Extended Euclidean Algorithm (pseudocode version)

The following algorithm will compute the GCD of two polynomials f,g as well as linear combination sf + tg = GCD(f,g) (and more information). Important **convention**: LC(f) := to the leading coefficient of f, and we define LC(0) = 1.

Input: *f*, *g* polynomials.

Output: Integer l, polynomials p_i, r_i, s_i, t_i for $0 \le i \le l+1$, and polynomial q_i for $1 \le i \le l$, such that $s_i f + t_i g = r_i$, and in particular, $s_l f + t_l g = r_l = GCD(f, g)$.

- Set $p_0 := LC(f); \ p_1 := LC(g);, \ r_0 := f/p_0; \ r_1 := g/p_1;.$
- Set $s_0 := 1/p_0$; $t_0 := 0$; $s_1 := 0$; $t_1 := 1/p_1$;
- i:=1; (counter);
- While $r_i \neq 0$ do
 - $-q_i := r_{i-1}$ quotient r_i ;
 - $p_{i+1} := LC(r_{i-1} q_i r_i);$
 - $r_{i+1} := (r_{i-1} q_i r_i)/p_{i+1};$ $s_{i+1} := (s_{i-1} q_i s_i)/p_{i+1};$

 - $t_{i+1} := (t_{i-1} q_i t_i) / p_{i+1};$
 - -i := i + 1;
- od;
- l:=i-1;
- $RETURN(l, p_i, r_i, s_i, t_i, q_i);$