytope

T = {x ∈ Rr×r×h
≥0 : xi,j,k = 0 for all (i, j, k) /∈ E , and∑

i,j

xi,j,k = wk ,
∑
i,k

xi,j,k = vj ,
∑
j,k

xi,j,k = ui } .

Proof. Follows from the construction outlined above and Lemma 3.1.
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3.3 Representing Plane-Sum Entry-Bounded as Slim Line-Sum Entry-Free

Here we start with a transportation polytope of plane-sums and upper-bounds ei,j,k on the entries,

P = { y ∈ Rl×m×n
≥0 :

∑
i,j

yi,j,k = ck ,
∑
i,k

yi,j,k = bj ,
∑
j,k

yi,j,k = ai , yi,j,k ≤ ei,j,k} .

Clearly, this is a more general form than that of T appearing in Theorem 3.2 above - the forbidden
entries can be encoded by setting a “forbidding” upper-bound ei,j,k := 0 on all forbidden entries
(i, j, k) /∈ E and an “enabling” upper-bound ei,j,k := U on all enabled entries (i, j, k) ∈ E. Thus, by
Theorem 3.2, any rational polytope is representable also as such a plane-sum entry-bounded trans-
portation polytope P . We now describe how to represent, in turn, such a P as a slim line-sum
(entry-free) transportation polytope of the form of Theorem 1.1,

T = {x ∈ Rr×c×3
≥0 :

∑
I

xI,J,K = wJ,K ,
∑
J

xI,J,K = vI,K ,
∑
K

xI,J,K = uI,J } .

This part of our construction has been first used in [6] in studying the complexity of deciding if T has
an integer point; we include the details for completeness of the presentation. We give explicit formulas
for uI,J , vI,K , wJ,K in terms of ai, bj , ck and ei,j,k as follows. Put r := l ·m and c := n + l + m. The
first index I of each entry xI,J,K will be a pair I = (i, j) in the r-set

{(1, 1), . . . , (1,m), (2, 1), . . . , (2,m), . . . , (l, 1), . . . , (l, m)} .

The second index J of each entry xI,J,K will be a pair J = (s, t) in the c-set

{(1, 1), . . . , (1, n), (2, 1), . . . , (2, l), (3, 1), . . . , (3,m)} .

The last index K will simply range in the 3-set {1, 2, 3}. We represent P as T via the injection σ given
explicitly by σ(i, j, k) := ((i, j), (1, k), 1), embedding each variable yi,j,k as the entry x(i,j),(1,k),1. Let
U denote the minimal between the two values max{a1, . . . , al} and max{b1, . . . , bm}. The line-sums
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are the matrices

(uI,J) =



11 12 · · · 1n 21 22 · · · 2l 31 32 · · · 3m

11 e1,1,1 e1,1,2 · · · e1,1,n U 0 · · · 0 U 0 · · · 0
12 e1,2,1 e1,2,2 · · · e1,2,n U 0 · · · 0 0 U · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

1m e1,m,1 e1,m,2 · · · e1,m,n U 0 · · · 0 0 0 · · · U

21 e2,1,1 e2,1,2 · · · e2,1,n 0 U · · · 0 U 0 · · · 0
22 e2,2,1 e2,2,2 · · · e2,2,n 0 U · · · 0 0 U · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

2m e2,m,1 e2,m,2 · · · e2,m,n 0 U · · · 0 0 0 · · · U

...
...

...
...

...
...

...
...

...
...

...
...

...

l1 el,1,1 el,1,2 · · · el,1,n 0 0 · · · U U 0 · · · 0
l2 el,2,1 el,2,2 · · · el,2,n 0 0 · · · U 0 U · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

lm el,m,1 el,m,2 · · · el,m,n 0 0 · · · U 0 0 · · · U



(vI,K) =



1 2 3

11 U e1,1,+ U

12 U e1,2,+ U
...

...
...

...
1m U e1,m,+ U

21 U e2,1,+ U

22 U e2,2,+ U
...

...
...

...
2m U e2,m,+ U

...
...

...
...

l1 U el,1,+ U

l2 U el,2,+ U
...

...
...

...
lm U el,m,+ U



(wJ,K) =



1 2 3

11 c1 e+,+,1 − c1 0
12 c2 e+,+,2 − c2 0
...

...
...

...
1n cn e+,+,n − cn 0

21 m · U − a1 0 a1

22 m · U − a2 0 a2
...

...
...

...
2l m · U − al 0 al

31 0 b1 l · U − b1

32 0 b2 l · U − b2
...

...
...

...
3m 0 bm l · U − bm


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Theorem 3.3 Any rational plane-sum entry-bounded 3-way transportation polytope

P = { y ∈ Rl×m×n
≥0 :

∑
i,j

yi,j,k = ck ,
∑
i,k

yi,j,k = bj ,
∑
j,k

yi,j,k = ai , yi,j,k ≤ ei,j,k} .

is strongly-polynomial-time representable as a line-sum slim transportation polytope

T = {x ∈ Rr×c×3
≥0 :

∑
I

xI,J,K = wJ,K ,
∑
J

xI,J,K = vI,K ,
∑
K

xI,J,K = uI,J }.

Proof. We outline the proof; complete details are in [6]. First consider any y = (yi,j,k) ∈ P ; we claim
the embedding via σ of yi,j,k in x(i,j),(1,k),1 can be extended uniquely to x = (xI,J,K) ∈ T . First, the
entries xI,(3,t),1, xI,(2,t),2 and xI,(1,t),3 for all I = (i, j) and t are zero since so are the line-sums w(3,t),1,
w(2,t),2 and w(1,t),3. Next, consider the entries xI,(2,t),1: since all entries xI,(3,t),1 are zero, examining the
line-sums uI,(2,t) and vI,1 = U , we find x(i,j),(2,i),1 = U −

∑n
t=1 x(i,j),(1,t),1 = U − yi,j,+ ≥ 0 whereas for

t 6= i we get x(i,j),(2,t),1 = 0. This also gives the entries xI,(2,t),3: we have x(i,j),(2,i),3 = U−x(i,j),(2,i),1 =
yi,j,+ ≥ 0 whereas for t 6= i we have x(i,j),(2,t),3 = 0. Next, consider the entries xI,(1,t),2: since all entries
xI,(1,t),3 are zero, examining the line-sums u(i,j),(1,k) = ei,j,k we find x(i,j),(1,k),2 = ei,j,k − yi,j,k ≥ 0 for
all i, j, k. Next consider the entries xI,(3,t),2: since all entries xI,(2,t),2 are zero, examining the line-sums
u(i,j),(3,t) and v(i,j),2 = ei,j,+, we find x(i,j),(3,j),2 = ei,j,+ −

∑l
k=1 x(i,j),(1,k),2 = yi,j,+ ≥ 0 whereas for

t 6= j we get x(i,j),(3,t),2 = 0. This also gives the entries xI,(3,t),3: we have x(i,j),(3,j),3 = U−x(i,j),(3,j),2 =
U − yi,j,+ ≥ 0 whereas for t 6= j we get x(i,j),(3,t),3 = 0.

Conversely, given any x = (xI,J,K) ∈ T , let y = (yi,j,k) with yi,j,k := x(i,j),(1,k),1. Since x is
nonnegative, so is y. Further, ei,j,k − yi,j,k = x(i,j),(1,k),2 ≥ 0 for all i, j, k and hence y obeys the entry
upper-bounds. Finally, using the relations established above x(i,j),(3,t),2 = 0 for t 6= j, x(i,j),(2,t),3 = 0
for t 6= i, and x(i,j),(3,j),2 = x(i,j),(2,i),3 = yi,j,+, we obtain∑

i,j

yi,j,k =
∑
i,j

x(i,j),(1,k),1 = w(1,k),1 = ck , 1 ≤ k ≤ n ;

∑
i,k

yi,j,k =
∑

i

x(i,j),(3,j),2 = w(3,j),2 = bj , 1 ≤ j ≤ m ;

∑
j,k

yi,j,k =
∑

j

x(i,j),(2,i),3 = w(2,i),3 = ai , 1 ≤ i ≤ l .

This shows that y satisfies the plane-sums as well and hence is in P . Since integrality is also preserved
in both directions, this completes the proof.
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3.4 The Main Theorem and a Complexity Estimate

Call a class P of rational polytopes polynomial-time representable in a class Q if there is a polynomial-
time algorithm that represents any given P ∈ P as some Q ∈ Q. The resulting binary relation
on classes of rational polytopes is clearly transitive. Thus, the composition of Theorem 3.2 (which
incorporates Lemma 3.1) and Theorem 3.3 gives at once Theorem 1.1 stated in the introduction.
Working out the details of our three-stage construction, we can give the following estimate on the
number of rows r and columns c in the resulting representing transportation polytope, in terms of the
input. The computational complexity of the construction is also determined by this bound, but we
do not dwell on the details here.

Theorem 1.1 (with complexity estimate). Any polytope P = {y ∈ Rn
≥0 : Ay = b} with integer

m×n matrix A = (ai,j) and integer b is polynomial-time representable as a slim transportation polytope

T = {x ∈ Rr×c×3
≥0 :

∑
i

xi,j,k = wj,k ,
∑

j

xi,j,k = vi,k ,
∑

k

xi,j,k = ui,j } ,

with r = O(m2(n + L)2) rows and c = O(m(n + L)) columns, where L :=
∑n

j=1 maxm
i=1blog2 |ai,j |c.

3.5 Proof of the Universality of the Bitransportation Problem

We conclude with the modification of the proof of Theorem 3.3 that establishes Corollary 2.6.

Corollary 2.6. Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time representable as

a bipartite bitransportation polytope

F = { (x1, x2) ∈ Rr×c
≥0 ⊕ Rr×c

≥0 : x1
i,j + x2

i,j ≤ ui,j ,∑
j

xk
i,j = sk

i ,
∑

i

xk
i,j = dk

j , k = 1, 2 } .

Moreover, the statement remains valid with all supplies sk
i having the same value U and all capacities

ui,j being 0 or U for some suitable nonnegative integer U .

Proof. By an easy adjustment of the proof of Theorem 3.3 above: take the capacities to be uI,J

as defined in §3.3; take the supplies to be s1
I := VI,1 = U and s2

I := VI,3 = U for all I; and take the
demands to be d1

J := WJ,1 and d2
J := WJ,3 for all J . Note that by taking s2

I and d2
J to be VI,3 and

WJ,3 instead of VI,2 and WJ,2 we can guarantee that all supplies have the same value U . Moreover,
since the proof follows by the composition of Theorem 3.2 and Theorem 3.3, and the former makes
use of forbidden entries only rather than upper bounds, it is easy to see that we can take all upper
bounds ei,j,k in the latter (and hence all uI,J) to be either 0 or U , proving the stronger statement. The
resulting data u, s1, s2, d1, d2 for the bitransportation problem is the following, with all ei,j,k ∈ {0, U}:
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u =



e1,1,1 e1,1,2 · · · e1,1,n U 0 · · · 0 U 0 · · · 0
e1,2,1 e1,2,2 · · · e1,2,n U 0 · · · 0 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

e1,m,1 e1,m,2 · · · e1,m,n U 0 · · · 0 0 0 · · · U

e2,1,1 e2,1,2 · · · e2,1,n 0 U · · · 0 U 0 · · · 0
e2,2,1 e2,2,2 · · · e2,2,n 0 U · · · 0 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

e2,m,1 e2,m,2 · · · e2,m,n 0 U · · · 0 0 0 · · · U

...
...

...
...

...
...

...
...

...
...

...
...

el,1,1 el,1,2 · · · el,1,n 0 0 · · · U U 0 · · · 0
el,2,1 el,2,2 · · · el,2,n 0 0 · · · U 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

el,m,1 el,m,2 · · · el,m,n 0 0 · · · U 0 0 · · · U



, s1 = s2 =



U

U
...
U

U

U
...
U

...

U

U
...
U


d1 = ( c1, c2, . . . , cn, m · U − a1, m · U − a2, . . . , m · U − al, 0, 0, . . . , 0 )

d2 = ( 0, 0, . . . , 0, a1, a2, . . . , al, l · U − b1, l·, U − b2, . . . , l · U − bm ) .
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