
COMPUTATION WITH POLYNOMIAL EQUATIONS AND
INEQUALITIES ARISING IN

COMBINATORIAL OPTIMIZATION

JESUS A. DE LOERA∗, PETER N. MALKIN† , AND PABLO A. PARRILO‡

Abstract. This is a survey of a recent methodology to solve systems of polyno-
mial equations and inequalities for problems arising in combinatorial optimization. The
techniques we discuss use the algebra of multivariate polynomials with coefficients over
a field to create large-scale linear algebra or semidefinite programming relaxations of
many kinds of feasibility or optimization questions.

Key words. Polynomial equations and inequalities, combinatorial optimization,
Nullstellensatz, Positivstellensatz, graph colorability, max-cut, stable sets, semidefinite
programming, large-scale linear algebra, semi-algebraic sets, real algebra.

AMS(MOS) subject classifications. 90C27, 90C22, 68W05.

1. Introduction. A wide variety of problems in optimization can be
easily modeled using systems of polynomial equations and inequalities. Fea-
sibility and optimization problems translate, either directly or via branch-
ing, into the problem of finding a solution of a system of equations and
inequalities. In this survey paper, we explain how to manipulate such sys-
tems for finding solutions or proving that they do not exist. Although these
techniques work in general, we are particularly motivated by problems of
combinatorial origin. For example, in the case of graphs, here is how one
can think about stable sets, k-colorability and max-cut problems in terms
of polynomial (non-linear) constraints:

Proposition 1.1. Let G = (V, E) be a graph.

• For a given positive integer k, consider the following polynomial
system:

x2
i − xi = 0 ∀i ∈ V, xixj = 0 ∀(i, j) ∈ E and

∑
i∈V

xi = k.

This system is feasible if and only if G has a stable set of size k.

∗Department of Mathematics, University of California at Davis, Davis, CA 95616
(deloera@math.ucdavis.edu); partially supported by NSF DMS-0914107 and an IBM
OCR award.

†Department of Mathematics, University of California at Davis, Davis, CA 95616
(malkin@math.ucdavis.edu); partially supported by an IBM OCR award.

‡Laboratory for Information and Decision Systems, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139 (parrilo@mit.edu); partially supported by AFOSR MURI 2003-07688-1 and NSF
FRG DMS-0757207.

J. Lee and S. Leyffer (eds.), Mixed Integer Nonlinear Programming, The IMA Volumes

© Springer Science+Business Media, LLC 2012
in Mathematics and its Applications 154, DOI 10.1007/978-1-4614-1927-3_16,

447

mailto:parrilo@mit.edu
mailto:malkin@math.ucdavis.edu
mailto:deloera@math.ucdavis.edu

448 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

• For a positive integer k, consider the following polynomial system
of |V |+ |E| polynomials equations:

xk
i − 1 = 0 ∀i ∈ V and

k−1∑
s=0

xk−1−s
i xs

j = 0 ∀(i, j) ∈ E.

The graph G is k-colorable if and only if this system has a complex
solution. Furthermore, when k is odd, G is k-colorable if and only
if this system has a common root over F2, the algebraic closure of
the finite field with two elements.
• We can represent the set of cuts of G (i.e., bipartitions on V) as

the 0-1 incidence vectors

SG := {χF : F ⊆ E is contained in a cut of G} ⊆ {0, 1}E.

Thus, the max cut problem with non-negative weights we on the
edges e ∈ E is

max{
∑
e∈E

wexe : x ∈ SG}.

The vectors χF are the solutions of the polynomial system

x2
e − xe = 0 ∀ e ∈ E, and

∏
i∈T

xi = 0 ∀ T an odd cycle in G.

There are many other combinatorial problems that can be modeled
concisely by polynomial systems (see [9] and the many references therein).
In fact, a given problem can often be modeled non-linearly in many differ-
ent ways, and in practice choosing a “good” formulation is critical for an
efficient solution.

Given a polynomial system encoding a combinatorial question, we ex-
plain how to use two famous algebraic identities to derive solution methods.
In what follows, let K denote a field and let K[x1, . . . , xn] = K[x] denote the
ring of polynomials in n variables with coefficients over K. The situation
is slightly different depending on whether only equations are being consid-
ered, or if there also inequalities (more precisely, on whether the underlying
field K is formally real):

1. First, suppose that the system contains only the polynomial equa-
tions f1(x) = 0, f2(x) = 0, . . . , fs(x) = 0 where f1, ..., fs ∈ K[x].
We explain how to generate a finite sequence of linear algebra sys-
tems over K which terminate with either a solution over K, the
algebraic closure of K, or provide a certificate of infeasibility. Cru-
cially for practical computation, the linear algebra systems are
over K, not K. The calculations reduce to matrix manipulations
over K, mostly rank computations. The techniques we use are a

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 449

specialization of prior techniques from computational algebra (see
[37, 20, 21, 38]). As it turns out this technique is particularly ef-
fective when the number of solutions is finite, when K is a finite
field and when the system has nice combinatorial information (see
[9]).

2. Second, several authors (see e.g. [23, 41, 29] and references therein)
have considered the solvability (over the reals) of systems of poly-
nomial equations and inequalities. It was shown that in this situ-
ation there is a way to set up the feasibility problem

∃x ∈ R
n s.t. f1(x) = 0, . . . , fs(x) = 0, g1(x) ≥ 0, . . . , gk(x) ≥ 0,

where f1, . . . , fs, g1, . . . , gk ∈ R[x], as a sequence of semidefinite
programs terminating with a feasible solution (see [41, 29]). Once
more, the combinatorial structure can help in the understanding
of the structure of these relaxations, as is well-known from the
case of stable sets [32] and max-cut [28]. In recent work, Gouveia
et al. [15, 14] considered a sequence of semidefinite relaxations of
the convex hull of real solutions of a polynomial system encoding
a combinatorial problem. They called these approximations theta
bodies because, for stable sets of graphs, the first theta body in
this hierarchy is exactly Lovász’s theta body of a graph [32].

The common central idea to both of the relaxations procedures de-
scribed above is to use the right infeasibility certificates or theorems of
alternative. Just as Farkas’ lemma is a centerpiece for the development of
Linear Programming, here the key point is that the infeasibility of poly-
nomial systems can always be certified by particular algebraic identities
(on non-linear polynomials). To find these infeasibility certificates we rely
either on linear algebra or semidefinite programming (for a quick overview
of semidefinite programming see [51]).

We now introduce some necessary notation and algebraic concepts.
For a detailed introduction we recommend the books [2, 5, 6, 36]. In the
paper K denotes a field and when the distinction is necessary we denote its
algebraic closure by K. Let K[x1, . . . , xn] denote the ring of polynomials in
n variables with coefficients over K, which will be abbreviated as K[x]. We
denote the monomials in the polynomial ring K[x] as xα := xα1

1 xα2
2 · · ·x

αn

n

for α ∈ N
n. The degree of xα is deg(xα) := |α| :=

∑n

i=1 αi. The degree
of a polynomial f =

∑
α∈Nn fαxα, written deg(f), is the maximum degree

of xα where fα �= 0 for α ∈ N
n. Given a set of polynomials F ⊂ K[x], we

write deg(F) for the maximum degree of the polynomials in F . Given a
set of polynomials F := {f1, . . . , fm} ⊆ K[x], we define the ideal generated
by F as

ideal(F) :=

{
m∑

i=1

βifi | βi ∈ K[x]

}
.

450 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

To study of solutions of a system over a non-algebraically closed field
like R requires extra structure. Given a set of real polynomials G :=
{g1, . . . , gm} ⊆ R[x], following page 86 in Section 4.2 of [2], we define the
cone generated by G as

cone(G) :=

⎧⎨⎩ ∑
α∈{0,1}n

sαgα | sα ∈ R[x] is SOS

⎫⎬⎭
where gα :=

∏m

i=1 gαi

i and a polynomial s(x) ∈ R[x] is SOS if it can be
written as a sum of squares of other polynomials, that is, s(x) =

∑
i q2

i (x)
for some qi(x) ∈ R[x]. We note that the cone of G is also called a preordering
generated by G in [36]. If s(x) is SOS, then clearly s(x) ≥ 0 for all x ∈ R

n.
The sum in the definition of cone(G) is finite, with a total of 2m terms,
corresponding to the subsets of {g1, . . . , gm}.

The notions of ideal and cone are standard in algebraic geometry,
but they also have inherent convex geometry: Ideals are affine sets and
cones are closed under convex combinations and non-negative scalings, i.e.,
they are actually cones in the convex geometry sense. Ideals and cones
are used for deriving new valid constraints, which are logical consequences
of the given constraints. For example, notice that by construction, every
polynomial in ideal({f1, . . . , fm}) vanishes in the solution set of the system
f1(x) = 0, . . . , fm(x) = 0 over the algebraic closure of K. Similarly, every
element of cone({g1, ..., gm}) is clearly non-negative on the feasible set of
g1(x) ≥ 0, . . . , gm(x) ≥ 0 over R.

It is well-known that optimization algorithms are intimately tied to the
development of infeasibility certificates. For example, the simplex method
is closely related to Farkas’ lemma. Our starting point is a generalization of
this famous principle. We start with a description of two powerful infeasi-
bility certificates for polynomial systems which generalize the classical ones
for linear optimization. First, as motivation, recall from elementary linear
algebra the “Fredholm alternative theorem” (e.g., see page 28 Corollary
3.1.b in [46]):

Theorem 1.1 (Fredholm’s alternative). Given a matrix A ∈ K
m×n

and a vector b ∈ K
m,

� x ∈ K
n s.t. Ax + b = 0 ⇔ ∃μ ∈ K

m s.t. μT A = 0, μT b = 1.

It turns out that there are much stronger versions for general polynomials,
which unfortunately do not seem to be widely known among optimizers
(for more details see e.g., [5]).

Theorem 1.2 (Hilbert’s Nullstellensatz). Let F := {f1, . . . , fm} ⊆
K[x]. Then,

� x ∈ K
n

s.t. f1(x) = 0, ..., fs(x) = 0⇔ 1 ∈ ideal(F).

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 451

Note that 1 ∈ ideal(F) means that there exist polynomials β1, . . . , βm ∈
K[x] such that 1 =

∑m

i=1 βifi, and this polynomial identity is thus a cer-
tificate of infeasibility. Fredholm’s alternative theorem is simply a linear
version of Hilbert’s Nullstellensatz where all the polynomials are linear and
the βi’s are constant.

Example 1. Consider the following set of polynomials in R[x1, x2, x3]:

F := {f1 := x2
1 − 1, f2 := 2x1x2 + x3, f3 := x1 + x2, f4 := x1 + x3}.

By the Nullstellensatz, the system f1(x) = 0, f2(x) = 0, f3(x) = 0, f4(x) =
0 is infeasible over C if and only if there exist polynomials β1, β2, β3, β4 ∈
R[x1, x2, x3] that satisfy the polynomial identity β1f1+β2f2+β3f3+β4f4 =
1. Here, the system is infeasible, so there exist such polynomials as follows:

β1 = −1−
2
3
x2, β2 = −

2
3

+
1
3
x1, β3 = −

2
3

+
4
3
x1, β4 =

2
3
−

1
3
x1.

The resulting identity provides a certificate of infeasibility of the system.
Now, the two theorems above deal only with the case of equations.

The inclusion of inequalities in the problem formulation poses additional
algebraic challenges because we need to take into account special properties
of the reals. Consider first the case of linear inequalities, which is familiar
to optimizers, where linear programming duality provides the following
characterization:

Theorem 1.3 (Farkas’ lemma). Let A ∈ R
m×n, b ∈ R

m, C ∈ R
k×n,

and d ∈ R
k.

� x ∈ R
n s.t. Ax + b = 0, Cx + d ≥ 0

+

∃λ ∈ R
m
+ , ∃μ ∈ R

k s.t. μT A + λT C = 0, μT b + λT d = −1.

Again, although not widely known in optimization, it turns out that similar
certificates do exist for non-linear systems of polynomial equations and
inequalities over the reals. The result essentially appears in this form in [2]
and is due to Stengle [49].

Theorem 1.4 (Positivstellensatz). Let F := {f1, . . . , fm} ⊂ R[x] and
G := {g1, . . . , gk} ⊂ R[x].

�x ∈ R
n s.t. f1(x) = 0, . . . , fm(x) = 0, g1(x) ≥ 0, . . . , gk(x) ≥ 0

+

∃ f ∈ ideal(F), ∃ g ∈ cone(G) s.t. f(x) + g(x) = −1.

The theorem states that for every infeasible system of polynomial equa-
tions and inequalities, there exists a simple polynomial identity of the form∑m

i=1 βifi+
∑

α∈{0,1}n sαgα = −1 for some βi, sα ∈ R[x] where sα are SOS,
that directly gives a certificate of infeasibility of real solutions.

452 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

Example 2. Consider the polynomial system {f = 0, g ≥ 0}, where

f := x2 + x2
1 + 2 = 0, g := x1 − x2

2 + 3 ≥ 0.

By the Positivstellensatz, there are no solutions (x1, x2) ∈ R
2 if and only

if there exist polynomials β, s1, s2 ∈ R[x1, x2] that satisfy

β · f + s1 + s2 · g = −1 where s1 and s2 are SOS.

Here, the system is infeasible, so there exist such polynomials as follows:

s1 = 1
3 + 2

(
x2 + 3

2

)2 + 6
(
x1 −

1
6

)2
, s2 = 2 and β = −6.

The resulting identity provides a certificate of infeasibility of the system.
Of course, we are very concerned with the effective practical computa-

tion of the infeasibility certificates. For the sake of computation and com-
plexity, we must worry about the growth of degrees and thus the growth in
the encoding size of the infeasibility certificates. Here, we define the degree
of a Nullstellensatz certificate

∑m

i=1 βifi = 1 as maxi{deg(βifi)} and the
degree of a Positivstellensatz certificate

∑m

i=1 βifi +
∑

α∈{0,1}n sαgα = −1
as the larger of maxi{deg(βifi)} and maxα{deg(sαgα)}. On the negative
side, the degrees of the certificates are expected to grow at least linearly
leading to exponential growth in the encoding size of the certificates simply
because the NP-hardness of the original combinatorial questions; see e.g.
[9]. At the same time, tight exponential upper bounds on the degrees have
been derived (see e.g. [22], [16] and references therein). Nevertheless, for
many problems of practical interest, it is often the case that it is possible
to prove infeasibility using low-degree certificates (see [8, 7]). Even more
important is the fact that for a fixed degree of the certificates, the calcu-
lations are polynomial time (see Lemma 2.1 and [41]) and can be reduced
to either linear algebra or semidefinite programming. We summarize the
strong analogies between the case of linear equations and inequalities with
high-degree polynomial systems in the following table:

Table 1
Infeasibility certificates and their associated computational techniques.

Degree\Field Arbitrary Real
Linear Fredholm Alternative Farkas’ Lemma

Linear Algebra Linear Programming
Polynomial Nullstellensatz Positivstellensatz

Bounded degree Linear Algebra Bounded degree SDP

It is important to remark that just as in the classical case of linear
programming, the problem of computation of certificates has very natural
primal-dual formulations, with the corresponding primal and dual vari-
ables playing distinct, but well-defined roles. For example, in the case of

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 453

Fredholm’s alternative, the primal variables are the variables x1, . . . , xn

while there is a dual variable for each equation. For Nullstellensatz and
Positivstellensatz there is a similar duality, based on linear duality and
semidefinite programming duality, respectively. In what follows, we use
the most intuitive or convenient set-up and we leave to the reader the
exercise of transferring the results to the corresponding dual version.

The remainder of the paper is divided in two main sections: Section 2
is a study of the Hilbert Nullstellensatz, for general fields, used in the
solution of systems of equations. In Section 3, we survey the use of the
Positivstellensatz in the context of solving systems of equations and in-
equalities over the reals. Both sections contain combinatorial applications
that show why these techniques can be of interest in this setting. The fo-
cus of the combinatorial results is understanding those situations when a
constant degree certificate is enough to show infeasibility. These are situa-
tions when hard combinatorial problems have polynomial time algorithms
and as such provide structural insight. Finally, in Section 4, we describe a
methodology, common to both approaches, to recover feasible solutions of
the original combinatorial problem from the outcome of these relaxations.
In addition, we have included an Appendix A that contains proofs of some
the results used in the main body of the paper that are either hard to find
or whose original proof, available elsewhere, is not written in the language
of this survey.

To conclude the introduction we include some more notation and ter-
minology. The variety of F over K, written VK(F), is the set of common
zeros of polynomials in F in K

n, that is, VK(F) := {v ∈ K
n : f(v) = 0 ∀f ∈

I}. Also, V
K
(F), the variety of F over K, is the set of common zeros of F in

K
n
. Note that in combinatorial problems, the variety of a polynomial sys-

tem typically has finitely many solutions (e.g., colorings, cuts, stable sets,
etc.). For an ideal I ⊆ K[x], when V

K
(I) is finite, the ideal is called zero-

dimensional (this is the case for all of the applications considered here). We
say that a system of polynomial equations is a combinatorial system when
its variety encodes a combinatorial problem (e.g., zeros represent stable
sets, colorings, matchings, etc.) and it is zero-dimensional.

An ideal I ⊆ K[x] is radical if fk ∈ I for some positive integer k

implies f ∈ I. We denote by
√

I the ideal of all polynomials f ∈ K[x] such
that fk ∈ I for some positive integer k. The ideal

√
I is necessarily radical

and it is called the radical ideal of I. Note that I is radical if and only if
I =
√

I. Given a vector space W over a field K, we write dim(W) for the
dimension of W . Given vector spaces U ⊆W , we write W/U as the vector
space quotient. Recall that dim(W/U) = dim(W) − dim(U). Given a set
F ⊂ K[x], span(F) denotes the vector space generated by F over the field
K. Please note the distinction between the vector space span(F) and the
ideal ideal(F).

454 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

2. Solving combinatorial systems of equations. In this section,
we wish to solve a given system of polynomial equations f1(x) = 0, f2(x) =
0, . . . , fm(x) = 0 where f1, . . . , fm ∈ K[x]. The systems we consider have
finitely many solutions, each corresponding to a combinatorial object. To
simplify our arguments we also assume that K is algebraically closed, i.e.,
K = K. We abbreviate this system as F (x) = 0 where F := {f1, . . . , fm} ⊂
K[x]. Here, by solving a system, we mean first determining if F (x) = 0
is feasible over K, and furthermore finding a solution (or all solutions) of
F (x) = 0 if feasible. The literature on polynomial solving is very extensive
and it continues to be an area of active research (see [50, 6, 10] for an
overview and background).

Here we choose to focus on techniques that fit well with traditional op-
timization methods. The main idea is that solving a polynomial system of
equations can be reduced to solving a sequence of linear algebra problems.
The foundations of this technique can be traced back to ([37, 20, 21, 38]).
The specific approach we take to present this technique is closest to that
of Mourrain in [37]. Variants of this technique have been applied to stable
sets [9, 35], vertex coloring [8, 35], satisfiability (see e.g., [3]) and cryp-
tography (see for example [4]). This technique is also strongly related to
Border basis and Gröbner basis techniques, which can also be viewed in
terms of linear algebra computations (see e.g., [20, 21, 38, 50]).

The linear algebra systems of equations have primal and dual represen-
tations in the sense of Fredholm’s lemma. Specifically, in this survey, the
primal approach solves a linear system to find constant multipliers μ ∈ K

m

such that 1 =
∑m

i=1 μifi providing a certificate of (non-linear) infeasibility.
Then, the dual approach aims to find a vector λ with entries in K indexed
by monomials such that

∑
α λxαfi,α = 0 for all i = 1, . . . , m and λ1 = 1

where fi =
∑

α fi,αxα for all i. As we see in Section 2.2, the dual approach
amounts to constructing linear relaxations of the set of feasible solutions.
In Sections 2.1 and 2.2, we present the primal and dual approaches respec-
tively.

2.1. Linear algebra certificates. Consider the following corollary
of Hilbert’s Nullstellensatz: If there exist constants μ ∈ K

m such that∑m

i=1 μifi = 1, then the polynomial system F (x) = 0 must be infeasible.
In other words, if the system F (x) = 0 is infeasible, then 1 ∈ span(F).
The crucial point here is that determining whether there exists a μ ∈ K

m

such that
∑m

i=1 μifi = 1 is a linear algebra problem over K. The equa-
tion

∑m
i=1 μifi = 1 is called a certificate of infeasibility of the polynomial

system.
Example 3. Consider again the following set of polynomials from

Example 1:

F := {f1 := x2
1 − 1, f2 := 2x1x2 + x3, f3 := x1 + x2, f4 := x1 + x3}.

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 455

We can abbreviate the infeasible polynomial system of equations f1(x) =
0, f2(x) = 0, f3(x) = 0, f4(x) = 0 as F (x) = 0. We can prove that the
system F (x) = 0 is infeasible if we can find μ ∈ R

4 satisfying the following:

μ1f1 + μ2f2 + μ3f3 + μ4f4 = 1

⇔ μ1(x2
1 − 1) + μ2(2x1x2 + x3) + μ3(x1 + x2) + μ4(x1 + x3) = 1

⇔ μ1x
2
1 + 2μ2x1x2 + (μ2 + μ4)x3 + μ3x2 + (μ3 + μ4)x1 − μ1 = 1.

Then, equating coefficients on the left and right hand sides of the equation
above gives the following linear system of equations:

−μ1 = 1 (1), μ3 + μ4 = 0 (x1), μ3 = 0 (x2),

μ3 + μ4 = 0 (x3), 2μ2 = 0 (x1x2), μ1 = 0 (x2
1).

We abbreviate this system as μT F = 1. Even though F (x) = 0 is infeasible,
the linear system μT F = 1 is infeasible, and so, we have not found a
certificate of infeasibility of F (x) = 0.

More formally, let fi =
∑

α∈Nn fi,αxα where only finitely many fi,α are
non-zero i = 1, ..., m. Then,

∑m

i=1 μifi = 1 if and only if
∑m

i=1 μifi,0 = 1
and

∑m
i=1 μifi,α = 0 for all α ∈ N

n where α �= 0. Note that there is one
linear equation per monomial appearing in F . We abbreviate this linear
system as μT F = 1 where we consider F as a matrix whose rows are the
coefficient vectors of its polynomials and we consider the constant polyno-
mial 1 as the vector of its coefficients (i.e., a unit vector). The columns of
F are indexed by monomials with non-zero coefficients. We remark that in
the special case where F (x) = 0 is a linear system of equations, then Fred-
holm’s alternative says that F (x) = 0 is infeasible if and only if μT F = 1
is feasible.

Remark 2.1. Crucially for computation, when we solve the linear
system μT F = 1, we can do so over the smallest subfield of K containing
the coefficients of the polynomials in F , which is particularly useful if such
a subfield is a finite field.

In general, even if F (x) = 0 is infeasible, μT F = 1 may not be feasible
as in the above example. In order to prove infeasibility, we must add
polynomials from ideal(F) to F and try again to find a μ such that μT F =
1. Hilbert’s Nullstellensatz guarantees that, if F (x) = 0 is infeasible, there
exists a finite set of polynomials from ideal(F) that we can add to F so
that the linear system μT F = 1 is feasible.

More precisely, it is enough to add polynomials of the form xαf for
xα a monomial and some polynomial f ∈ F . Why is this? If F (x) = 0
is infeasible, then Hilbert’s Nullstellensatz says

∑m
i=1 βifi = 1 for some

β1, . . . , βm ∈ K[x]. Let d = maxi{deg(βi)}. Then, if we add to F all
polynomials of the form xαf where f ∈ F and deg(xα) ≤ d. Then, the
K-linear span of F , that is span(F), contains βifi for all i, and thus,

456 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

1 ∈ span(F) or equivalently μT F ′ = 1 is feasible (as a linear algebra
problem) where F ′ denotes the larger polynomial system.

Example 4. Consider again the polynomial system F (x) = 0 from Ex-
ample 3. Here, μT F = 1 is feasible, so we must thus add redundant polyno-
mial equations to the system F (x) = 0. In particular, we add the following
redundant polynomial equations: x2f1(x) = 0, x1f2(x) = 0, x1f3(x) = 0,
and x1f4(x) = 0. Let F ′ := {f1, f2, f3, f4, x2f1, x1f2, x1f3, x1f4}.

Then, the system μT F ′ = 1 is now as follows:

−μ1 = 1 (1), μ3 + μ4 = 0 (x1), μ3 − μ5 = 0 (x2),

μ2 + μ4 = 0 (x3), 2μ2 + μ7 = 0 (x1x2), μ1 + μ7 + μ8 = 0 (x2
1),

μ6 + μ8 = 0 (x1x3), μ5 + 2μ6 = 0 (x2
1x2).

This system is feasible proving that F (x) = 0 is infeasible. The solution is
μ = (−1,− 2

3 ,− 2
3 , 2

3 ,− 2
3 ,− 1

3 , 4
3 ,− 1

3), which gives the following certificate of
infeasibility as given in Example 1:

−f1 −
2
3
f2 −

2
3
f3 +

2
3
f4 −

2
3
x2f1 +

1
3
x1f2 +

4
3
x1f3 −

1
3
x1f4 = 1.

Next, we present the dual approach to the one in this section.

2.2. Linear algebra relaxations. In optimization, it is quite com-
mon to “linearize” non-linear polynomial systems of equations by replacing
all monomials in the system with new variables giving a system of linear
constraints. Specifically, we can construct a linear algebra relaxation of
the solutions of F (x) = 0 by replacing every monomial xα in a polynomial
equation in F (x) = 0 with a new variable λxα thereby giving a system
of linear equations in the new λ variables, one variable for each mono-
mial appearing in F . Readers familiar with relaxation procedures such as
Sherali-Adams and Lovász-Schrijver (see [27] and references therein) will
see a lot of similarities, but here we deal only with equality constraints.

Example 5. Consider the following feasible system in C[x1, x2, x3]:

f1(x) = x2
1 − 1 = 0, f2(x) = 2x1x2 + x3 = 0, f3(x) = x1 + x2 = 0.

This system has two solutions (x1, x2, x3) = (1,−1, 2) and (x1, x2, x3) =
(−1, 1, 2). Let F = {f1, f2, f3}. So, we abbreviate the above system as
F (x) = 0. We can replace the monomials 1, x1, x2, x3, x

2
1, x1x2 with the

variables λ1, λx1 , λx2 , λx3 , λx2
1
, λx1x2 respectively. The system F (x) = 0

thus gives rise to the following set of linear equations:

λx2
1
− λ1 = 0, 2λx1x2 + λx3 = 0, λx1 + λx2 = 0. (2.1)

We abbreviate the above system as F ∗ λ = 0.
Solutions of F (x) = 0 give solutions of F ∗λ = 0: If x is a solution of

F (x) = 0 above, then setting λ1 = 1, λx1 = x1, λx2 = x2, λx3 = x3, λx2
1

=

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 457

x2
1, λx1x2 = x1x2 gives a solution of F ∗λ = 0. So, taking x = (1,−1, 2), we

set λ1 = 1, λx1 = 1, λx2 = −1, λx3 = 2, λx2
1

= 1, and λx1x2 = −1. Then,
we have F ∗ λ = 0. Thus, the solutions of F ∗ λ = 0 gives a vector space
effectively containing all of the solutions of F (x) = 0. Hence, F ∗ λ = 0
gives a linear relaxation of F (x) = 0.

There are solutions of F ∗ λ = 0 that do not correspond to solutions
of F (x) = 0 because the linear system F ∗ λ = 0 does not take into account
the non-linear constraints that λ1 = 1, λx2

1
= λ2

x1
and λx1x2 = λx1λx2 ; For

example, λ1 = 1, λx1 = 2, λx2 = −2, λx3 = −2, λx2
1

= 1 and λx1x2 = 1 is a
solution of F ∗λ = 0, but x1 = λx1 = 2, x2 = λx2 = −2, and x3 = λx3 = −2
is not a solution of F (x) = 0.

We now formalize the above example construction of a linear system.
We can consider the polynomial ring K[x] as an infinite dimensional vector
space over K where the set of all monomials xα forms a vector space basis
of K[x]. In other words, a polynomial f =

∑
α∈Nn fαxα can be represented

as an infinite sequence (fα)α∈Nn where only finitely many fα are non-
zero. We define K[[x1, . . . , xn]] = K[[x]] as the ring of formal power series
in the variables x1, . . . , xn with coefficients in K. So, the power series
λ =

∑
α∈Nn λαxα can be represented as an infinite sequence (λα)α∈Nn .

Note that we do not require that only finitely many λα are non-zero. We
define the bilinear form ∗ : K[x] × K[[x]] → K as follows: given f =∑

α∈Nn fαxα ∈ K[x] and λ =
∑

α∈Nn λαxα ∈ K[[x]], we define f ∗ λ =∑
α∈Nn fαλα, which is always finite since only finitely many fα are non-

zero. Thus, we define a linear relaxation of {x ∈ K
n : F (x) = 0}, written

as {λ ∈ K[[x]] : F ∗ λ = 0}, as the set of linear equations f ∗ λ = 0 for
all f ∈ F . We denote the set of solutions of the linear system F ∗ λ = 0
as F ◦ := {λ ∈ K[[x]] : F ∗ λ = 0}, called the annihilator of F , which is a
vector subspace of K[[x]]. See Appendix A for further details.

Note that, for any polynomial f ∈ K[x] and any point v ∈ K
n, we have

f(v) = f ∗ λ(v) where λ(v) = (vα)α∈Nn . Thus, for any v ∈ K
n, F (v) = 0

if and only if F ∗ λ(v) = 0. So, the system F ∗ λ = 0 can be considered
as a linear relaxation of the system F (x) = 0. As mentioned in the above
example, there are solutions of F ∗λ = 0 that do not correspond to solutions
of F (x) = 0 because the linear system F ∗λ = 0 does not take into account
the relationships between the λ variables. Specifically, if λ corresponded to
a solution of F (x) = 0, then we must have λxα = λxβλxγ for all monomials
xα, xβ , xγ where xα = xβxγ . If we added these non-linear constraints to
the linear constraints F ∗λ = 0, then we would essentially have the original
polynomial system F (x) = 0.

The system F ∗λ = 0 is always feasible, but the constraint λ1 = 1 also
holds for any λ that corresponds to a solution x of F (x) = 0. Thus, if the
inhomogeneous linear system {F ∗ λ = 0, λ1 = 1} is infeasible, then so is
the system of polynomials F (x) = 0.

458 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

Remark 2.2. Crucially for computation again, when we solve the
linear system {F ∗ λ = 0, λ1 = 1}, we can do so over the smallest subfield
of K containing the coefficients of the polynomials in F .

Remark 2.3. Importantly, the linear system {F ∗ λ = 0, λ1 = 1} is
dual to the linear system μT F = 1 from the previous section by Fredholm’s
alternative meaning that {F ∗ λ = 0, λ1 = 1} is infeasible if and only if
μT F = 1 is feasible.

There is a fundamental observation we wish to make here: adding
redundant polynomial equations can lead to a tighter relaxation.

Example 6. (Cont.) Add x1f3(x) = x2
1 + x1x2 = 0 to the system

F (x) = 0 giving the system F ′(x) = 0 where F ′ := {f1, f2, f3, x1f3}. The
system F ′(x) = 0 has the same solutions as F (x) = 0. The polynomial
equation x1f3(x) = 0 gives rise to a new linear equation λx2

1
+ λx1x2 = 0

giving the following linear system F ′ ∗ λ = 0:

λx2
1
− λ1 = 0, 2λx1x2 + λx3 = 0, λx1 + λx2 = 0, λx2

1
+ λx1x2 = 0. (2.2)

The dimension of the solution space of the original system F ∗λ = 0 is three
if we ignore all λ variables that do not appear in the linear system, or in
other words, if we project the solution space onto the λ variables appearing
in the system. However, the dimension of the projected solution space of
F ′ ∗ λ = 0 is two; so, F ′ ∗ λ = 0 is a tighter relaxation of F (x) = 0.

Extending this idea, consider the ideal I = ideal(F), which is the
set of all redundant polynomials given as a polynomial combination of
polynomials in F , then I◦ becomes a finite dimensional vector space where
dim(I◦) is precisely the number of solutions of F (x) = 0 over K, including
multiplicities, assuming that there are finitely many solutions. Note that
by linear algebra, I◦ is isomorphic to the vector space quotient K[x]/I

(see e.g., [50]). Furthermore, if I is radical, then dim(I◦) = dim(K[x]/I)
is precisely the number of solutions of F (x) = 0. So, there is a direct
relationship between the number of solutions of a polynomial system and
the dimension of the solution space of its linear relaxation (see e.g., [6] for
a proof).

Theorem 2.1. Let I ⊆ K[x] be a zero-dimensional ideal. Then,
dim(I◦) is finite and dim(I◦) is the number of solutions of polynomial sys-
tem I(x) = 0 over K including multiplicities, so |VK(I)| ≤ dim(I◦) with
equality when I is radical.

So, if we can compute dim(I◦), then we can determine the feasibility
of I(x) = 0 over K. Unfortunately, we cannot compute dim(I◦) directly.
Instead, under some conditions (see Theorem 2.2), we can compute dim(I◦)
by computing the dimension of F ◦ when projected onto the λxα variables
where deg(xα) ≤ deg(F).

2.3. Nullstellensatz Linear Algebra Algorithm (NulLA). We
now present an algorithm for determining whether a polynomial system of
equations is infeasible using linear relaxations. Let F ⊆ K[x] and again let

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 459

F (x) = 0 be the polynomial system f(x) = 0 for all f ∈ F . We wish to
determine whether F (x) = 0 has a solution over K.

The idea behind NulLA [8] is straightforward: we check whether the
linear system {F ∗ λ = 0, λ1 = 1} is infeasible or equivalently whether
μT F = 1 is feasible (i.e., 1 ∈ span(F)) using linear algebra over K and if
not then we add polynomials from ideal(F) to F and try again. We add
polynomials in the following systematic way: for each polynomial f ∈ F

and for each variable xi, we add xif to F . So, the NulLA algorithm is as
follows: if {F ∗ λ = 0, λ1 = 1} is infeasible, then F (x) = 0 is infeasible and
stop, otherwise for every variable xi and every f ∈ F add xif to F and
repeat.

In the following, we assume without loss of generality that F is closed
under K-linear combinations, that is F = span(F), and thus, F is a vector
space over K. Note that taking the closure of F under K-linear combina-
tions does not change the set of solutions of F (x) = 0 and does not change
the set of solutions of F ∗ λ = 0. In practice, we must choose a vector
space basis of F for computation, but the point we wish to make is that
the choice of basis is irrelevant. Moreover, we find that it is more natural
to work with vector spaces and that it leads to a more concise exposition.
Recall from above that {F ∗ λ = 0, λ1 = 1} is infeasible if and only if
1 ∈ span(F), which when F is a vector space, simplifies to 1 ∈ F since
span(F) = F .

For a vector space F ⊂ K[x], we define F+ := F +
∑n

i=1 xiF where
xiF := {xif : f ∈ F}. Note that F+ is also a vector subspace of K[x].
Then, F+ is precisely the linear span of F and xiF for all i = 1, . . . , n. So,
the NulLA algorithm for vector spaces is as follows (see Algorithm 1): if
1 ∈ F , then F (x) = 0 is infeasible and stop, otherwise set F ← F+ and
repeat. There is an upper bound on the number of times we need to repeat
the above step given by the Nullstellensatz bound of the system F (x) = 0
(see [22]): if F (x) = 0 has a Nullstellensatz bound D, then if F (x) = 0
is infeasible, there must exist a Nullstellensatz certificate of infeasibility∑

i βifi = 1 where deg(βi) ≤ D, that is, the degree of the certificate is
at most deg(F) + D. After d iterations of NulLA, the set F contains all
linear combinations of polynomials of the form xαf where |α| ≤ d and
where f was one of the initial polynomials in F , and so, if the system is
infeasible, then NulLA will find a certificate of infeasibility in at most the
Nullstellensatz bound number of iterations.

While theoretically the Nullstellensatz bound limits the number of
iterations, this bound is in general too large to be practically useful (see
[8]). Hence, in practice, NulLA is most useful for proving infeasibility (see
Section 2.4).

Next, we discuss improving NulLA by adding redundant polynomials
to F in such a way so that deg(F) does not grow unnecessarily. We call
this improved algorithm the Fixed-Point Nullstellensatz Linear Algebra
(FPNulLA) algorithm. Some variations of FPNulLA appeared, e.g., in

460 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

Algorithm 1 NulLA Algorithm [8]
Input: A finite dimensional vector space F ⊆ K[x] and a Nullstellensatz

bound D.
Output: Feasible, if F (x) = 0 is feasible over K, else Infeasible.
1: for k = 0, 1, 2, . . . , D do
2: If 1 ∈ F , then return Infeasible.
3: F ← F+.
4: end for
5: Return Feasible.

[37, 44, 25]. The basic idea behind the FPNulLA algorithm is that, if
1 �∈ F , then instead of replacing F with F+ and thereby increasing deg(F),
we check to see whether there are any new polynomials in F+ with degree
at most deg(F) that were not in F and add them to F , and then check
again whether 1 �∈ F . More formally, if 1 �∈ F , then we replace F with
F+ ∩ K[x]d where K[x]d is the set of all polynomials with degree at most
d = deg(F). We keep replacing F with F+ ∩ K[x]d until either 1 ∈ F or
we reach a fixed point, F = F+ ∩K[x]d. This process must terminate.

Note that if we find that 1 ∈ F at some stage of FPNulLA this implies
that there exists an infeasibility certificate of the form 1 =

∑s

i=1 βifi where
β1, ..., βs ∈ K[x] and the polynomials f1, ..., fs ∈ K[x] are a vector space
basis of the original set F .

Moreover, we can also improve NulLA by proving that the system
F (x) = 0 is feasible well before reaching the Nullstellensatz bound as fol-
lows. When 1 �∈ F and F = F+ ∩ K[x]d, then we could set F ← F+ and
d ← d + 1 and repeat the above process. However, when we reach the
fixed point F = F+∩K[x]d, we can use the following theorem to determine
if the system is feasible and if so how many solutions it has. First, we
introduce some notation. Let πd : K[[x]] → K[[x]]d be the truncation or
projection of a power series onto a polynomial of degree at most d with coef-
ficients in K. Below, we abbreviate dim(πd(F ◦)) as dimd(F ◦) and similarly
dim(πd−1(F ◦)) as dimd−1(F ◦).

Theorem 2.2. Let F ⊂ K[x] be a finite dimensional vector space and
let d = deg(F). If F = F+ ∩ K[x]d and dimd(F ◦) = dimd−1(F ◦), then
dim(I◦) = dimd(F ◦) where I = ideal(F).

See the Appendix for a proof of Theorem 2.2 or see original proof in
[37]. There are many equivalent forms of the above theorem that appear
in the literature (see e.g., [37, 44, 25]).

Recall from Theorem 2.1, that there are dim(I◦) solutions of F (x) = 0
over K including multiplicities where I = ideal(F) and exactly dim(I◦) so-
lutions when I is radical. Checking the fixed point condition in FPNulLA
whether F �= F+ ∩ K[x]d is equivalent to checking whether dim(F) �=
dim(F+ ∩ K[x]d). Furthermore, to check the condition that dimd(F ◦) =
dimd−1(F ◦), we need to compute dim(F+ ∩ K[x]d) and dim(F ∩ K[x]d−1)

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 461

since dim(K[x]d/F) = dimd(F ◦) and also dim(K[x]d−1/(F ∩ K[x]d−1)) =
dimd−1(F ◦) (see Lemma A.1). So, in order to check the condition in FP-
NulLA, we need to compute dim(F), dim(F+∩K[x]d) and dim(F∩K[x]d−1),
which amounts to matrix rank calculations over the field of coefficients of
a given basis of F .

We can now present the FPNulLA algorithm. See the Appendix or
[37, 7] for details. The FPNulLA algorithm always terminates for zero-
dimensional polynomials systems, which in particular includes combinato-
rial systems (see Lemma A.2).

Algorithm 2 FPNulLA Algorithm

Input: A vector space F ⊂ K[x].
Output: The number of solutions of F (x) = 0 over K up to multiplicities.
1: Let d← deg(F).
2: loop
3: if 1 ∈ F then Return 0 (infeasible).
4: while F �= F+ ∩K[x]d do
5: Set F ← F+ ∩K[x]d.
6: if 1 ∈ F then Return 0 (infeasible).
7: end while
8: if dimd(F ◦) = dimd−1(F ◦) then Return dimd(F ◦) (feasible).
9: F ← F+.

10: d← d + 1.
11: end loop

Example 7. Consider again the system below with polynomials in
K[x, y] with K = F2. This system has two solutions.

1 + x + x2 = 0, 1 + y + y2 = 0, x2 + xy + y2 = 0.

Let F := span({1 + x + x2, 1 + y + y2, x2 + xy + y2}). Then, 1 �∈ F and
deg(F) = 2. Now,

F+ = F + xF + yF

= F + span({x + x2 + x3, x + xy + xy2, x3 + x2y + xy2})

+ span({y + xy + x2y, y + y2 + y3, x2y + xy2 + y3}).

Then, F+ ∩K[x]2 = span({1+x +x2, 1+ y + y2, x2 +xy + y2, 1+x + y}).
So, F �= F+ ∩ K[x]2. Next, let F := F+ ∩ K[x]2. One can check that now
F = F+ ∩K[x]2. Moreover,

dim2(F ◦) = dim(K[x]2/F) = dim(K[x]2)− dim(F) = 2

and

dim1(F ◦) = dim(K[x]1/(F ∩K[x]1) = dim(K[x]1)− dim(F ∩K[x]1) = 2.

462 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

Therefore, dim2(F ◦) = dim1(F ◦) proving that F (x) = 0 is feasible with at
most 2 solutions.

We refer to the number of iterations (the for loop) that NulLA takes
to solve a given system of equations as the NulLA rank of the system. Note
that if an infeasible system F (x) = 0 has a NulLA rank of r, then it has a
Nullstellensatz certificate of infeasibility of degree r + deg(F). Similarly to
the NulLA rank, we refer to the number of outer iterations (the outer loop)
that FPNulLA takes to the system as the FPNulLA rank of the system.
We can consider the NulLA rank and the FPNulLA rank as measures of
the “hardness” of proving infeasibility of the system. In section 2.4, we
present experimental evidence that the NulLA rank and even more so the
FPNulLA are “good” measures of the “hardness” of proving infeasibility
of a system (see also [3] for theoretical evidence for FPNulLA).

For a given class of polynomial system of equations, it is interesting
to understand the growth of the NulLA rank or FPNulLA rank because of
the implications for the complexity of solving the given class of problems.
Furthermore, for some fixed rank, it is also interesting to characterize which
systems can be solved at that rank since this class of systems are polynomial
time solvable by Lemma 2.1 below (see proof in Appendix and a proof
for NulLA in [35]). For example, in Section 2.5, we characterize systems
encoding 3-colorability with NulLA rank one.

Lemma 2.1. Let L ∈ N be fixed. Let F = span({f1, f2, . . . , fm}) ⊆
K[x] be a finite dimensional vector space of K[x]. Polynomials are assumed
to be encoded as vectors of coefficients indexed by all monomials of degree
at most deg(F).

1. The first L iterations (the for loop) of the NulLA algorithm can be
computed in polynomial time in n and the input size of the defining
basis of F .

2. When K is a finite field, the first L iterations (the outer loop) of
the FPNulLA algorithm can be computed in polynomial time in n,
log2(|K|) and the input size of the defining basis of F .

2.4. Experimental results. In this section, we summarize experi-
mental results for graph 3-coloring from [7], which illustrate the practical
performance of the NulLA and FPNulLA algorithms. For further and more
detailed results, see [8, 35, 7]. Experimentally, for graph 3-coloring, NulLA
and FPNulLA are well-suited to proving infeasibility, that is, that no 3-
coloring exists. The system polynomials we use to encode 3-colorability has
coefficients on F2 (see Proposition 1.1) and thus the linear algebra opera-
tions are very fast. However, even though in theory NulLA and FPNulLA
can determine feasibility, for the experiments described below NulLA and
FPNulLA are only suitable for proving infeasibility.

Here, we are interested in the percentage of randomly generated graphs
whose polynomial system encoding has a NulLA rank of one, a NulLA
rank of two or a FPNulLA rank of one. The G(n, p) model [13] is used

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 463

for generating random graphs where n is the number of vertices and p is
the probability that an edge is included between any two vertices. Also,
without loss of generality, for a slightly smaller polynomial encoding, the
color of one of the vertices of each randomly generated graph was fixed.

The experimental results are presented in Figure 1 (taken from [7]),
which plots the percentage of 1000 random graphs in G(100, p) that were
proven infeasible with a NulLA rank of one, with a NulLA rank of two, with
a FPNulLA rank of one, or with an exact method versus the p value. The
exact method used was to model graph 3-coloring as a Boolean satisfiability
problem [12] and then use the program zchaff [52] to solve the satisfiability
problem.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1

%
 In

fe
as

ib
le

Edge Probability

Exact
NulLA1
NulLA2

FPNulLA1

Fig. 1. Non-3-colorable graphs with NulLA rank 1 and 2 and FPNulLA rank 1.

It is well-known that there is a distinct phase transition from feasibil-
ity to infeasibility for graph 3-coloring, and it is at this phase transition
that graphs exists for which it is difficult on average to prove infeasibility or
feasibility (see [19]). Observe that the infeasibility curve for NulLA resem-
bles that of the exact infeasibility curve and that the infeasibility curve for
FPNulLA also resembles the infeasibility curve and clearly dominates the
infeasibility curve for NulLA. These results suggest that the NulLA rank
or FPNulLA rank are a reasonable measure of the hardness of proving in-
feasibility since those graphs that require a high rank are located near the
phase transition.

Lastly, we comment on the runnings times of NulLA and FPNulLA and
the exact approach using zchaff for the experiments on random graphs in

464 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

G(100, p) above. The NulLA rank one and FPNulLA rank one approaches
ran on average in less than a second for all p values. However, the exact
approach using zchaff ran in split second times for all p values, but pre-
liminary computational experiments indicate that the gap in running times
between the exact approach and the FPNulLA rank one approach closes
for larger graphs. The NulLA rank two approach ran on average in less
than a second for p ≤ 0.04 and p ≥ 0.08, but the average running times
peaked at about 24 seconds at p = 0.65. Interestingly, for each approach,
the average running time peaked at the transition from feasible to infeasi-
ble at the p value where about half of the graphs were proven infeasible by
the approach.

In order to better understand the practical implications of the NulLA
and FPNulLA approaches, there needs to be more detailed computational
studies performed to compare this approach with the exact method using
satisfiability and other exact approaches such as traditional integer pro-
gramming techniques. See [8] for some additional experimental data.

2.5. Application: The structure of non-3-colorable graphs. In
this section, we state a combinatorial characterization of those graphs
whose combinatorial system of equations encoding 3-colorability has a
NulLA rank of one thus giving a class of polynomial solvable graphs by
Lemma 2.1, and also, we recall bounds for the NulLA rank (see [35]):

Theorem 2.3. The NulLA rank for a polynomial encoding over F2 of
the 3-colorability of a graph with n vertices with no 3-coloring is at least
one and at most 2n. Moreover, in the case of a non-3-colorable graph
containing an odd-wheel (e.g. a 4-clique) as a subgraph, the NulLA rank is
exactly one.

Now we look at those non-3-colorable graphs that have a NulLA rank of
one. Let A denote the set of all possible directed edges or arcs in the graph
G. We are interested in two types of substructures of the graph G: oriented
partial-3-cycles and oriented chordless 4-cycles (see Figure 2). An oriented
partial-3-cycle is a set of two arcs of a 3-cycle, that is, a set {(i, j), (j, k)}
also denoted (i, j, k) where (i, j), (j, k), (k, i) ∈ A. An oriented chordless
4-cycle is a set of four arcs {(i, j), (j, l), (l, k), (k, i)} also denoted (i, j, k, l)
where (i, j), (j, l), (l, k), (k, i) ∈ A and (j, k), (i, l) �∈ A.

Fig. 2. (i) oriented partial 3-cycle and (ii) an oriented chordless 4-cycle.

Now, we can state a sufficient condition for non-3-colorability [7]. This
sufficient condition is satisfied if and only if the combinatorial system en-
coding 3-coloring has a NulLA rank of one, which is proved in [7].

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 465

Theorem 2.4. The graph G is not 3-colorable if there exists a set C

of oriented partial 3-cycles and oriented chordless 4-cycles such that
1. |C(i,j)|+ |C(j,i)| ≡ 0 (mod 2) for all (i, j) ∈ E and
2.
∑

(i,j)∈A,i<j |C(i,j)| ≡ 1 (mod 2)
where |C(i,j)| denotes the number of cycles in C (either 3-cycles or 4-cycles)
in which the arc (i, j) ∈ A appears.

Condition 1 in Theorem 2.4 means that every undirected edge of G

is covered by an even number of directed edges from cycles in C (ignoring
orientation). Condition 2 in Theorem 2.4 means that, given any orientation
of G, the total number of times the arcs in that orientation appear in the
cycles of C is odd. The particular orientation we use in Theorem 2.4 is the
orientation given by the set of arcs {(i, j) ∈ A : i < j}, but the particular
orientation we use for Condition 2 is irrelevant (see [7]).

Using Theorem 2.4, proving that graphs containing odd wheels (e.g.,
4-cliques) are not 3-colorable (see Theorem 2.3) is straight-forward ([7]):

Example 8. Assume a graph G contains an odd wheel with vertices
labelled as in Figure 3 below. Consider the following set of oriented partial
3-cycles: C := {(i, 1, i + 1) : 2 ≤ i ≤ n − 1} ∪ {(n, 1, 2)}. The oriented
partial 3-cycles of C are shown in Figure 3.

n3

5

7

8

9

10

11

2

4

6

1

Fig. 3. Odd wheel.

The set C satisfies Condition 1 of Theorem 2.4 since each edge is
covered by exactly zero or two cycles in C. Also, C satisfies Condition 2
of Theorem 2.4 since each arc (1, i) ∈ Arcs(G) is covered exactly once by
a cycle in C and there are an odd number of arcs (1, i) ∈ Arcs(G). Thus,
G is non-3-colorable by Theorem 2.4.

The Grötzsch graph is a non-trivial example of a non-3-colorable graph
with a degree one Nullstellensatz certificate ([7]):

Example 9. Consider the Grötzsch graph (Mycielski 4) in Fig-
ure 4, which has no 3-coloring. It contains no 3-cycles. Now, consider the

466 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

following set of oriented chordless 4-cycles, which we show gives a certificate
of non-3-colorability by Theorem 2.4.

C := {(1, 2, 3, 7), (2, 3, 4, 8), (3, 4, 5, 9), (4, 5, 1, 10), (1, 10, 11, 7),
(2, 6, 11, 8), (3, 7, 11, 9), (4, 8, 11, 10), (5, 9, 11, 6)}.

Figure 4 illustrates the edge directions for the 4-cycles of C. Each undi-
rected edge of the graph is contained in exactly two 4-cycles, so C satisfies
Condition 1 of Theorem 2.4. Now,

|C(6,11)| = |C(7,11)| = |C(8,11)| = |C(9,11)| = |C(10,11)| = 1,

and |C(i,j)| ≡ 0 (mod 2) for all other arcs (i, j) ∈ A where i < j. Thus,∑
(i,j)∈A,i<j

|C(i,j)| ≡ 1 (mod 2),

so Condition 2 is satisfied, and therefore, the graph has no 3-coloring.

Fig. 4. Grötzsch graph

There are no known combinatorial characterizations concerning higher
NulLA ranks.

3. Adding polynomial inequalities. Up until this point we have
worked over arbitrary fields (with special attention to finite fields due to
their fast and exact computation), where the only allowable constraints
were equations. Now we turn our attention to the real case (i.e. K = R),
where we have the additional possibility of specifying inequalities (more
generally, one can work over ordered or formally real fields). In this case,
following the terminology of real algebraic geometry, we call the solution set
of a system of polynomial equations and inequalities a basic semialgebraic
set. Note that convex polyhedra correspond to the particular case where

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 467

all the constraint polynomials have degree one. As we have seen earlier
in the Positivstellensatz (Theorem 1.4 above), the emptiness of a basic
semialgebraic set can be certified through an algebraic identity involving
sum of squares of polynomials.

The connection between sum of squares decompositions of polynomi-
als and convex optimization can be traced back to the work of N. Z. Shor
[48]. His work went relatively unnoticed for several years, until several au-
thors, including Lasserre, Nesterov, and Parrilo, observed, around the year
2000, that the existence of sum of squares decompositions and the search
for infeasibility certificates for a semialgebraic set can be addressed via a
sequence of semidefinite programs relaxations [23, 40, 41, 39]. The first
part of this section will be a short description of the connections between
sums of squares and semidefinite programming, and how the Positivstel-
lensatz allows, in a analogous way to what was presented in Section 2 for
the Nullstellensatz, for a systematic way to formulate these semidefinite
relaxations.

A very central preoccupation of combinatorial optimizers has been the
understanding of the facets that describe the integer hull (normally binary)
of a combinatorial problem. As we will see later on, one can recover quite
a bit of information about the integer hull of combinatorial problems from
a sequence combinatorially controlled SDPs. This kind of approach was
pioneered in the lift-and-project method of Balas, Ceria and Cornuéjols
[1], the matrix-cut method of Lovász and Schrijver [34] and the lineariza-
tion technique of Sherali-Adams [47]. Here we try to present more recent
developments (see [30] and references therein for a very extensive survey).

3.1. Sums of squares, SDP, and feasibility of semialgebraic
sets. Recall that a multivariate polynomial p(x) is a sum of squares (SOS
for short) if it can be written as a sum of squares of other polynomials,
that is, p(x) =

∑
i q2

i (x), qi(x) ∈ R[x]. The condition that a polynomial
is a sum of squares is a quite natural sufficient test for polynomial non-
negativity. Thus instead of asking whether even degree polynomials are
non-negative we ask the easier question whether they are sums of squares.
More importantly, as we shall see, the existence of a sum of squares de-
composition can be decided via semidefinite programming.

Theorem 3.1. A polynomial p(x) is SOS if and only if p(x) = zT Qz,
where z is a vector of monomials in the xi variables, and Q is a symmetric
positive semidefinite matrix.

By the theorem above, every SOS polynomial can be written as a
quadratic form in a set of monomials, with the corresponding matrix being
positive semidefinite. The vector of monomials z in general depends on
the degree and sparsity pattern of p(x). If p(x) has n variables and total
degree 2d, then z can always be chosen as a subset of the set of monomials
of degree less than or equal to d, which has cardinality

(
n+d

d

)
.

468 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

Example 10. The polynomial p(x1, x2) = x2
1 − x1x

2
2 + x4

2 + 1 is SOS.
Among infinitely many others, p(x1, x2) has the following decompositions:

p(x1, x2) =
3
4
(x1 − x2

2)
2 +

1
4
(x1 + x2

2)
2 + 1

=
1
9
(3− x2

2)
2 +

2
3
x2

2 +
1

288
(9x1 − 16x2

2)
2 +

23
32

x2
1.

The polynomial p(x1, x2) has the following representation:

p(x1, x2) =
1
6

⎡⎢⎢⎣
1
x2

x2
2

x1

⎤⎥⎥⎦
T ⎡⎢⎢⎣

6 0 −2 0
0 4 0 0
−2 0 6 −3

0 0 −3 6

⎤⎥⎥⎦
⎡⎢⎢⎣

1
x2

x2
2

x1

⎤⎥⎥⎦
where the matrix in the expression above is positive semidefinite.

In the representation f(x) = zT Qz, for the right- and left-hand sides
to be identical, all the coefficients of the corresponding polynomials should
be equal. Since Q is simultaneously constrained by linear equations and a
positive semidefiniteness condition, the problem can be easily seen to be
directly equivalent to a semidefinite programming feasibility problem in the
standard primal form.

Now we describe an algorithm (originally presented in [40, 41]) and
illustrate it with an example, on how we can use SDPs to decide the fea-
sibility of a system of polynomial inequalities. Exactly as we did for the
Nullstellensatz case, we can look for the existence of a Positivstellensatz
certificate of bounded degree D (see Theorem 1.4). Once we assume that
the degree D is fixed we can apply Theorem 3.1 and obtain a reformulation
as a semidefinite programming problem. We formalize this description in
the following algorithm:

Algorithm 3 Bounded degree Positivstellensatz [40, 41]
Input: A polynomial system {fi(x) = 0, gi(x) ≥ 0} and a Positivstellen-

satz bound D.
Output: Feasible, if {fi(x) = 0, gi(x) ≥ 0} is feasible over R, else In-

feasible.
for d = 0, 1, 2, . . . , D do

If there exist βi, sα ∈ R[x] such that −1 =
∑

i βifi +
∑

α∈{0,1}n sαgα,
with sα SOS, deg(βifi) ≤ d, deg(sαgα) ≤ d then return Infeasible.
d← d + 1.

end for
Return Feasible.

Notice that the membership test in the main loop of the algorithm
is, by the results described at the beginning of this section, equivalent to
a finite-sized semidefinite program. Similarly to the Nullstellensatz case,

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 469

the number of iterations (i.e., the degree of the certificates) serves as a
quantitative measure of the hardness in proving infeasibility of the system.
As we will describe in more detail in Section 3.4, in several situations one
can give further refined characterization on these degrees.

Example 11. Consider the polynomial system {f = 0, g ≥ 0} from
Example 2, where f := x2+x2

1+2 = 0 and g := x1−x2
2+3 ≥ 0. At the d-th

iteration of Algorithm 3 applied to the polynomial problem {f = 0, g ≥ 0},
one asks whether there exist polynomials β, s1, s2 ∈ K[x] such that βf +
s1 +s2 ·g = −1 where s1, s2 are SOS and deg(s1), deg(s2 ·g), deg(β ·f) ≤ d.
For each fixed positive integer d this can be tested by a (possibly large)
semidefinite program.

Solving this for d = 2, we have deg(s1) ≤ 2, deg(s2) = 0 and deg(β) =
0, so s2 and β are constants and

s1 = zT Qz =

⎡⎣ 1
x1

x2

⎤⎦T ⎡⎣ Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

⎤⎦⎡⎣ 1
x1

x2

⎤⎦
= Q11 + 2Q12x1 + 2Q13x2 + Q22x

2
1 + 2Q23x1x2 + Q33x

2
2

where z = (1, x1, x2)T and Q ∈ R
3×3 is a symmetric positive semidefinite

matrix. Thus, the certificate for D = 2 is βf + ztQz + s2 · g = −1 where
Q � 0 and s2 ≥ 0. If we expand the left hand side and equate coefficients
on both sides of the equation, we arrive at the following SDP:

2β + Q11 + 3s2 = −1 (1), 2Q12 + s2 = 0 (x1),

β + 2Q13 = 0 (x2), β + Q22 = 0 (x2
1),

2Q23 = 0 (x1x2), Q33 − s2 = 0 (x2
2)

where Q � 0 and s2 ≥ 0. This SDP has a solution as follows:

Q =

⎡⎣ 5 −1 3
−1 6 0

3 0 2

⎤⎦ , s2 = 2 and β = −6.

The resulting identity, which is the same as the one given in Example 2,
proves the inconsistency of the system.

As outlined in the preceding paragraphs, there is a direct connec-
tion going from general polynomial optimization problems to SDP, via the
Positivstellensatz infeasibility certificates. Even though we have discussed
only feasibility problems here, there are obvious straightforward connec-
tions with optimization. For instance, by considering the emptiness of the
sublevel sets of the objective function, or using representation theorems
for positive polynomials, sequences of converging bounds indexed by cer-
tificate degree can be directly constructed; see e.g. [40, 23, 42]. These
schemes have been implemented in software packages such as SOSTOOLS
[43], GloptiPoly [17], and YALMIP [31].

470 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

3.2. Semidefinite programming relaxations. In the last section,
we have described the search for Positivstellensatz infeasibility certificates
formulated as a semidefinite programming problem. We now describe an al-
ternative interpretation, obtained by dualizing the corresponding semidefi-
nite programs. This is the exact analogue of the construction presented in
Section 2.2, and is closely related to the approach via truncated moment
sequences developed by Lasserre [23].

Recall that in the approach in Section 2.2, the linear relaxations were
constructed by replacing every monomial xα by a new variable λxα . Fur-
thermore, new redundant equations were obtained by multiplying an exist-
ing constraint f(x) = 0 by terms of the form xi, yielding xif(x) = 0 (essen-
tially, generating the ideal of valid equations). In the inequality case, and as
suggested by the Positivstellensatz, new inequality constraints will be gen-
erated by both squarefree multiplication of the original constraints, and by
multiplication against sums of squares. That is, if gi(x) ≥ 0 and gj(x) ≥ 0
are valid inequalities, then so are gi(x)gj(x) ≥ 0 and gi(x)s(x) ≥ 0, where
s(x) is SOS. After substitution with the extended variables λ, we then ob-
tain a new system of linear equations and inequalities, with the property
that the resulting inequality conditions are semidefinite conditions. The
presence of the semidefinite constraints arises because we do not specify a
priori what the multipliers s(x) are, but only give their linear span.

Example 12. Consider the polynomial system discussed earlier in
Example 2. As described, new linear and semidefinite constraints are ob-
tained by linearizing all the polynomial constraints in the original system.
The corresponding relaxation is (for d = 2):⎡⎣ λ1 λx1 λx2

λx1 λx2
1

λx1x2

λx2 λx1x2 λx2
2

⎤⎦ � 0, λx2+λx2
1
+2λ1 = 0, λx1−λx2

2
+3λ1 ≥ 0,

plus the condition λ1 > 0 (without loss of generality, we can take λ1 = 1).
The first semidefinite constraint arises from linearizing the square of an
arbitrary degree one polynomial, while the other two constraints are the
direct linearization of the original equality and inequality constraints. The
resulting problem is a semidefinite program, and in this case, its infeasibility
directly shows that the original system of polynomial inequalities does not
have a solution.

An appealing geometric interpretation follows from considering the
projection of the feasible set of these relaxations in the space of original
variables (i.e., λxi

). For the linear algebra relaxations of Section 2.2, we ob-
tain outer approximations to the affine hull of the solution set (an algebraic
variety), while the SDP relaxation described here constructs outer approx-
imations to the convex hull of the corresponding semialgebraic set. This
latter viewpoint will be discussed in Section 3.3, for the case of equations
arising from combinatorial problems.

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 471

3.3. Theta bodies. Recall that traditional modeling of combinato-
rial optimization problems often uses 0/1 incidence vectors. The set S of
solutions of a combinatorial problem (e.g., the stable sets, traveling sales-
man tours) is often computed through the (implicit) convex hull of such
incidence vectors. Just as in the stable set and max-cut examples in Propo-
sition 1.1, the incidence vectors can be seen at the set of real solutions to a
system of polynomial equations: f1(x) = f2(x) = · · · = fm(x) = 0, where
f1, . . . , fm ∈ R[x] := R[x1, . . . , xn]. Over the years there have been well-
known attempts to understand the structure of these convex hulls through
semidefinite programming relaxations (see [47, 34, 26, 33]) and in fact they
are closely related [27, 30]. Here we wish to summarize some recent results
that give appealing structural properties, in terms of the associated system
of equations (see [15, 14] for details).

Let us start with a historically important example: Given an undi-
rected finite graph G = (V, E), consider the set SG of characteristic vectors
of stable sets of G. The convex hull of SG, denoted by STAB(G), is the sta-
ble set polytope. As we mentioned already the vanishing ideal of SG is given
by IG := 〈x2

i − xi (∀ i ∈ V), xixj (∀ {i, j} ∈ E)〉 which is a real radical
zero-dimensional ideal in R[x]. In [32], Lovász introduced a semidefinite
relaxation, TH(G), of the polytope STAB(G), called the theta body of G.
There are multiple descriptions of TH(G), but the one in [34, Lemma 2.17],
for instance, shows that TH(G) can be defined completely in terms of the
polynomial system IG. It is easy to show that STAB(G) ⊆ TH(G), and
remarkably, we have that STAB(G) = TH(G) if and only if the graph is
perfect. We will now explain how the case of stable sets can be generalized
to construct theta bodies for many other combinatorial problems.

We will construct an approximation of the convex hull of a finite set of
points S, denoted conv(S), by a sequence of convex bodies recovered from
“degree truncations” of the defining polynomial systems. In what follows I

will be a radical polynomial ideal. A polynomial f is non-negative modulo
I, written as f ≥ 0 mod I, if f(s) ≥ 0 for all s ∈ VR(I). More strongly,
the polynomial f is a sum of squares (sos) mod I if there exists hj ∈ R[x]
such that f ≡

∑t
j=1 h2

j mod I for some t, or equivalently, f−
∑t

j=1 h2
j ∈ I.

If, in addition, each hj has degree at most k, then we say that f is k-sos
mod I. The ideal I is k-sos if every polynomial that is non-negative mod I

is k-sos mod I. If every polynomial of degree at most d that is non-negative
mod I is k-sos mod I, we say that I is (d, k)-sos.

Note that conv(VR(I)), the convex hull of VR(I), is described by the
linear polynomials f such that f ≥ 0 mod I. A certificate for the non-
negativity of f mod I is the existence of a sos-polynomial

∑t

j=1 h2
j that

is congruent to f mod I. One can now investigate the convex hull of S

through the hierarchy of nested closed convex sets defined by the semidef-
inite programming relaxations of the set of (1, k)-sos polynomials.

Definition 3.1. Let I ⊆ R[x] be an ideal, and let k be a positive
integer. Let Σk ⊂ R[x] be the set of all polynomials that are k-sos mod I.

472 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

1. The k-th theta body of I is

THk(I) := {x ∈ R
n : f(x) ≥ 0 for every linear f ∈ Σk}.

2. The ideal I is THk-exact if the k-th theta body THk(I) coincides
with the closure of conv(VR(I)).

3. The theta-rank of I is the smallest k such that THk(I) coincides
with the closure of conv(VR(I)).

Example 13. Consider the ideal I = 〈x2y − 1〉 ⊂ R[x, y]. Then
conv(VR(I)) = {(p1, p2) ∈ R

2 : p2 > 0}, and any linear polynomial that
is non-negative over VR(I) is of the form α + βy, where α, β ≥ 0. Since
αy + β ≡ (

√
αxy)2 + (

√
β)2 mod I, I is (1, 2)-sos and TH2-exact.

Example 14. For the case of the stable sets of a graph G, one can
see that

TH1(IG) =

⎧⎪⎪⎨⎪⎪⎩y ∈ R
n :

∃M � 0, M ∈ R
(n+1)×(n+1) such that

M00 = 1,

M0i = Mi0 = Mii = yi ∀ i ∈ V

Mij = 0 ∀ {i, j} ∈ E

⎫⎪⎪⎬⎪⎪⎭ .

It is known that TH1(IG) is precisely Lovász’s theta body of G. The ideal
IG is TH1-exact precisely when the graph G is perfect.

By definition, TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ conv(VR(I)). As seen in
Example 13, conv(VR(I)) may not always be closed and so the theta-body
sequence of I can converge, if at all, only to the closure of conv(VR(I)).
But the good news for combinatorial optimization is that there is plenty of
good behavior for problems arising with a finite set of possible solutions.

3.4. Application: cuts and exact finite sets. We discuss now a
few important combinatorial examples. As we have seen in Section 2.5 for
3-colorability, and in the preceding section for stable sets, in some special
cases it is possible to give nice combinatorial characterizations of when
low-degree certificates can exactly recognize infeasibility. Here are a few
additional results for the real case:

Example 15. For the max-cut problem we saw earlier, the defining
vanishing ideal is I(SG) = 〈x2

e − xe ∀ e ∈ E, xT ∀ T an odd cycle in G〉.
In this case one can prove that the ideal I(SG) is TH1-exact if and only
if G is a bipartite graph. In general the theta-rank of I(SG) is bounded
above by the size of the max-cut in G. There is no constant k such that
THk(I(SG)) = conv(SG), for all graphs G. Other formulations of max-cut
are studied in [14].

Recall that when S ⊂ R
n is a finite set, its vanishing ideal I(S) is

zero-dimensional and real radical (see [36] Section 12.5 for a definition of
the real radical). In what follows, we say that a finite set S ⊂ R

n is exact
if its vanishing ideal I(S) ⊆ R[x] is TH1-exact.

Theorem 3.2 ([15]). For a finite set S ⊂ R
n, the following are

equivalent.

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 473

1. S is exact.
2. There is a finite linear inequality description of conv(S) in which

for every inequality g(x) ≥ 0, g is 1-sos mod I(S).
3. There is a finite linear inequality description of conv(S) such that

for every inequality g(x) ≥ 0, every point in S lies either on the
hyperplane g(x) = 0 or on a unique parallel translate of it.

4. The polytope conv(S) is affinely equivalent to a compressed lattice
polytope (every reverse lexicographic triangulation of the polytope
is unimodular with respect to the defining lattice).

Example 16. The vertices of the following 0/1-polytopes in R
n are

exact for every n: (1) hypercubes, (2) (regular) cross polytopes, (3) hyper-
simplices (includes simplices), (4) joins of 2-level polytopes, and (5) stable
set polytopes of perfect graphs on n vertices.

More strongly one can say the following.
Proposition 3.1. Suppose S ⊆ R

n is a finite point set such that for
each facet F of conv(S) there is a hyperplane HF such that HF ∩conv(S) =
F and S is contained in at most t+1 parallel translates of HF . Then I(S)
is THt-exact.

In [15] the authors show that theta bodies can be computed explicitly
as projections to the feasible set of a semidefinite program. These SDPs are
constructed using the combinatorial moment matrices introduced by [29].

4. Recovering solutions in the feasible case. In principle, it is
possible to find the actual roots of the system of equations (and thus the
colorings, stable sets, or desired combinatorial object) whenever the relax-
ations are feasible and a few additional conditions are satisfied. Here we
outline the linear algebra relaxations case, but the semidefinite case is very
similar; see e.g. [18, 25] for this case.

We describe below how, under certain conditions, it is possible to
recover the solution of the original polynomial system from the relaxations
(linear or semidefinite) described in earlier sections. The main concepts
are very similar for both methodologies, and are based on the well-known
eigenvalue methods for polynomial equations; see e.g. [6, §2.4]. The key
idea for extracting solutions is the fact that from the relaxations one can
obtain a finite-dimensional representation of the vector space K[x]/I and its
multiplicative structure, where I is the ideal ideal(F) (in the case of linear
relaxations). In order to do this, we need to compute a basis of the vector
space K[x]/I, and construct matrix representations for the multiplication
operators Mxi

: K[x]/I → K[x]/I where [f] �→ [xif] for all [f] ∈ K[x]/I.
Then, we can use the eigenvalue/eigenvector methods to compute solutions
(see e.g., [10]).

A sufficient condition for the existence of a suitable basis of K[x]/I is
given by Theorem 2.2. Under this condition, multiplication matrices Mxi

can be easily computed. In particular, if we have computed a set F ⊂ K[x]
that satisfies the conditions of Theorem 2.2 by running FPNulLA, then

474 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

x1

x3 x2

x0

x4x5

Fig. 5. Graph for Example 17.

finding a basis of R/I and computing its multiplicative structure is straight-
forward using linear algebra (see e.g., [37]). By construction, the matrices
Mxi

commute pairwise, and to obtain the roots one must diagonalize the
corresponding commutative algebra. It is well-known (see, e.g., [6]), that
this can be achieved by forming a random linear combination of these ma-
trices. This random matrix will generically have distinct eigenvalues, and
the corresponding matrix of eigenvectors will give the needed change of
basis. In the case of a finite field, it is enough to choose the random co-
efficients over an algebraic extension of sufficiently large degree, instead of
working over the algebraic closure (alternatively, the more efficient meth-
ods in [11] can be used). The entries of the diagonalized matrices directly
provide the coordinates of the roots.

Remark 4.1. The condition in Theorem (2.2) can in general be a
strong requirement for recovery of solutions, since it implies that we can
obtain all solutions of the polynomial system. In some occasions, it may be
desirable to obtain just a single solution, in which case weaker conditions
may be of interest.

Example 17. Consider the following polynomial system over F2, that
corresponds to the 3-colorings of the six-node graph in Figure 5:

x3
i + 1 = 0 ∀i ∈ V, x2

i + xixj + x2
j = 0 ∀(i, j) ∈ E.

We add to these equations the symmetry-breaking constraint x0 = 1. Af-
ter running NulLA with this system as an input, we obtain multiplication
matrices over F2, of dimensions 4× 4, given by:

Mx1 =

⎡⎢⎢⎣
0 0 1 1
0 0 1 0
0 1 1 0
1 1 0 1

⎤⎥⎥⎦ Mx2 =

⎡⎢⎢⎣
0 0 0 1
0 0 1 1
1 0 1 1
0 1 1 0

⎤⎥⎥⎦ Mx3 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1

⎤⎥⎥⎦

Mx4 =

⎡⎢⎢⎣
1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

⎤⎥⎥⎦ Mx5 =

⎡⎢⎢⎣
0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

⎤⎥⎥⎦

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 475

Diagonalizing the corresponding commutative algebra, we obtain the change
of basis matrix given by

T =

⎡⎢⎢⎣
1 1 1 1
ω2 ω ω ω2

1 1 ω2 ω

ω2 ω 1 1

⎤⎥⎥⎦ ,

where ω is a primitive root of 1, i.e., it satisfies w2 + w + 1 = 0. It can be
easily verified that all the matrices T−1Mxi

T are diagonal, and given by:

T−1Mx1T = diag[ω, ω2, ω, ω2] T−1Mx2T = diag[ω2, ω, 1, 1]

T−1Mx3T = diag[1, 1, ω2, ω] T−1Mx4T = diag[ω, ω2, ω2, ω]

T−1Mx5T = diag[ω2, ω, ω, ω2],

which correspond to the four possible 3-colorings of the graph. For instance,
from the second diagonal entry of each matrix we obtain the feasible coloring
(x0, x1, x2, x3, x4, x5)→ (1, ω2, ω, 1, ω2, ω).

Acknowledgements. We are grateful to the two anonymous referees
who provided many useful corrections and comments that greatly enhanced
the quality of presentation. We are also grateful to Jon Lee, Susan Mar-
gulies, Mohamed Omar, and Chris Hillar for their ideas and support.

APPENDIX

A. Proofs. This appendix contains proofs of some the results used in
the main body of the paper that are either hard to find or whose original
proof, available elsewhere, is not written in the language of this survey.

For the purpose of formally prove Theorem 2.2 we need to formalize
further some of the notions of Section 2: The space K[[x]] is isomorphic to
the dual vector space of K[x] consisting of all linear functionals on K[x],
that is, K[[x]] ∼= Hom(K[x], K). We choose to use K[[x]] instead of as
the dual vector space of K[x] (see e.g., [24]) because using K[[x]] makes
clearer the linearization of a system of polynomial equations. The map
τ : K[[x]] → Hom(K[x], K) where (τ(λ))(g) =

∑
α∈Nn λαgα = λ ∗ g for

all λ ∈ K[[x]] and g ∈ K[x] is an isomorphism and the inverse map is
τ−1(ψ) =

∑
α∈Nn ψ(xα)xα for all ψ ∈ Hom(K[x], K). For a given set

F ⊆ K[x], there is an analogue of the annihilator F ◦ in the context of
the dual vector space Hom(K[x], K) as follows: Ann(K[x], F) := {ψ ∈
Hom(K[x], K) : ψ(f) = 0, ∀f ∈ F}. Note that F

◦ ∼= Ann(K[x], F) since
τ(F ◦) = Ann(K[x], F).

Lemma A.1. Let F ⊆ K[x] be a vector subspace and k ∈ N. Then,
dim(K[x]k/(F ∩K[x]k)) = dimk(F ◦).

Proof. We know from Theorem 3.14 in [45], Ann(K[x], F ∩ K[x]k) =
Ann(K[x], F) + Ann(K[x], K[x]k); thus, (F ∩ K[x]k)◦ = F ◦ + K[x]◦k, and

476 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

so, we have πk((F ∩ K[x]k)◦) = πk(F ◦) + πk(K[x]◦k) = πk(F ◦). More-
over, from Theorems 3.12 and 3.15 in [45], we have Ann(K[x]k, F ∩
K[x]k) ∼= Hom(K[x]k/(F ∩K[x]k), K) ∼= K[x]k/(F ∩K[x]k) since K[x]k/(F ∩
K[x]k) is finite dimensional, and finally, Ann(K[x]k, F ∩ K[x]k) ∼=
πk((F ∩ K[x]k)◦) since, for the isomorphism τk : Hom(K[x]k, K) → K[x]k
where τ(ψ) =

∑
α∈Nn:|α|≤k ψ(xα)xα, thus τ(Ann(K[x]k, F ∩ K[x]k)) =

πk((F ∩K[x]k)◦).

We now present proofs verifying the correctness and efficiency of Al-
gorithm 2. We begin by proving Theorem 2.2.

Proof. [Proof of Theorem 2.2] We will explicitly show that, under the
hypothesis of the theorem, one can recover a finite dimensional vector space
B such that B ⊕ F = K[x]d and B ⊕ I = K[x]. The result then follows
from the equalities dim(I◦) = dim(K[x]/I) = dim(B) = dim(K[x]d/F) =
dimd(F ◦). We define the vector space B ⊆ K[x]d−1 such that B ⊕ (F ∩
K[x]d−1) = K[x]d−1. By assumption, dimd(F ◦) = dimd−1(F ◦) implying
dim(B) = dim(K[x]d−1/F ∩K[x]d−1) = dim(K[x]d/F), and thus, it follows
that B ⊕ F = K[x]d. It only remains to show that B ⊕ I = K[x].

Denote F [0] = F and F [k] = (F [k−1])+ for all k ≥ 1. We show by
induction on k that B ⊕ F [k] = K[x]d+k for all k ≥ 0, and hence B ⊕ I =
K[x]. We have already established B ⊕ F = K[x]d, so the claim holds for
k = 0. The claim also holds for k = 1 as follows: K[x]d+1 = (K[x]d)

+ =
(B ⊕ F)+ = B+ + F+ = B + F+ since B+ ⊆ K[x]d = B ⊕ F , and
furthermore, the assumption F+ ∩ K[x]d = F implies F+ ∩ B = ∅, and
therefore, B ⊕ F+ = K[x]d+1. Now assume that the claim holds for k ≥ 1
and let us prove it must hold for k + 1.

By the assumption that B ⊕ F [k] = K[x]d+k, there exists a vector
space projection ρk : K[x]d+k → K[x]d+k where im(ρk) = B, ρk(b) = b for
all b ∈ B and ker(ρk) = F [k]. We extend the map ρk to the map ρk+1 :
K[x]d+k+1 → K[x]d+k+1 by defining ρk+1(g) := ρk(g0) +

∑
i ρk(xiρk(gi))

where g = g0+
∑

i xigi is a representation of g with g0, g1, . . . , gn ∈ K[x]d+k.
We show below that ρk+1 is well-defined meaning that the value of ρk+1(g)
is independent of the chosen representation of g since there may be multiple
possible representations of g. It follows by construction that ρk+1 is K-
linear, im(ρk+1) = B, ρk+1(b) = b for all b ∈ B and ker(ρk+1) = F [k+1],
implying that ρk+1 is a vector space projection and B⊕F [k+1] = K[x]d+k+1

as required.

We now show that ρk+1 is well-defined. First, consider the special
case where g ∈ K[x]d+k+1 is a monomial, that is, g = xixjx

γ for some
i, j and some monomial xγ ∈ K[x]d+k−1, so ρk+1(g) = ρk(xiρk(xjx

γ)) or
ρk+1(g) = ρ(xjρk(xix

γ)). We thus need to show that ρk(xiρk(xjx
γ)) =

ρk(xjρk(xix
γ)). Now, xγ = b + f for some b ∈ B where ρk(xγ) = b and

f ∈ F [k−1] (k ≥ 1). Then, ρk(xix
γ) = ρk(xib + xif) = ρk(xib)+ ρk(xif) =

ρk(xib), and similarly, ρk(xjx
γ) = ρk(xjb). Then,

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 477

ρk(xiρk(xjx
γ))− ρk(xjρk(xix

γ))
= ρk(xiρk(xjb))− ρk(xjρk(xib))
= ρk(xi(xjb− f1))− ρk(xj(xib− f ′1)) (f1, f

′
1 ∈ F)

= (xi(xjb − f1)− f2)− (xj(xib− f ′1)− f ′2) (f2, f
′
2 ∈ F)

= xjf
′
1 − xif1 + f ′2 − f2 ∈ F+.

So, ρk(xiρk(xα)) − ρk(xjρk(xβ)) ∈ F+. But, ρk(xiρk(xα)) ∈ B and
ρk(xjρk(xβ)) ∈ B by definition, so ρk(xiρk(xα))−ρk(xjρk(xβ)) ∈ F+∩B =
{0} since F+∩K[x]d = F . Thus, ρk(xiρk(xα)) = ρk(xjρk(xβ)) as required.
By the K-linearity of ρk, ρk+1 is well-defined on K[x]d+k+1 as required.

Theorem 2.2 (and its proof) can be seen as an adaptation and simplifi-
cation of Theorem 4.2 and Algorithm 4.3 in [37], the main difference being
that in Mourrain’s terminology, we stick to a particular order ideal and
only need to keep track of vector space dimensions instead of an explicit
basis for B.

We now present a proof of termination of the FPNulLA algorithm (see
also the comments following Algorithm 4.3 in [37]).

Lemma A.2. Let I be a zero-dimensional ideal, then FPNulLA (Al-
gorithm 2) terminates.

Proof. First, we prove that the inner while loop must terminate.
Let F ⊆ K[x]d be a vector space. We denote F [0,d] = F and F [k,d] =
(F [k−1,d])+ ∩ K[x]d for all k ≥ 1 where d = deg(F). By construction,
F [k,d] ⊆ F [k+1,d] ⊆ K[x]d for all k. So, the sequence of vector spaces
F [0,d], F [1,d], . . . , F [k,d], . . . is an inclusion-wise increasing sequence of vec-
tor subspaces of K[x]d. Since K[x]d is finite-dimensional, the sequence must
reach a fixed point where F [k,d] = F [k+1,d], which is the terminating con-
dition of the inner loop of FPNulLA (Steps 4-7). Let F [∗,d] denote this
fixed point.

The outer loop of FPNulLA is essentially the same as NulLA. After k

iterations of the outer loop, the vector space F contains at least all linear
combinations of polynomials of the form xαf where the total degree |α| ≤ k

and where f is one of the initial polynomials in F . Therefore, if the system
F (x) = 0 is infeasible, Hilbert’s Nullstellensatz guarantees that after a
finite number of iterations, 1 ∈ F and the algorithm terminates.

It remains to show that the algorithm terminates when the system
F (x) = 0 is feasible. Let I = I(F). Since I is zero-dimensional, there must
exist a finite-dimensional vector space B ⊂ K[x] such that K[x] = I⊕B (see
e.g. [5, 50]). Since the system F (x) = 0 is feasible, Hilbert’s Nullstellensatz
implies 1 �∈ I. Thus, we can choose B such that 1 ∈ B. Now after
finitely many iterations of the outer loop, any f ∈ I will eventually be
in F . Combined with the fact that B+ is finite dimensional and B+ ⊂
I ⊕ B, this implies that B+ ⊂ F ⊕ B after finitely many iterations of
the outer loop. Also, since the inner loop has terminated, we know that
F = F+ ∩ K[x]d = F [1,d]. Next, we show that K[x]d = F ⊕ B. Now,

478 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

(F ⊕ B)[1,d] = F [1,d] + B[1,d] = F ⊕ B since F = F [1,d] and B+ ⊆ F ⊕ B.
Thus, (F ⊕B)[∗,d] = F ⊕B, and since B+ ⊆ F ⊕B, this implies

(B+)[∗,d] ⊆ (F ⊕B)[∗,d] = F ⊕B.

But 1 ∈ B, so K[x]d ⊆ (B+)[∗,d] which then implies K[x]d = F ⊕ B.

Then, since B ⊆ K[x]d−1, we also have K[x]d−1 = (F ∩K[x]d−1)⊕ B, and
thus, dim(K[x]d/F) = dim(B) = dim(K[x]d−1/F), which is the stopping
criterion of the outer loop.

Now, we show that NulLA and FPNulLA algorithms run in polynomial
time in the bit-size of the input data when the Nullstellensatz degree is
assumed to be fixed. To begin, note that the number of monomials xα

with deg(xα) ≤ k is
(
n+k

k

)
, which is O(nk).

Proof. (of Lemma 2.1). Let d = deg(F). First note that by definition
(see section 2.1 in [46]) the input size of the defining basis {f1, f2, . . . , fm}
of F equals O(cmnd) where c is the average bit-size of the coefficients in
the basis.

For the proof of (1), observe that in the kth iteration of Algorithm 1
(when the F+ operation has increased the degree of F by k), we solve a
system of linear equations Akx = bk to find coefficients of the Nullstellen-
satz certificate in Step 2 of Algorithm 1. The rows of Ak consist of vectors
of coefficients of all polynomials of the form xαfi where i = 1, . . .m and
deg(xα) ≤ k. Therefore, Ak has O(mnk) rows and each row has input size
O(cnd+k). Hence, the input size of Ak is O(cmnd+2k). The input size of
bk, which is a vector of zeros and ones, is O(mnk). Thus, the input size
of the linear system Akx = bk is O(cmnd+2k), which is polynomial in the
input size of the basis of F and n, and thus, the system can be solved in
polynomial time (see e.g. Theorem 3.3 of [46]). The complexity of the first
L iterations is thus bounded by L times the complexity of the Lth iteration,
which is polynomial in L, n and the input size of the defining basis of F .
This completes the proof of the first part.

We now prove part (2). Denote by Fk the vector space computed at
the start of the kth outer loop iteration. Let {g1, . . . gmk

} be a basis of Fk

which was given to us either as an input or from the previous iteration.
Observe that the deg(Fk) = d + k, so each basis polynomial of Fk has bit
size O(log2(|K|)nd+k). Note that dim(Fk) = mk ≤ O(nd+k); therefore the
bit size of the entire basis {g1, . . . gmk

} is M = O(log2(|K|)n
2(d+k)). Note

that M is polynomial size in the input size of the initial basis f1, . . . , fm.
Now we proceed to analyze the cost of the kth iteration, meaning steps

3 to 10 in the pseudocode. As in part (1), Step 3, involves solving a linear
system of size M ; thus it can be done in polynomial time. In Step 4 we
check whether dim(Fk) = dim(F+

k ∩ K[x]d+k), which involves computing
a basis of F+

k ∩ K[x]d+k. Note that F+
k has bit size (n + 1)M , and to

compute the desired basis we perform Gaussian elimination on a matrix of
size (n+1)M , which is polynomial time. If dim(Fk) �= dim(F+

k ∩K[x]d+k),

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 479

then in Step 5, we set Fk := F+
k ∩ K[x]d+k. We still have Fk ⊆ K[x]d,

and Fk still has bit size M ; thus, as above, Step 6 can be computed in
polynomial time. The number of iterations of the while loop (Steps 4-7)
is O(nd) since the dim(Fk) is at most dim(K[x]d) = O(nd) and dim(Fk)
increases each iteration of the loop. So, the loop terminates in polynomial
time. Then, Step 8 involves computing a basis for Fk∩K[x]d−1 using Gaus-
sian elimination, which is polynomial time again. Lastly, Step 9 involves
computing a basis of F+

k which has bit size (n + 1)M and thus polynomial
time. The complexity of the first L iterations is thus bounded by L times
the complexity of the Lth iteration, which is polynomial in L, n, log2(|K|)
and the input size of the defining basis of F , and the result follows.

REFERENCES

[1] E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane al-
gorithm for mixed 0-1 programs, Mathematical Programming, 58 (1993),
pp. 295–324.

[2] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry, Springer, 1998.
[3] M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis algorithm

to find proofs of unsatisfiability, in STOC ’96: Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, New York, NY,
USA, 1996, ACM, pp. 174–183.

[4] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient algorithms for
solving overdefined systems of multivariate polynomial equations, in EURO-
CRYPT, 2000, pp. 392–407.

[5] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra,
Springer Verlag, 1992.

[6] , Using Algebraic Geometry, Vol. 185 of Graduate Texts in Mathematics,
Springer, 2nd ed., 2005.

[7] J. De Loera, C. Hillar, P. Malkin, and M. Omar, Recognizing graph theoretic
properties with polynomial ideals. http://arxiv.org/abs/1002.4435, 2010.

[8] J. De Loera, J. Lee, P. Malkin, and S. Margulies, Hilbert’s Nullstellensatz
and an algorithm for proving combinatorial infeasibility, in Proceedings of the
Twenty-first International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC 2008), 2008.

[9] J. De Loera, J. Lee, S. Margulies, and S. Onn, Expressing combinatorial opti-
mization problems by systems of polynomial equations and the nullstellensatz,
to appear in the Journal of Combinatorics, Probability and Computing (2008).

[10] A. Dickenstein and I. Emiris, eds., Solving Polynomial Equations: Founda-
tions, Algorithms, and Applications, Vol. 14 of Algorithms and Computation
in Mathematics, Springer Verlag, Heidelberg, 2005.

[11] W. Eberly and M. Giesbrecht, Efficient decomposition of associative algebras
over finite fields, Journal of Symbolic Computation, 29 (2000), pp. 441–458.

[12] A.V. Gelder, Another look at graph coloring via propositional satisfiability, Dis-
crete Appl. Math., 156 (2008), pp. 230–243.

[13] E. Gilbert, Random graphs, Annals of Mathematical Statistics, 30 (1959),
pp. 1141–1144.

[14] J. Gouveia, M. Laurent, P.A. Parrilo, and R.R. Thomas, A new semidefi-
nite programming relaxation for cycles in binary matroids and cuts in graphs.
http://arxiv.org/abs/0907.4518, 2009.

http://arxiv.org/abs/0907.4518
http://arxiv.org/abs/1002.4435

480 J.A. DE LOERA, P.N. MALKIN, AND P.A. PARRILO

[15] J. Gouveia, P.A. Parrilo, and R.R. Thomas, Theta bodies for polynomial ideals,
SIAM Journal on Optimization, 20 (2010), pp. 2097–2118.

[16] D. Grigoriev and N. Vorobjov, Complexity of Nullstellensatz and Positivstel-
lensatz proofs, Annals of Pure and Applied Logic, 113 (2002), pp. 153–160.

[17] D. Henrion and J.-B. Lasserre, GloptiPoly: Global optimization over polyno-
mials with MATLAB and SeDuMi, ACM Trans. Math. Softw., 29 (2003),
pp. 165–194.

[18] , Detecting global optimality and extracting solutions in GloptiPoly, in Posi-
tive polynomials in control, Vol. 312 of Lecture Notes in Control and Inform.
Sci., Springer, Berlin, 2005, pp. 293–310.

[19] T. Hogg and C. Williams, The hardest constraint problems: a double phase
transition, Artif. Intell., 69 (1994), pp. 359–377.

[20] A. Kehrein and M. Kreuzer, Characterizations of border bases, Journal of Pure
and Applied Algebra, 196 (2005), pp. 251 – 270.

[21] A. Kehrein, M. Kreuzer, and L. Robbiano, An algebraist’s view on border bases,
in Solving Polynomial Equations: Foundations, Algorithms, and Applications,
A. Dickenstein and I. Emiris, eds., Vol. 14 of Algorithms and Computation in
Mathematics, Springer Verlag, Heidelberg, 2005, ch. 4, pp. 160–202.

[22] J. Kollár, Sharp effective Nullstellensatz, Journal of the AMS, 1 (1988),
pp. 963–975.

[23] J. Lasserre, Global optimization with polynomials and the problem of moments,
SIAM J. on Optimization, 11 (2001), pp. 796–817.

[24] J. Lasserre, M. Laurent, and P. Rostalski, Semidefinite characterization and
computation of zero-dimensional real radical ideals, Found. Comput. Math.,
8 (2008), pp. 607–647.

[25] , A unified approach to computing real and complex zeros of zero-
dimensional ideals, in Emerging Applications of Algebraic Geometry, M. Puti-
nar and S. Sullivant, eds., vol. 149 of IMA Volumes in Mathematics and its
Applications, Springer, 2009, pp. 125–155.

[26] J.B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear
0-1 programs, SIAM J. on Optimization, 12 (2002), pp. 756–769.

[27] M. Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0–1 programming, Math. Oper. Res., 28 (2003), pp. 470–496.

[28] , Semidefinite relaxations for max-cut, in The Sharpest Cut: The Impact
of Manfred Padberg and His Work, M. Grötschel, ed., Vol. 4 of MPS-SIAM
Series in Optimization, SIAM, 2004, pp. 257–290.

[29] , Semidefinite representations for finite varieties, Mathematical Program-
ming, 109 (2007), pp. 1–26.

[30] , Sums of squares, moment matrices and optimization over polynomials, in
Emerging Applications of Algebraic Geometry, M. Putinar and S. Sullivant,
eds., Vol. 149 of IMA Volumes in Mathematics and its Applications, Springer,
2009, pp. 157–270.

[31] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[32] L. Lovász, Stable sets and polynomials, Discrete Math., 124 (1994), pp. 137–153.
[33] , Semidefinite programs and combinatorial optimization, in Recent advances

in algorithms and combinatorics, B. Reed and C. Sales, eds., Vol. 11 of CMS
Books in Mathematics, Spring, New York, 2003, pp. 137–194.

[34] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 opti-
mization, SIAM J. Optim., 1 (1991), pp. 166–190.

[35] S. Margulies, Computer Algebra, Combinatorics, and Complexity: Hilbert’s Null-
stellensatz and NP-Complete Problems, PhD thesis, UC Davis, 2008.

[36] M. Marshall, Positive polynomials and sums of squares., Mathematical Sur-
veys and Monographs, 146. Providence, RI: American Mathematical Society
(AMS). xii, p. 187, 2008.

POLYNOMIALS IN COMBINATORIAL OPTIMIZATION 481

[37] B. Mourrain, A new criterion for normal form algorithms, in Proc. AAECC,
Vol. 1719 of LNCS, Springer, 1999, pp. 430–443.

[38] B. Mourrain and P. Trébuchet, Stable normal forms for polynomial system
solving, Theoretical Computer Science, 409 (2008), pp. 229 – 240. Symbolic-
Numerical Computations.

[39] Y. Nesterov, Squared functional systems and optimization problems, in High
Performance Optimization, J.F. et al., eds., ed., Kluwer Academic, 2000,
pp. 405–440.

[40] P.A. Parrilo, Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization, PhD thesis, California Institute of Tech-
nology, May 2000.

[41] , Semidefinite programming relaxations for semialgebraic problems, Mathe-
matical Programming, 96 (2003), pp. 293–320.

[42] P.A. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Proceed-
ings of the DIMACS Workshop on Algorithmic and Quantitative Aspects
of Real Algebraic Geometry in Mathematics and Computer Science (March
2001), S. Basu and L. Gonzalez-Vega, eds., American Mathematical Society,
Providence RI, 2003, pp. 83–100.

[43] S. Prajna, A. Papachristodoulou, P. Seiler, and P.A. Parrilo, SOSTOOLS:
Sum of squares optimization toolbox for MATLAB, 2004.

[44] G. Reid and L. Zhi, Solving polynomial systems via symbolic-numeric reduction
to geometric involutive form, Journal of Symbolic Computation, 44 (2009),
pp. 280–291.

[45] S. Roman, Advanced Linear Algebra, Vol. 135 of Graduate Texts in Mathematics,
Springer New York, third ed., 2008.

[46] A. Schrijver, Theory of linear and integer programming, Wiley, 1986.
[47] H. Sherali and W. Adams, A hierarchy of relaxations between the continuous

and convex hull representations for zero-one programming problems, SIAM
Journal on Discrete Mathematics, 3 (1990), pp. 411–430.

[48] N.Z. Shor, Class of global minimum bounds of polynomial functions, Cybernetics,
23 (1987), pp. 731–734.

[49] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry,
Mathematische Annalen, 207 (1973), pp. 87–97.

[50] H. Stetter, Numerical Polynomial Algebra, SIAM, 2004.
[51] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38

(1996), pp. 49–95.
[52] L. Zhang, zchaff v2007.3.12. Available at http://www.princeton.edu/∼chaff/

zchaff.html, 2007.

http://www.princeton.edu/�chaff/zchaff.html
http://www.princeton.edu/�chaff/zchaff.html

	COMPUTATION WITH POLYNOMIAL EQUATIONS AND INEQUALITIES ARISING IN COMBINATORIAL OPTIMIZATION
	1. Introduction.
	2. Solving combinatorial systems of equations.
	2.1. Linear algebra certificates.
	2.2. Linear algebra relaxations.
	2.3. Nullstellensatz Linear Algebra Algorithm (NulLA).
	2.4. Experimental results
	2.5. Application: The structure of non-3-colorable graphs.

	3. Adding polynomial inequalities.
	3.1. Sums of squares, SDP, and feasibility of semialgebraic sets.
	3.2. Semidefinite programming relaxations.
	3.3. Theta bodies.
	3.4. Application: cuts and exact finite sets.

	4. Recovering solutions in the feasible case.
	Acknowledgements.
	APPENDIX
	REFERENCES

