
Convex Geometry: MATH 114

The following list collects all the problems on which you will be examined
from the second half of the course. There will be some computer projects
assigned too.

Exercises for second half of course

A Section 12 Chakerian Sangwine-Yager notes:

i Go over problem 1

ii Use Carathéodory’s theorem to show that the convex hull of a com-
pact set is compact.

iii In R2 let x1 = (1, 0), x2 = (1, 3), x3 = (4, 3), x4 = (4, 0). Take
a = (7/4, 5/4). Show that a is in the convex hull of the xi and then
express a as a convex combination of only three of them.

B Section 13 Chakerian, Sangwine-Yager notes:

(a) Problems 1,2, and 7.

(b) Learn one proof Helly’s theorem (there are two in the notes). Make
sure you know how to explain it well to someone.

The following problems are coming from either (A) De Loera notes “Actually
doing it” or (B) De Loera “other notes” I will mark that here as (A) or (B),
but some problems are not from those sources.

1. From (A) Prove Lemma 2.2.2 that the set Mn×n(k) of all n × n matri-
ces whose sums along rows, columns, or diagonals are equal to the same
constant (magic squares) k is a bounded polyhedron.

2. From (A) Prove Lemma 2.2.4 that the dimension of the polyhedronMn×n(k)
of all n× n magic squares with magic sum is equal to (n− 1)2.

3. From (A) Prove Proposition 2.3.2

4. From (A) Prove Proposition 2.3.4

5. From (B) Chapter 5: Write a proof Theorem 5.1 and show that every
vertex of a polyhedron is an extreme point.

6. From (B) Chapter 5 Prove Theorem 5.5

7. From (A) Let P = conv(v1, v2, . . . , vm) and also has an inequality repre-
sentation P = {x : Ax ≤ b} with A a m×d matrix. Prove that conv(vi, vj)
is a 1-dimensional face of P if the rank of the matrix AI(z) is d− 2 where
z = 1/2(vi + vj).

8. From (A) Let P = {x ∈ Rd : Ax ≤ d} be a polyhedron. Prove that if P
contains a line {v + tu : t ∈ R} with u non-zero directional vector, then
Au = 0.

1



9. From (A) Prove the following version of Farkas’ lemma (HINT: use the
version we proved in class as a lemma) {x : Ax ≤ b, x ≥ 0} ≠ ∅ ⇐⇒
When yTA ≥ 0, then yT b ≥ 0

10. For each of the following cases either give a 3-polytope having the proposed
f-vector or tell why there is no such polytope. (f0, f1, f2) = (27, 55, 26),
(f0, f1, f2) = (12, 23, 13),(f0, f1, f2) = (35, 51, 18).

11. From (B) Chapter 5 Suppose that every vertex of a 3-polytope is 4-valent.
Find an equation for v (number of vertices) in terms of e (number of
edges).

12. From (B) Chapter 5 Describe an infinite family of 3-polytopes all of whose
facets are 4-sided polygons.

13. From (B) Chapter 5 Prove that no 3-polytope has exactly 7 edges.

14. From (B) Chapter 5 Prove that for any n ≥ 6 and n ̸= 7 there exists a
3-polytope with exactly n edges.

15. From (B) Chapter 5 exercises (page 52) problem 6, 11, 12, 14.

16. From (B) Chapter 6 Let vi the number of i-valent vertices of a 3-polytope.
Estimate

∑
i i ∗ vi. What can be said of the quantity

∑
i(6− i)vi? HINT:

You should get inequalities involving faces and/or edge of the polytope.

17. From (B) Chapter 6 A 3-polytope is simplicial iff each facet is a triangle.
Show that the inequalities of the previous problem turn into equations.

18. From (B) Chapter 6 Prove that for any 3-polytope
∑

i(4− i)(vi + pi) = 8
HINT: use your knowledge about

∑
i 4vi and

∑
i 4pi.

19. From (B) Chapter 6 exercises (page 56) problem 5,6,8.

20. Does there exist a 3-polytope for which each two facets have a different
number of edges?

21. Show that if P is a 3-polytope such that each facet is a regular triangle,
then P has at most 12 vertices and at most 20 facets. Then prove that
there is no such 3-polytopes with 18 facets.

22. If a d-polytope has V vertices, what is the maximum number of edges it
can have? How about in dimension 3?.

23. If the graphs of 3-polytopes P,Q are the same can one conclude they are
the same polytope? Does this hold in dimension 4?

24. Show that there are only 5 different Platonic Solids (a Platonic solid is
a convex 3-dimensional polytope all of whose facets are the same regular
polygon).
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25. From (B) Chapter 7 exercises Page 66 problems 2,3,4,5,7,9,11.

Computational Problems (Computer is necessary is most cases now)

1. Let

P = conv({(−1, 3, 1, 2), (−1, 3,−1, 1), (−1,−1, 1, 1), (−1,−1,−1, 0),

(3,−1, 1,−3), (3,−1,−1, 4)})

. Determine all the faces of P and of the polar P o and draw the graphs
of P and that of its polar. What are the facets? How many are there?
Draw its Schlegel diagram.

2. Find all extreme points and facets of the polyhedron M3×3(1). Do a
Schlegel diagram of this 4-dimensional polyhedron.

3. Compute a random 4-dimensional polytope P as the convex hull of 10
random points using rand sphere(4,10). Run VISUAL to see a Schlegel
diagra m. How many 3-dimensional polytopes do you see? How many
facets does P have?

4. Starting in dimension three, construct a polytope as the convex hull of
a collection of points using the polymake function POINTS. How many
vertices (use N VERTICES) can you get? Try to get the largest number
possible. Ho w many facets can you get?

5. The cyclic polytope C(n, d) is constructed as follows: From the moment
curve defined as

φ(t) = (td, td−1, . . . , t2, t).

Pick any n distinct values for t1 < t2 < · · · < tn. Then a polytope C(n, d)
is

conv(φ(t1), φ(t2), ldots, φ(tn)).

Prove that the cyclic polytope has the property that all its faces are sim-
plices (i.e., it is a simplicial polytope). Experiment with drawing it for
several choices of ti. What do you notice?

6. Compute all the facets of a cyclic polytope C(8, 4) What is its graph?
What is its polar? How many facets?

7. Draw the Schlegel diagram of an icosahedron. Draw a Schlegel diagram
of the Cartesian product of two triangles.

8. Consider the 24-cell described in exercise 8.5 of the Chakerian notes.
Figure out everything you can about it: Dimension, number of facets,
number of vertices, graph, schlegel diagram, volume, polar polytope, etc.
Figure out what you get when you slice it through with the hyperplane
x1 + x2 − x3 − x4 = 0. Draw a picture of the resulting polytope!
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9. Draw a sequence of 4 slices of the 4-dimensional cube using hyperplanes
perpendicular to the direction that connects the opposite vertices (−1,−1,−1,−1)
and (1, 1, 1, 1).

10. From (A) Chapter 3 Show using Farkas lemma that the system of equa-
tions and inequalities

x+ 2y + 3z + w = 2

3x+ y + 5z + w = 1

x+ 2y + z + w = 1

x ≥ 0

y ≥ 0

z ≥ 0

w ≥ 0

has no real solutions (HINT: linear algebra will NOT work here, why?).

11. Consider the polyhedron P defined by the following system of inequalities:

−x− 4y + 4z ≤ 9

−2x− y − 3z ≤ −4

x− 2y + 5z ≤ 0

x− z ≤ 4

2x+ y − 2z ≤ 11

−2x+ 6y − 5z ≤ 17

−6x− y + 8z ≤ −6.

Use Fourier-Motzkin elimination to eliminate the variable y. What is the
“shadow” of the polyhedron under the projection? What are the smallest
and largest values of x? Draw the polytope P to confirm this. How do
(the coordinates of) the vertices confirm this same information?

12. Find all integer solutions x, y, z of to the system of inequalities

−x+ y − z ≤ 0

−y + z ≤ 0

−z ≤ 0

x− z ≤ 1

y ≤ 1

z ≤ 1

4



13. Let Q be the polyhedron (a polygon) given by the inequalities:

−x− y ≤ 0

2x− y ≤ 1

−x+ 2y ≤ 1

x+ 2y ≤ 2

Compute all vertices and edges of the polytope. Then check this corre-
sponds to the intuitive notion for polygons.
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