
Math 128C (De Loera) Homework 2
Due date: May 4, 2018

INSTRUCTIONS
All homeworks will have many problems, both theoretical and practical. Program-

ming exercises need to be submitted via CANVAS.
Theory part must be scanned or, even better, please use LateX! Be organized and

use the notation appropriately. Show your work on every problem. Correct answers
with no support work will not receive full credit.

1. Section 5.5 #2 (you can use your code!)

2. Section 5.6 #1a, 13, #16,

3. Section 5.7 # 2b, 7

4. Section 5.8 #2d

5. Section 5.9 #2 (use code provided in class) and Discussion exercise #1

6. Section 5.10 #2, 4, 7, 8 and Discussion exercises #1, 2

7. MATLAB has several different methods implemented: Two of the most popular are ode45 and
ode23 which implement some form of Runge-Kutta. In MATLAB you can set up various parameters
using the command odeset, in particular, one can set up relative and absolute tolerance of error. This
exercise gives you a chance to investigate the different behavior of the MATLAB code comparing
MATLAB against itself.

(a) COMPUTER PROJECT:The famous error function (see https://en.wikipedia.org/wiki/

Error_function) appears in many areas of applied mathematics and statistics. It can be
described by a differential equation as

y′(x) =
2√
π
e−x

2

(b) The error function in MATLAB is encoded by the command erf(x). Use ode23, ode45, ode113
to solve the differential equation on the interval [0, 2]. Use 5 different relative tolerances
RelTol: 10−1,10−4,10−7, 10−10 and 10−13, in the following experiments:

Compare the results of the 3 functions with that of the command erf(x) at the points chosen
by the solvers. (one triple of comparisons for each tolerance).

(c) For each tolerance make 3 plots: (a) Plot the error of the 3 solutions with respect to that of
the (“true”) values given by erf in the same points ti. (b) Plot the number of steps required
by each method to reach the solution of a given tolerance error and (c) Show the execution
time in seconds for all 3 codes (remember you have to each triple 3 times).

8. COMPUTER PROJECT: In this project you will play a little bit with Runge-Kutta methods.



(a) Write MATLAB code that implements the Runge-Kutta Fehlberg Algorithm (automatic step-
size adjustment) which we call RKF (t, y, h, ε). One call from your code returns t and w have
been advanced by a time-step equal to or smaller than h, and the local error per unit time
should be no larger than ε. The returned h is a reasonable step- size to use for the next step.
On the first call you will need to give it a guess for an appropriate step size.

(b) Apply your subroutine to compute the solution of the IVP:

y′ = (−1/25)(t− 2)3y2; y(−a) =
100

((−a− 2)4 + 1)

Choose a = 5 and a = 10.

To approximate the solution to this problem, simply initialize t and y and call RK repeatedly
until you get to t = a. It will be necessary for you in the last step to choose h so as to hit
t = a exactly.

Take the initial trial value of h to be equal to 0.1. Do all of your computations twice, first with
ε = 10−11 and later with ε = 10−7. Compare the error in the computed values (Plot out your
estimation and the exact function, and also plot out how h varies as time change in the same
graph).


