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Abstract

Systems of polynomial equations with ¢heients over a fieldk can be used to concisely model
combinatorial problems. In this way, a combinatorial pesblis feasible (e.g., a graph is 3-
colorable, hamiltonian, etc.) if and only if a related systef polynomial equations has a solu-
tion over the algebraic closure of the fiékd In this paper, we investigate an algorithm aimed at
proving combinatorial infeasibility based on the obseresddegree of Hilbert's Nullstellensatz
certificates for polynomial systems arising in combinatgrand based on fast large-scale linear-
algebra computations ové&. We also describe several mathematical ideas for optigpiaur
algorithm, such as using alternative forms of the Nullstedatz for computation, adding care-
fully constructed polynomials to our system, branching arploiting symmetry. We report on
experiments based on the problem of proving the non-3-ablity of graphs. We successfully
solved graph instances with almost two thousand nodes asdfdéhousands of edges.

Key words: combinatorics, systems of polynomials, feasibility, Norear Optimization,
Graph 3-coloring

1. Introduction

It is well known that systems of polynomial equations oveetdftan yield compact models
of difficult combinatorial problems. For example, it was first nobgdD. Bayer that the 3-
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colorability of graphs can be modeled via a system of polyiabeguations [2]. More generally,
one can easily prove the following lemma:

Lemma 1.1. A graph G is k-colorable if and only if the system of m equations in n variables
X —1=0,Yi € V(G), and 3} } xk-1-! x'j = 0,V{i, j} € E(G) has a complex solution. Moreover,
the number of solutions equals the number of distinct kroajs multiplied by k

Although such polynomial system encodings have been usprbt@ combinatorial results
(see [1, 10] and the references therein), they have not bédalywised for computation. In
the concluding remarks of [1], N. Alon asks it possible to modify the algebraic proofs given
here so that they yieldffcient ways of solving the corresponding algorithmic prob® It
seems likely that such algorithms do exi€dhe of the significant contributions of this article is
to transfer algebraic encodings to practical computatidkie investigate here the use of poly-
nomial systems toféectively decide whether a graph, or other combinatoriaicstire, has a
property captured by the polynomial system and its asstiaieal. We call this theombina-
torial feasibility problem We are particularly interested in whether this can be agdistred in
practice for large combinatorial structures such as grapttsmany nodes.

Certainly, using standard tools in computational algelwehsas Grobner bases, one can
answer the combinatorial feasibility problem by simplyéog the system of polynomials. Nev-
ertheless, it has been shown by experiments that currextin@r'bases implementations often
cannot directly solve polynomial systems with hundredsalf/pomials. This paper proposes
another approach that relies instead on the nice low dedrénee dilbert’s Nullstellensatz for
combinatorial polynomial systems and on large-scale tiadgebra computation.

For a hard combinatorial problem (e.g., 3-colorability e&jghs), we associate a system
of polynomial equations = {f1(X) =0,..., fs(X) = 0} such that the systerd has a solution
if and only if the combinatorial problem has a feasible dolut The Hilbert Nullstellensatz
(see e.g.,[7]) states that the system of polynomial eqositivith codficients over a field has
no solution over its algebraically-closui€ if and only if there exist polynomialg,...,B8s €
K[Xa, ..., Xn] such that 1= Y g; fi. Thus, if the polynomial syster has no solution, then there
exists acertificatethat J has no solution, and thus a proof that the combinatorial lprolis
infeasible.

The key idea that we explore in this article is to use the Nellsnsatz to generate a finite
sequence of linear algebra systems, of increasing sizeshwhill eventually becoméeasible
if and only if the combinatorial problem imfeasible Roughly speaking, given a system of
polynomial equations, we fix a tentative degrk#or the certificate meaning degjf;) = d for
everyi = 1,...,s. Then, we can decide whether there is a Nullstellensati#icaté of degreea
by solving a system dfnear equations over the field whose variables are in bijection with the
codficients of the monomials of the polynomi@s . .., Bs. If this linear system has a solution,
we have found a certificate; otherwise, we try a higher defpethe certificate. This process
is guaranteed to terminate because, for a Nullstellengat#icate to exist, the degrees of the
certificate cannot be more than known bounds (see e.g., [@Djederences therein). We explain
the details of the algorithm, which we c&lLILA , in Section 2.

Our method can be seen as a general-field variation of rexeiting work by Lasserre [21],
Laurent [22], Parrilo [31] and many others, who studied th@bfem of minimizing a general
polynomial functionf (x) over a real algebraic variety with finitely many points. k@t proved
that when the variety consists of the solutions of a zeroedisional ideal, one can set up the
optimization problem miff(x) : x € variety()} as a finite sequence of semidefinite programs
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terminating with the optimal solution (see [22]). In our easve only desire to decide com-
binatorial feasibility (e.g., is this graph 3-colorablethus there are two key observations that
speed up practical calculations considerably: (1) whetirpavith feasibility, instead of op-
timization, linear algebra replaces semidefinite programynand (2) there are many ways of
controlling the size of the sequence of linear-algebraesyst We discuss details of a variety of
mathematical ideas for controlling the size of the sequém&ection 3. These ideas include the
following: computing over finite fields instead of over thale designing carefully-constructed
polynomials that can actually decrease the length of theesazg in some cases, exploring alter-
native forms of Hilbert’s Nullstellensatz more suitable émmputation in a particular instance,
branching to create polynomial subsystems with smalleuseces of linear-algebra systems,
and exploiting symmetries in the linear system. These idemsew developments or extensions
of the ideas presented in our previous paper [11].

Our algorithm has very good practical performance and nigalestability. Although known
theoretical bounds for degrees of the Nullstellensat#fments are doubly exponential in the
size of the polynomial system (and indeed there exist pagfichl examples that attain such dou-
bly exponential bounds and makiellLA useless in general), we will see that the Nullstellensatz
degrees found in combinatorial settings are significandiitds. Our experiments demonstrate
that very low degrees flice for systems of polynomials coming from graph theory, eeen
very large graphs. We have implemented an exact-arithrirediar system solver optimized for
these Nullstellensatz-based systems. We performed mameriments usingNulLA | focusing
on the problem of deciding graph 3-colorability (note néveless that the method presented here
is applicable to any combinatorial problem for which a pagmal system encoding is known).
We conclude with a report on these experiments in Section 4.

2. Nullstellensatz Linear Algebra (NulLA) Algorithm

We start by recalling Hilbert's Nullstellensatz in the titiwhal statement found in most text-
books (for a proof see e.g., [7]): A system of polynomial dfpres f1(xX) = 0,..., fs(X) = 0,
wheref; € K[x, ..., X,] andK is an algebraically closed field, has no solutiofKihif and only
if there exist polynomialss, ..., 8s € K[xy, ..., X] such that 1=} g f;.

In this paper, we will use a slightly stronger form that is fucore useful for our purposes
and can be easily derived from the classical statement abiivis stronger form allows us to
perform calculations over any field even ifK is not algebraically closed.

Lemma 2.1. Let K be a field andK its algebraic closure. Givenyffa, ..., fs € K[Xg,..., %],

the system of polynomial equation$x) = 0O, ..., fs(X) = 0, with f € K[xy, ..., X,] and has no
—n

solution inK ' if and only if there exist polynomiahs, . . .,8s € K[X, ..., X;] such that

1= B(Yfi() . *)

In other words, there exists a Nullstellensatz certificate I 3 fi wheres; € K[x4, .. ., Xn]
if and only if there exists a Nullstellensatz certificate T 8/ fi wheres! € K[xy, ..., Xi].

Definition 2.2. The polynomial identityt = }, g; f; is called aNullstellensatz certificatevhich
has degree d imax{deg@; f;)} = d.

Many authors observed that there is a fundamental conmebgbwveen the solvability of
Equation ) and the solvability of linear systems. For example, in [33¢ authors writé...one
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may decide ifx) has a solution by linear algebra, sin¢e) is a finite dimensional linear system
with theB;’s as unknownsMe put this observation into practice with our NullstellatzsLinear
Algebra (NulLA) algorithm.NulLA accepts as input a system of polynomial equations and out-
puts either ayes answerif the system of polynomial equations has a solution, apanswey
along with a Nullstellensatz infeasibility certificatetlife system has no solution. Before stating
the algorithm in pseudocode, we clarify the connectionrtedr algebra. Suppose the input poly-
nomial system is infeasible ové&t, and suppose further that an oracle has told us the cenrtificat
has degred but that we do not know the actual dheients of the polynomials;. Thus, we have
the polynomial identity 1= 3 g; f;. If we expand the identity into monomials, the @b&ents

of a monomial are linear expressions in the fiioeents of thes;. Since two polynomials over

a field are identical precisely when the @vgents of corresponding monomials are identical,
from the 1=} B f;, we get a system of linear equations whose variables areo#figoients of
thes;. Here is an example:

Example 2.3. Consider the polynomial systenﬁ —1=0,X1+X%X=0,X1+%X3=0,%+Xx3=0.
This system has no solution, and a Nullstellensatz cettiffichdegree two.

1= (Co) (X4 — 1)+ (C1Xq + CoXp + CaXg + Ca) (X1 + X2)
—— ~———

——
ﬁl fl ,82 fz
+ (C5X1 + CeX2 + C7X3 + Cg) (X1 + X3) + (CoXy + CroX2 + C11X3 + C12) (X2 + X3) .
— —
B3 f3 Ba fa

Expanding the tentative Nullstellensatz certificate intmnemials and grouping like terms, we
arrive at the following polynomial equation:
1=—Co+(Cs+Cg)Xe+ (Ca+ Cr2)X2 + (Cs + C12)X3
+(Co+cC1 + c5)xi + (Cp + C2 + Cg + Cg)Xa X2 + (C3 + C5 + C7 + Cg) X1 X3
2 2
+ (Cz + C]_o)X2 + (Cg + Cg + C10 + Cll)X2X3 + (C7 + Cll)X3~

¢ From this, we extract a systemlimfear equations. Since a Nullstellensatz certificate is identi-
cally one, all monomials except the constant term must balégwero; namely:

—Co =1, C4+Cg=0, Cs+C12=0, C8+C12=O,
Co+C+C=0, C+C+C+C=0 C3+C5+Cr+C=0,
Cg+C10=O, C3+Ce+Clo+Cll=O, C7+C11=0.

By solving the system of linear equations, we reconstrueNhlistellensatz certificate from the
solution:

1 1 1
1= —(xi -1+ §X1(X1 + %) + §X1(X1 + X3) — §X1(X2 + X3).

In general, one does not know the degree of the Nullsteltercsatificate in advance. What
one can do is to start with a tentative degree, say start aedegaxdeg(fi)}, produce the cor-
responding linear system, and solve it. If the system hasuti@o, then we have found a Null-
stellensatz certificate demonstrating that the originaiifrpolynomials do not have a common
root. Otherwise, we increment the degree until we can betbatehere will not be a Nullstel-
lensatz certificate at all, and thus we can conclude themsyst@olynomials has a solution. The
number of iterations of the above steps determines the mgrtithe of NulLA . For this, there
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are well-known upper bounds on the degree ofghia the Nullstellensatz certificate (see Kollar
[20] and references therein), and thus on the degree of thifice. These upper bounds for
the degrees of thg in the Hilbert Nullstellensatz certificates fgeneralsystems of polynomials
are doubly-exponential in the number of input polynomiald their degree.

Unfortunately, Kollar's bounds [20] are known to be shaop $ome specially-constructed
systems. Although this immediately says thatlLA is not practical for arbitrary polynomial
systems, this is far from the end for computing widbmbinatorialpolynomial systems. A
fundamental result by D. Lazard [23] shows thdih@ar bound exists for a large class of ideals
(ideals that can be homogenized with the addition of one aemariables such that there are no
common zeros at infinity). The ideals investigated in thiggrdie within this interesting class.

Lemma 2.4 (Lazard [23]) Let fi,..., fx be homogeneous polynomials§fxo,. .., X,] that
generate an ideal |, let;cbe the degree ofi and assume that;d> d, > --- > dk > 1 and
k > n+ 1. Then the following conditions are equivalent:

1) The k projective hypersurfaces defined by. .f, fx have no point in common over the
algebraic closure oK (in particular, they have no point in common at infinity).

2) Theideal | contains a power of the maximal ideal=Mxo, X1, . . ., Xn); hamely, for some
power p, X € | for all x;.

3) MPclwithp=di+da+---+dp1 — N < (N+ 1) (MaXccnia{di} — 1) + 1.

4) The mapp : (B1,...,Bx) — 2. Bifi is surjective among all polynomials of degree p, when,
for all i, i is a homogeneous polynomial of degree ¢.

The proof of Lemma 2.4 relies on advanced techniques in caative and homological
algebra, and is presented in [23], pg. 169. As a consequédrneamuma 2.4, when given poly-
nomialsf; € K[xy,..., Xn], we can consider their homogenizatifinusing an extra variabhg
(e.g.,x> — x can be homogenized 18 — xx). If we are able to find a “projective” Nullstellensatz

of the form
X5 = Z,Bi fi,

then we can substitute) = 1 in the above equation and obtain the form of the Nullstsb¢n
that is more desirable for computation (e.g=1), 8/ f;). Furthermore, the degree gf is less
than or equal to the degree&f

We can summarize the Lazard lemma as follows (see also Bregthid]):

Corollary 2.5. Given polynomials4f..., fs€ K[xy,..., Xn] whereK is an algebraically-closed
field and d= maxdeg(f;)}, if f1,..., fs have no common zeros angd .f.., fs have no common
zeros at infinity, thed = Y° ; gi fi where

degBi) <n(d-1).

Therefore, the bound on Nullstellensatz described by coatbrial ideals (for example, see
Lemma 3.1) gives linear growth on the degree of the Nullstslatz certificates. This a consid-
erable improvement on the exponential bound predicted bkaKdout our second point is that,
in practice, polynomial systems for combinatorial quesdiare extremely specialized, and the
degree growth is ofteweryslow, and is much better than even Lazard’s bound — enougéab d
with very large graphs or other combinatorial structures.
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This opens several theoretical questions. It is naturakaaout lower bounds on the degree
of the Nullstellensatz certificates. Little is known, buteatly [10] presented degree bounds on
the problem of deciding whether a given grapihas an independent set of a given size. More
precisely, the minimum-degree Nullstellensatz certiéidat the non-existence of an independent
set of size greater thar{G) (the size of the largest independent seB)rhass; with degree equal
to «(G). Moreover, these certificates are very dense; specifjtaige certificates contain at least
one term per independent set@ In [5, 15], the authors studied polynomial systems coming
from logic (e.g., the pigeonhole principle) and showed degjrowth in these systems. Another
guestion is to provide tighter, more realistic upper bouiodgoncrete systems of polynomials.
It is a challenge to settle it for any concrete family of palymal systems.

We conclude by describinjulLA in pseudocode. This pseudocode is the base of our im-
plementation.

ALGORITHM: Nullstellensatd inearAlgebra (NulLA ) Algorithm
INPUT: A system of polynomial equatioris= {f;(x) =0, ..., fs(X) = 0}
OUTPUT:yes, if F has solution, elsgo along with a Nullstellensatz certificate of infeasibility.
d «— max{deg(f)}.
K « known upper bound on degree of NullstellensatzRdsee e.g., [4, 20, 23])
while d < K do
cerT « >> 1 Bifi (whereg; are degreed — deg(f;)) polynomials with unknowns for cdiécients).
Extract a system of linear equations fresrr with columns corresponding to unknowns,
and rows corresponding to monomials.
Solve the linear system.
if the linear system is consistethen
cerT « Y>, B fi (with unknowns ing; replaced with linear system solution values.)
print “The system of equatiorBs is infeasible.”
return ~o with cerr.
end if
ded+1.
end while
print “The system of equations is feasible.”
return YEs.

*%

3. Some ideas for optimizing NulLA

Since we are interested in practical computational problétrmakes sense to explore re-
finements and variations that malKelLA robust and much faster for concrete challenges. The
main computational component dfulLA is to construct and solve linear systems for finding
Nullstellensatz certificates of increasing degree. Thesat systems are typically very large for
reasonably-sized problems, even for certificate degretsasas six, which can produce linear
systems with millions of variables (see Section 4). Furtiae, the size of the linear system
increases dramatically with the degree of the certificatgalrticular, the number of variables in
the linear system to find a Nullstellensatz certificate ofrded is preciselyy;; (“*d') wheren is
the number of variables in the polynomial system dné d — deg(fi) is the degree gf;. Note
that(“*d) is the number of possible monomials of degdem less. Also, the number of non-zero

entries in the constraint matrix is prems@yM.(”*id') whereM; is number of monomials if.
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For this reason, in this section, we explore ideas for sglttie linear system mordfeiently
and robustly, for decreasing the size of the linear systam fgiven degree, and for decreasing
the degree of the Nullstellensatz certificate for infeasjimlynomial systems thus significantly
reducing the size of the largest linear system that we needlt@ to prove infeasibility. Note
that these approaches to reduce the degree of the Nulhstetle certificates do not decrease
the available upper bound on the degree of the Nullsteltercextificate required for proving
feasibility, but they work in particular instances.

The ideas we explain in this section can be applied to argipalynomial systems, but to
implement them, one has to look for the right structures agblynomials. In what follows
we illustrate this with the problem of deciding whether ttegtices of a graph permit a proper
3-coloring.

3.1. NulLA over Finite Fields

The first idea is that, for combinatorial problems, one caerrotarry out calculations over
finite fields instead of relying on unstable floating-poirita¢ations. The following encoding (a
variation of [2] over the complex numbers) allows us to cotepwverlF,, which is robust and
much faster in practice (also see [14]):

Lemma 3.1. The graph G is3-colorable if and only if the zero-dimensional system ofediquns
x'+1=0,Yi € V(G), and ¥ +xx; +X; = 0, V{i, j} € E(G), has a solution ovef, the algebraic
closure offF,.

Before we prove Lemma 3.1, we introduce a convenient notati®t @ be an algebraic
element oveF, such that? + @ + 1 = 0. Thus, aIthoung? + 1 has only one root ovéf», since
X+ 1= (x + 1)+ x + 1), the polynomiak® + 1 has three roots ové, which are 1« and
a+1.

Proof. If the graphG is 3-colorable, simply map the three colors tavlanda + 1. Clearly, the
vertex polynomial equations’+ 1 = 0 are satisfied. Furthermore, given an eigg, X +X; # 0
since variable assignments correspond to a proper 3-nglarid adjacent vertices are assigned
different roots. This implies thaf + X} = (x + x;)O¢ + XX + X§) = 1+ 1 = 0. Therefore,

X2 + X Xj + sz = 0 and the edge polynomial equations are satisfied.

Conversely, suppose that there exists a solution to theersystf polynomial equations.
Clearly, every vertex is assigned eitherlor o + 1. We will show that adjacent vertices are
assigned dferent values. Our proof is by contradiction: Assume that &gfacent vertices j
are assigned the same vaftieThen, 0= X7 + xixj + X§ = % + B> + g% = 38° # 0. Therefore,
adjacent vertices are assigneffelient roots, and a solution to the system corresponds lgirect
to a proper 3-coloring. O

We remark that this result can be extendedoolorability anqu, whengq is relatively
prime tok. Lemma 3.1 allows us to certify graph non-3-colorabilityyweapidly overF, instead
of working over its algebraic closure. Namely,

Corollary 3.2. A graph G isnon3-colorable if and only if there exists a Nullstellensaé&z-c
tificate 1l = Y B fi whereg; € Fy[Xy, ..., X,] where the polynomials € Fy[xy,..., X,] are as
defined in Lemma 3.1.



This corollary enables us to compute offer which is extremely fast in practice (see Section
4).

Finally, the degree of Nullstellensatz certificates nemgsi prove infeasibility can indeed
be lower overF, than over the rationals. For example, over the rationalsryeedd-wheel
has a minimum non-3-colorability certificate of degree 4i®][ However, oveif,, every odd-
wheel has a Nullstellensatz certificate of degree threerefbie, not only are the mathematical
computations moreficient overlf, as compared to the rationals, but the algebraic propetties o
the certificates themselves are sometimes more favorabtefioputation as well.

3.2. Reducing the Nullstellensatz degree by appendingnpotial equations

We have discovered that lappendingcertain valid but redundant polynomial equations to
the system of polynomial equations described in Lemma 3elhave been able wecreasehe
degree of the Nullstellensatz certificate necessary toepimfeasibility. A valid but redundant
polynomial equation is any polynomial equatigfx) = O that is true for all the zeros of the
polynomial systemfy(x) = 0,..., fs(X) = 0, i.e.,g € VI, the radical ideal of, wherel is the
ideal generated b¥i, ..., fs. We refer to a redundant polynomial equation appended tcteisy
of polynomial equations, with the goal of reducing the degrea Nullstellensatz certificate, as
adegree-cutterNote that appending an equation could never increase ttessary degree of a
Nullstellensatz certificate.

For example, for 3-coloring, consider a triangle describpgthe verticesx, y, z}. Whenever
atriangle appears as a subgraphin a graph, the vertices wiahgle must be coloredftirently.
We capture that additional requirement with the equation

X+y +2=0, (1)

which is satisfied if and only ik # y # z# X sincex, y andz are third roots of unity. It is worth
remarking that the equation+y + z = 0 also impliesx # y # z # X. We use the equation
x? +y? + Z = 0 instead, which is homogeneous of degree two, because teeeaggiations
from Lemma 3.1 are also homogeneous of degree two, and tlus pheeserve the balance of
monomials in the final certificate.

Consider the Koester graph [19] from Figure 1, a graph witlvé@ices and 80 edges. This
graph has chromatic number four, and a corresponding naoleBability certificate of degree
six. The size (after preprocessing) of the associatedrisyesiem required bMulLA to produce
this certificate was,&24 468x 10,995 831 and required 5 hours and 17 minutes of computation
time.

Figure 1: Koester graph

When we inspect the Koester graph in Figure 1, we can seehisagtaph contains 25 tri-
angles. When we append these additional 25 equations tys$tens of polynomial equations
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describing this graph, the degree of the Nullstellensattificate drops from six to three, and
now, with the addition of the 25 triangle equatioNslILA only needs to solve a 826x 4, 346
linear system to produce a degree one certificate, whicts tdi&seconds of computation time.
Note that even though we haappendedquations to the system of polynomial equations, be-
cause the degree of the overall certificate is drasticaliiyiced the size of the resulting linear
system is still much, much smaller.

These degree-cutter equations for 3-colorability (1) carektended tdk-colorability. A
(k — 1)-cligue implies that all nodes in the clique have fietent color. Then, given thé ¢ 1)-
clique with the vertices; throughx,1, the equation™ + x§™ + ... + X1 = 0 is valid. We
conjecture that, when added to the system, these equatsmdecrease the minimal degree of
the Nullstellensatz certificate if one exists.

The degree-cutter equations for 3-colorability (1) arealafays sificient to reduce the de-
gree of the Nullstellensatz. Consider the graph from Fi@urdsing only the polynomials from
Lemma 3.1, the graph in Figure 2 has a degree six certificatee gfraph contains three tri-
angles:{1,2,6},{2,5,6} and{2,6, 7}. In this case, after appending the degree-cutter equations
for 3-colorability (1) the degree of the minimal Nullsteigatz certificate for this graph is still
six. However, for this graph, there are other types of equatthat we can append to lower the
degree, which we discuss below.

Figure 2: A graph with a degree four certificate.

The polynomial equatiog(x) = 0 that we append to the system of equations need not be-
long to the radicalVl as above, but instead, we only require the weaker conditianfi(x) =
0,..., fs(x) = O is feasible if and only iff;(X) = 0, ..., fs(X) = 0, g(x) = O is feasible.

For example, if a graph haskacoloring, then it still has &-coloring after fixing the color
of one of the vertices, which means that the polynomial sgystecoding graph coloring has a
solution if and only if it has a solution after appending tlopgationg(x) = i — @ = 0 for some
vertexi wherea is akth root of unity, say 1. Note that appending the polynom{a) = x,—a =0
is the same as fixing the value wfto « in the polynomial system thereby eliminatimgfrom
the system, which is a mordfient approach in practice. We found that even fixing just one
variable can lead to a lower certificate degree for nongtigraphs.

For example, consider the graph in Figure 2, which has a degjrecertificate of non-3-
colorability. This graph has a degree four certificate dfiéng x; to 1, that is, after appending
the equationg — 1 = 0 to the system of polynomial equations encoding graph 8rability.

Moreover, for graph coloring, we can fix two variables copa@sding to two adjacent nodes
to two different roots of unity withoutféecting the feasibility of the polynomial system, and
furthermore, we can fix variables corresponding to kaclique tok different roots of unity.
Fixing variables to roots of unity other than 1 complicates polynomial system since then the
codficient field must be extended to include the roots of unity. cBjpally, if we wish to fix
variables takth roots of unity other than one, then we need to extend thefidb the splitting
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field of xg — 1 overK, which is the smallest field containiri§ and all thekth roots of unity.
Note that, for 3-coloring, the splitting field o@ — 1 overFF; is isomorphic taF,.. Performing
the linear algebra operations over the field extension isesidbut if fixing more variables leads
to a lower Nullstellensatz degree, then it may be computatip worthwhile doing so.

For instance, consider again the graph in Figure 2, whichaldegree four certificate after
fixing x;. There is a degree three certificate if instead we fix the libasac,, X5 andxg to three
different roots of unity since they correspond to a triangle éngtaph.

The dfficulty with the degree-cutter approach is in finding candidiggree-cutters and in
determining how many of the candidate degree-cutters terapo the system. There is an ob-
vious trade-& here between the time spent finding degree-cutters togettiethe time penalty
incurred related to the increased size of the linear sysbatnust be solved versus the benefit
of reducing the degree of the Nullstellensatz certificate.

3.3. Branching

Branching is another way of appending polynomial equattonseduce the degree of the
Nullstellensatz certificate required to prove infeasiili The well-known main fact behind
branching is the following: give;(x), 92(x) € K[x, ..., X;] such thatg;(x)g2(x) € | where
| is the ideal generated biy, ..., fx, the polynomial systenfy () = 0, ..., fk(X) = 0 is infeasible
if and only if both the supersystefa(x) = 0, ..., fu(X) = 0, g1(X) = 0 is infeasible and the super-
systemfi(X) = 0, ..., fu(X) = 0,92(X) = 0 is infeasible. The obvious choice fgr(x) andgx(x)
is where one of the polynomialsfactors asfi(X) = g1(X)g2(X). Thus, to check for infeasibility
of a polynomial system, we can check for infeasibility of tmore constrained polynomial su-
persystems in the hope that the more constrained supersykta/e lower minimal degrees than
the original system such that it is faster to prove infedigjbdf the two supersystems than the
original system.

This approach of creating two more constrained polynonyistiesns from one can be applied
recursively leading to the following general branchingestle. First, we try to find a Nullstellen-
satz certificate of infeasibility of a particular degreelwé priginal system, and then, if this fails,
instead of increasing the degree and trying again, we brandhattempt to find a certificate of
the same degree for the two supersystems. If we fail to findtificate for one or both of the
supersystems, then again, we branch on the failed supensystd try again to find a certificate
of the same degree, and so on. If all generated supersysterirgeasible, the original system
is infeasible. If, however, we reach a supersystem for whiettan no longer branch on and we
cannot prove infeasibility, then we must start the brangipirocess again with a higher degree.
We must keep increasing the degree until infeasibility amghor until the degree is high enough
to prove feasibility.

We applied this branching approach to the case of 3-colmfraggraphG = (V, E) where
we tried to find a degree three certificate of infeasibility floe polynomial system encoding
3-coloring overf,. Here, to branch on a supersystem, we choose a vavigatel branch on the
two separate cases fgr = X, + 1 andg, = xi2 + X + 1 where in the first casg is fixed to 1 and in
the second case is constrained to be a root of unity other than 1. The graptvbélas a degree
six certificate of non-3-colorability, which takes 6.33 seds to compute on a machine with
dual Opteron nodes, 2GHz clock speed, and 12 GB of RAM. If wetlne branching algorithm
above, then we can prove infeasibility of supersystems@i 8econds by proving infeasibility
of 9 supersystems via degree three certificates. See Sdctwmnmore results for the branching
algorithm.
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Figure 3: An example of a Liu-Zhang 4-CGU.

Interestingly, the above branching algorithm for 3-cobility has the important property that
if we reach a supersystem where we have branched on eveapleabiut we cannot find a degree
three certificate, then the graph is 3-colorable — we haveepréeasibility and we do not need
to increase the degree and try again. If we have branchedeyy e&riable, then every variable
is either is fixed to be 1 or not 1, and this supersystem is @ilié&if and only if two adjacent
vertices have been fixed to be 1 or the subgraph induced byettieas that are fixed to be not 1
is not 2-colorable, and in either of these two cases, thastsex degree three certificate attesting
infeasibility as shown below: Firstly, if two adjacent vedsi, j € V are fixed to 1, then the
following is a degree two certificate of infeasibility:

(L+ %+ X)(% + 1)+ (¢ + %X + ) + (x))(xj + 1) = L.

Secondly, a graph is not 2-colorable if and only if there &x#n odd length cycle in the graph.
Now, if C = (v1, Vo, ..., Vs) € V is an odd length cycle among the vertices fixed to not 1, then th
following is a degree three certificate of infeasibility:

s-1

D00+ X + 1O + % + 1)+ ()0, + Xy + 1)+ ()08 + X Xy +8 )] =1
r=1

Branching can also be applied for arbitrarily many supdesys: givergy, ..., gs € K[Xq, ..., Xn]
such thag; - - - gs € | wherel is the ideal generated by, ..., f, the polynomial systenfy (x) =
0,..., f(X) = 0 is infeasible if and only if each supersysténix) = 0, ..., fk(X) = 0,gi(xX) = O is
infeasible foralli = 1, ..., s.

3.4. Alternative Nullstellensatze

There is another approach we have found to decrease the atidégree of the Nullstellen-
satz certificate. We now introduce the idea ofadternative Nullstellensatzvhich follows from
the Hilbert Nullstellensatz.

Corollary 3.3 (Alternative Nullstellensatz)A system of polynomial equationgX) = O, ...,
fs(X) = Owhere f € K[xg,...,X%y] andK is an algebraically closed field has no solutionki?
if and only if there exist polynomial3, . ..,Bs € K[X1,..., X,] and ge K[Xq, ..., X5] such that
g = > Bifi and the systemyfx) = 0,.. ., fs(X) = 0 and g x) = 0 has no solution.
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The Hilbert Nullstellensatz is a special case of this aléve Nullstellensatz wherg(x) =
1. We can easily adapt tigulLA algorithm to use this alternative Nullstellensatz givea th
polynomialg. Here, the polynomiad determines the constant terms of the linear system that
we need to solve to find a certificate of infeasibility. Theadeere is that the minimal degree
of the alternative Nullstellensatz certificate is somesiramaller than the minimal degree of the
ordinary Nullstellensatz certificate.

In the case of 3-colorability (and also more generklbolorability), we may choosgas any
non-trivial monomial sincg(x) = 0 implies thatg = 0 for some = 1, ..., n, which contradicts
thatx®— 1 = 0. For the graph in Figure 2, if we choogix) = x;XsXe, then the minimal degree of
the Nullstellensatz certificate drops to three (after agpendegree-cutter polynomial equations
to the system).

X1 XgXg = (X1 + X2)(3C + X1 Xo + X3) + (Xa + Xg + X12) O + Xy Xg + X2)
+ (X + Xa + X6) OF + XaXaz + X)) + (X + X7 + Xg) 06 + Xo X5 + X5)
+ (Xa + Xg) (03 + XoX7 + X2) + (X10 + X12) (X4 + XaX11 + X51)
+ (X0 + Xa + Xa0) O + XaXo +XG) + (Xo + X7 + Xg) G + XaXg + %)
+ (% + Xa0) (€ + X6X6 +X§) + (X + X10) (€ + X5Xo + X5)
+ (X2 + Xg + X12) (X + XgXg + X2) + (X1 + X7 + Xg) (& + XgXa2 + X2,)
+ (% + Xlo)(Xé + XgX7 + X5) + (Xg0 + X12)(X§ + XX + X3p)
+ (X5) (0B + XoX5 + X2) + (Xs + X7) (X2 + XeXa0 + X5p)
+ (Xa + X7) (XG0 + Xa0Xa1 + X51) + (Xa + X5) (06 + XoXa0 + Xio)
+ (X)) (G + XgXo + X3) + (X4 + X7) (3, + Xa1Xaz + Xo,) + (X5 + X7) (X5 + XoXg + X2)
+ (X + %0) (G + 3 + %§) +(%0) (G + X + 3¢) +(%6) (G + X +X5) .

degree-cutter degree-cutter degree-cutter

We noteg(x) = x1XgXg was not the only alternative Nullstellensatz certificatat the were
able to find:g(x) = X;x4Xg also produced a certificate. O

The apparent diiculty in using the alternative Nullstellensatz approacimishoosingg(x).
One solution to this problem is to try and find a Nullstellanszertificate for a set ofi(x) in-
cludingg(x) = 1. For example, for the graph in Figure 2, we tried to find aifieste of degree
three for the set of all possible monomials of degree thréeceSchoosing dierentg(x) only
means changing the constant terms of the linear systévulinA (the other cofficients remain
the same), solving for a set gfx) can be accomplished verffieiently.

3.5. Deleting equations and exploiting linear dependescie

Here are two more ideas on how to reduce the size of the lityséera to find a Nullstellen-
satz certificate of infeasibility.

First, one way to reduce the size of the linear system is tmvenall polynomial equations
fi(X) = O for which there existly, ..., hi_1, hiy1, ..., hx € K[Xy, ..., %3] such thatf; = 3 ;. h; f; and
degfjf;) < deg(fi) forall j #i. If the above condition holds fdf, then the polynomial is redun-
dant sincef; is in the ideal generated by, ..., fi_1, fi.1, ..., fk. Moreover, removind; can never
increase the degree of a certificate since replaéinvgth 3 ;.; h;f; in a given certificate gives
another certificate of the same degree but withiputNote that the degree-cutting polynomials
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that we add in Section 3.2 are chosen specifically so thatdbeot satisfy the above condition,
and thus, those polynomials, although redundant, maystllice the degree.

For the case of k-coloring for a connected gr&ph= (V, E), this means we can remove
all but one of the vertex polynomiab¢ — 1 using the above condition as follows: LBt=
(V1, Va2, ..., Vg) C V be a path from verteixto j in G. Then,

s-1

(le( - 1) = (Xlk - 1) + Z(er - XVr+1)(X\I§r_1 + Xbr_ZXVHl +...+ XVr :j + X\Ijr_i-)

r=1

So, we can remove all vertex equatioc‘}& 1 wherej # 1.

To present the second idea it is best to consider the masocéaged to the linear system of
the Nullstellensatz. Consider the input polynomial system {fi, ..., fs}. As we observed in
Section 2, for a given fixed positive integiserving as a tentative degree for the Nullstellensatz
certificate, the Nullstellensatz cieients come from the solution of a system of linear equations
We now take a closer look at the matrix equatidaqy = bgg defining the system of linear
equations. First of all, the matriMgg4 has one row per monomiat* of degree less than or
equal tod on then variables and one column per polynomial of the foxhf, i.e., the product
of a monomialx’ of degree less than or equal do- deg(f;) and a polynomiaf, € F. Thus,
Meg = (Mye w1,) WhereMy. o1, €quals the cdéicient of the monomiak® in the polynomiabe f;.
The variabley has one entry for every polynomial of the foxhf; denotedy,ss, and the vector
beq has one entry for every monomigl of degree less than or equaldavhere Pgg)x- = O if
a #0and prg)1 = 1.

Example 3.4. Consider the complete graph. The shape of a degree-three Hilbert Nullstellen-
satz certificate ovdf, for non-3-colorability is as follows:

1=(co)0G +1)

+ (ChoXy + C3,Xo + CoXg + CioXg) O€ + Xg Xz + X3)

+ (ClaXe + CigXo + Co3X3 + CiaXa) (3 + X1 Xz + X3)

+ (ClaXa + Coy %o + C 4% + C1Xa) OF + Xg Xq + X2)

+(Caa%a + CogXo + CoaXa + CopXa) 06 + XoXa + X3)

+(CoaX1 + CogXa + C34Xa + C3Xa) (G + XoXa + XG)

+ (Cé4xl + C§4X2 + C§4X3 + C§4)(4)(X§ + X3Xg + Xzzl)
Note that we have preprocessed the certificate by removingettiundant polynomialg® + 1
wherei # 1 and removing some variables that we know a priori can besadrp, which results
in a matrix with less columns. As we explained in Section & tlertificate gives a linear system
of equations in the variableg andc}‘j (note thatk is a superscript and not an exponent). This

linear system can be captured as the matrix equafippc = bg; where the matriXMg; is as
follows.
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colct, 2, 3,3 et 2.3, At 2, 3, .2, c3.cAlct 2, c3,ch Ik, c2,c3,ct

1j{1{0 0 0 0|0 O O OO O O O/|O O O 0|0 O O 0|0 O O O
Xill00010001000000000000000
Xix20110001000100000000000000
X%)QOOO1010100010000000000000
X1X40000100011001000000000000
X1X§0110000000000100010000000
X1%x3||0/|0 O 1 0|0 1 0 0|0 O O 0|1 O O OO O O OO O O O
X1X2%4/|0JO0 O O 1/0 O O OO 1 O 0O|]O O O 0|2 O O OlO OO O
X1X%0000010100000100000001000
X1X3X4/|0/O O O 0|0 O O 1|0 O 1 0|0 O O O/|O O O 0|2 0O O O
X1X20000000001001000010001000
éOOlOOOOOOOOOOO10001000000
X§X30001000000000011000100000
X5%(|0/0 0 0 110 O O 0|0 O O 0/O O O 1|0 1 O 1|0 O O O
X2X§0000001000000011000000100
XoX3X4/|O/O O O 0|0 O O OO O O OO O O 1|0 0O 1 0|01 0 O
xx2[l0j0 0 0 0/O 0 O O/O 1 O O/O O O O/0O 1 0 1{0 1 0 O
éOOOOOOO100000001000000010
X§X40000000010000000100000011
)(3X20000000000010000000100011
)éOOOOOOOOOOOO1000000010001

There are often many columns in the constraint matrix of thear system that are linear
combinations of other columns, and if we could avoid creptirese columns in the first place,
then solving the linear system would be mor&agent. Recall that each column of the ma-
trix corresponds to the polynomiat f; for some monomiak® and some polynomial; where
deg® f;) < d. The columnx®f; is thus a linear combination of the other columns of the matri
if there existshy, ..., hx € K[x, ..., X)] such thatx*fi = 3; h;f; where dedf;f;) < d and the
monomialx®* does not appear in the polynomigl

There is a simple way of finding columns that are linear comtixms of other columns in

many cases: Letx* be a non-zero term iy where degf®) = deg(f;). Then, for everyx f;
(i > 1) wherex?|x” and deg(” f;) < d, we havex’ f; = hy f; + h;jf; whereh; = X — x*~*f;/cand
hi = x*~*f;/c. Note thatx” does not appear ih, degp;fi) < degi” fi) < d and dedfj fi) <
degX’ fi) < d. Thus, X’ fi corresponds to a column in the matrix that is a linear contlinaf
other columns and can therefore be eliminated.

Hence, a general approach to avoid generating many coluftims matrix is thus as follows.
Select a monomiax” in f; where deg{*) = deg(f;). Then, from above, we can remove all
monomials fronp; (i > 1) that are divisible bx®. Repeating this, for every= 1, ..., k, we can
we can choose a monomigl in f; where degf®) = deg(fi), and we can remove all monomials
fromg; (j > i) that are divisible byx®; thus eliminating potentially many rows from the consttain
matrix. Note that we must be careful to avoid circular degemiks, which is why we only
eliminate monomials frong; wherej > i.

3.6. NulLA with symmetries

Certainly the matrixMgq we presented above is rather large already for small systéms
polynomials. The main point of this section is to demonsttaw to reduce the size of the
matrix by using a group action on the variables, e.g., usymynsetries or automorphisms in a
graph. Suppose we have a finite permutation g@w@geting on the variables,, .. ., X,. Clearly
G induces an action on the set of monomials with variabless, ..., X, of degreet. We will
assume that the sét of polynomials is invariant under the action@f i.e., g(f;) € F for each
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fi € F. Denote byx’, the monomiabl'xy...xr, a monomial of degreé; + 6 + -+ + dn.
Denote byOrb(x®), Orb(x’ f;) the orbit unde/G of monomialx® and, respectively, the orbit of
the polynomial obtained as the product of the monondfiand the polynomiafi e F.

We now introduce a new matrix equatidfi-qcy = brgc. The rows of the matritMgqc
are indexed by the orbits of monomialyrb(x*) wherex®* is a monomial of degree less than
or equal tod, and the columns oMgq4c are indexed by the orbits of polynomiaBrb(x® f;)
where fi € F and the degree of the monomidl less than or equal td — deg(f;). Then, let
Med. = (Morbxe),orme f)) Where

Morb(x),orbpe f)) = Z Mye o f; -
% f,€0mb(x’ )

Note thatM,. ysf, = Mgy goet) fOr all g € G meaning that the cdiécient of the monomiak®
in the polynomialx’f; is the same as the cffieient of the monomiag(x®) in the polynomial
g(x°f;). So,¥xd € Orb(x?),

MX",nyJ‘ = Z MXd,nyj»
XijEOI’b(Xﬁ fi) XijEOI’b(Xﬁ fi)

and thus Moypx), orbee ) IS Well-defined. We call the matrikr g the orbit matrix. The vari-
ableyhas one entry for every polynomial or@rb(x’ f;) denotedyoyx ). The vectobgq has
one entry for every monomial orb@rb(x*), and let brd)ormxe) = (Drdg)x = 0 if @ # 0 and
(bra)orby = (Bra)1 = 1. The main result in this section is that, under some assangtthe
system of linear equation®lrqcY = brgc has a solution if and only if the larger system of
linear equationd/ryy = b g has a solution.

Theorem 3.5. Let F = {fy,..., fs} € K[Xy,...,X], be a polynomial system, and [&tbe an
algebraically-closed field, and a finite group of permutasds c S,. Let Mgy, Mgq denote
the matrices defined above. Suppose that the polynomiaisystis closed under the action of
the group G permuting the indices of variables.x., x,. Suppose further that the order of the
group|G| and the characteristic of the field are relatively prime. The degree d Nullstellensatz
linear system of equationsgjy = br4 has a solution oveK if and only if the system of linear
equationsMeqc Y = brgg has a solution ovek.

Proof. To simplify notation, letM = Mgg, b = bpg, M = Mggg andb = bggg. First, we show
that if the linear systenMy = b has a solution, then there existsyanmetricsolutiony of the
linear systemMy = b meaning thay,s, is the same for alk’ f; in the same orbit, I.8%w f, = Yo,
for all X f; € Orb(x’ ;). The converse is also trivially true.

Since the rows and columns of the matkikare labeled by monomial¢' and polynomials
x° f; respectively, we can think of the gro@as acting on the matrik, permuting the entries
M, i.e., applyingg € G to M gives the permuted matrg(M) where

I(M)gix).guety = My sty

Moreover, sinCeMy x5t = Mgy g0 1) for all g € G, we must havg(M) = M, so the matrix\
is invariant under the action of the gro@ Also, since the entries of the variahlare labeled
by polynomials of the fornx®f;, we can also think of the group@ as acting on the vectoy,
permuting the entries of the vectgri.e., applyingg € G to y gives the permuted vectaoy)
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whereg(y)g 1) = Ywr,- Similarly, G acts on the vectds, and in particularg(b) = b. Next, we
show that ifMy = b, thenMg(y) = b for all g € G accordingly:
My=b = g(My) =g(b) = g(M)g(y)=b = Mg(y) = b,

for all g € G. Now, let
1
Y =15 QZG 9y)-
Note we need tha®| is relatively prime to the characteristic of the fidddso thatG| is invertible.

Then, L 1
My = = > Mg(y)= = > b=b,
IGI e IGI e
soy’ is a solution. Alsoy,, = & Xgec Yooe1)» SOV = Yoo, for all X' fj € Orb(x’f;). There-
fore,y’ is a symmetric solution as required.
Now, assume that there exists a solutiorMof = b. By the above argument, we can assume
that the solution is symmetric, i.gs1, = Yy 1, Whereg(x’f;) = X’ f; for someg € G. From this
symmetric solution oMy = b, we can find a solution dfly = b by setting

Yorbe f) = Yo, -
To show this, we check thals7()7)0rb(xa) = b_Orb(x“) for every monomiak®.

(MY)orbgeey = Z Morbgey,0rb(e i) Yorboe )
all Orb(x f;)

My 0 t; | Yorboe 1)

all Orb(x® f;) [mjeom(xﬁ f)

My £ Yoo,
all orb(x’ ;) \ x fj €0rb(x’ f;)

= Z MX”,X‘sfi YX‘Sfi = (My)X"
all x9 f;

Thus, MY)orbexe) = Borbge) SiNce My)x = by = Borppe)- B
Next, we establish the converse more easily. Recall thacohemns ofM are labeled by
orbits. If there is a solution faMy = b, then to recover a solution dly = b, we set

Yot = Yorb(x f)-

Note thaty is a symmetric solution. Using the same calculation as abeediave thatily),. =
(MY)orb(xey, and thusMy = b. 5

Example 3.6(Continuation of Example 3.4)Now consider the action of the symmetry group
G generated by the cycle (2,3,4) (a cyclic group of order thr@éde permutation of variables
permutes the monomials and yields a maiix; . We have now grouped together monomials
and terms within orbit blocks in the matrix below. The blogk#l be later replaced by a single
entry, shrinking the size of the matrix.
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4|C§3 Cgél C‘214|C%4 023 Cg4|cg4 024 c

1 A1
3455

37T
T3 ChIChsC

Z
12

[c,ClaCC

Z
14

1 3
13C1CE, G5 C

[leder, ©
1[1J0 0 0[]0 0 0[]0 0 0[]0 0 0[]0 0 0[O0 0 0[O0 0 0[0 0 0

x3[1/1 1 1{0 0 0/0 0 0|0 O 0[O0 O 0|0 O 0|0 0 0|0 0 O
X2x,/[0]1 0 0/1 0 0|0 O 1{0 1 0|0 O O/O O 0/0O O O[O O O

X2%||0{0 1 0|0 1 0|1 O 0|0 O 1|0 O O/O O O[O O O[O O O

X¢x,/(0/0 0 1|0 0 1|0 1 0|1 O O[O0 O O/0O O 0|0 O 0|0 O O

x;xal[0[1 0 0[1 O 0|0 O 0[O0 O O[1 O 1|0 O O[O O 0|0 O O

x.x4|0{0 1 0|0 1 0|0 O 0|0 O O/1 1 0O/0O O O[O O O[O O O

xX4|0/0 0 1|0 0 1|0 0 0|0 O O[O0 1 1/0 O 0|0 O 0|0 O O
X1%%3[|0{0 O 0|0 O 0|12 O 0O/0O 1 0|1 O 0|0 O O|O O O|0O O O

X1X2%||0|O O O0/O O 0|0 O 11 O 0|0 O 1|0 O 0|0 O O|O O O

X1X3X4(0|O O 0|0 O O|O 1 0|0 O 10 1 0|0 O O|O O 0|0 O O

xj[0j]0 0 0|1 0 0/0O O O|0O O O[O O O[1 0 O[1 0 0[O0 0 O

x3|0/0 0 0|0 1 0[O0 O 0[O O O|O O 0|0 1 0/0 1 0/0 0O

x3|0j]0 0 0|0 0 1/0 O 0|0 O O[O0 O 0|0 0 1/0 0 1|0 0 O
X2x,|[0{0 0 0[O0 O 0|1 O 0[O0 O O[O O O/1 O O[O 1 0|0 1 O

xx,(|0{0 0 0|0 O 0|0 1 0|0 O O/O O 0|0 1 0[O0 O 1|0 0 1

%x2[|0/0 0 0|0 0 0|0 O 1/{0 O 0/O O O/0O O 1|1 O O[1 O O

X.x,/[0]0 0 0[O0 O 0/0 O O[{1 O O[O0 O O[O0 O 1|1 0 0|0 O 1

%%4|0{0 0 0|0 O 0|0 O 0|0 1 O/O O O/1 O O|O 1 O|1 O O

X3X2||0|0 0 0|0 O 0|0 O 0|0 O 1|0 0 0O/0O 1 0|0 O 1|0 1 O
X2X3X%||0|O O OO O 0O|O O OO O OjO O O|O O OO O O|1 1 1

The action of the symmetry group generated by the cycle4py8elds an orbit matriMg q ¢

of about a third the size of the original one:
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If |G| is not relatively prime to the characteristic of the fiédd then it is still true that, if

b has a solution. Thus, even|@®| is not relatively prime to

b has a solution, theMy

My =
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the characteristic of the fielld, we can still prove that the polynomial systéirs infeasible by
finding a solution of the linear systeMy = h.

4. Experimental results

In this section, we present our experimental results, tiolyia comparison betwedulLA
and other graph coloring algorithms such as DSATBRnch-and-Cuf28], and the Alon-Tarsi
[1] and Grobner basis methods. Given a certificate ¥, g; fi for graph non-3-colorability, the
degree of thef; input polynomials is constant over all input graphs. Thhe, degree ffiecting
NulLA computation time is theogficient degreedefined to be mgreg;)}. In this way, almost
all of the graphs tested HOyulLA haddegree one or lessodficients in their certificates. This
algebraic property, coupled with our ability to compute o¥g, allowed us to prove the non-3-
colorability of graphs with almost two thousand nodes.

4.1. Methods

Our computations were performed on machines with dual ©pteodes, 2 GHz clock speed,
and 12 GB of RAM. No branching, degree-cutter equationster@tive Nullstellensatz certifi-
cates were used unless explicitly specified. We also elitatheedundant equations, and mono-
mials whose coicients could be set to zero.

4.2. Test cases
We tested the following graphs:

1. DIMACS: The graphs from the DIMACS Computational Challenge (19982 are de-
scribed in detail ahttp://mat.gsia.cmu.edu/COLORINGO2/. This set of graphs is
the standard benchmark for graph coloring algorithms. \Wteteevery DIMACS graph
whose associatedulLA matrix could be instantiated within 12 GB of RAM. For exam-
ple, we didnottestC4000.5. c1q, which has 4,000 vertices and 4,000,268 edges, yielding
a degree onBlulLA matrix of 758 million non-zero entries and 1 trillion colusin

2. Mycielski: The Mycielski graphs are known for the gap between theiueignd chro-
matic number. The Mycielski graph of ordkris a triangle-free graph with chromatic
numberk. The first few instances and the algorithm for their congiomccan be seen at
http://mathworld.wolfram.com/MycielskiGraph.html.

3. Kneser: The nodes of the Kneset;() graph are represented by thsubsets ofl,.. ., t}.
Two nodes are adjacent if and only if their subsets are disjoi

4. Random: We tested random graphs in 16 nodes with an edge probabili®7o This
probability was experimentally selected based on the bagnietween 3-colorable and
non-3-colorable graphs and is explained in detail in Sacti3.

5. Hard Instances: We also tested purportduhrd instances of 3-colorability The algo-
rithms behind the generation of these graphs, and the assd@xperimental results are
described in detail in Section 4.5.
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4.3. Results

In this section, we present our experimental results onfgrapth and without 4-cliques. We
also point out certain properties diulLA -constructed certificates, and conclude with tests on
random graphs. Surprisingly, all but four of the DIMACS, Nisleki and Kneser graphs tested
with NulLA have degree three certificates, which implies thaiglwedficients present in the
certificates havdegree one or less

The DIMACS graphs are primarily benchmarks for grdpbolorability, and thus contain
many graphs with large chromatic number. Such graphs oftetain 4-cliques. Although testing
for graph 3-colorability is well-known to be NP-Complethete exist manyfécient (and even
trivial), polynomial-time algorithms for finding 4-cliqsen a graph. Thus, we break our com-
putational investigations into two tables: Table 1 corgajraphavithout4-cliques, and Table 3
contains graphwith 4-cliques (considered “easy” instances of 3-coloraliliBor space consid-
erations, we only display representative results for gsayftvarying size for each family. The

CO

Graph vertices| edges rows cols dgfg sec

m7 (Mycielski 7) 95 755 64,281 71,726 1 .46
m9 (Mycielski 9) 383 7,271 | 2,477,931 | 2,784,794| 1 | 268.78
m10 (Mycielski 10)| 767 | 22,196| 15,270,943 17,024,333| 1 | 14835

(8, 3)-Kneser 56 280 15,737 15,681 1 .07
(10, 4)-Kneser 210 1,575 | 349,651 330,751 1 3.92
(12 5)-Kneser 792 8,316 | 7,030,585| 6,586,273 | 1 | 466.47
(13,5)-Kneser 1,287 | 36,036| 45,980,650 46,378,333] 1 | 216105
ash331GPIA.col 662 4,185 | 3,147,007 | 2,770,471 1 13.71
ash608GPIA.col | 1,216 | 7,844 | 10,904,642 9,538,305| 1 34.65
ash958GPIA.col | 1,916 | 12,506| 27,450,965 23,961,497 1 90.41
1-Insertions5.col 202 1,227 | 268,049 247,855 1 1.69
2-Insertionss.col 597 3,936 | 2,628,805| 2,349,793| 1 18.23
3-Insertionss.col 1,406 | 9,695 | 15,392,209 13,631,171 1 83.45

Table 1: Graphs without 4-cliques.

size of the linear systems involved ranged from7%/x 15, 681 up to 45980 650x 46, 378 333
(for the (8 3)-Kneser and (1%)-Kneser graphs, respectively).

However, not all of the DIMACS challenge graphs had degre= an#ficient certificates.
We were unable to produce certificates fiag88_1, mug88_25, mug100_1 or mug100_25, even
when using degree-cutters and searching for alternatillstillensatz certificates. When testing
for a degree six certificate, the smallest of these graplgsg_1 with 88 vertices and 146 edges)
yielded a linear system with 1,170,902,966 non-zero engal 390,340,149 columns. A matrix
of this size is not computationally tractable at this timeduagse it cannot be instantiated within
available memory. Branching was also not successful orethephs. The runs were terminated
after solving over 5 million subproblems. Section 4.5 inigeges graphs from this family in
greater detail.

Recall that the certificates returned BlLA consist of a single vertex polynomial (via
preprocessing), and edge polynomials describing eitteeiotiginal graph in its entirety, or a
non-3-colorable subgraph from the original graph. For exanif the graph contains a 4-clique
as a subgraph, often the Nullstellensatz certificate wily alisplay the edges contained in the
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4-clique. In this case, we say thdulLA isolatesa non-3-colorable subgraph from the original
graph. The size tlierence between these subgraphs and the input graphs isdodtenatic, as
shown in Table 2.

subgraph subgraph
Graph vertices | edges | vertices | edges
miles1500.col 128 10,396 6 10
hamming8-4.clg 256 20,864 19 33
m10 (Mycielski 10) 767 22,196 11 20
(12 5)-Kneser 792 8,316 53 102
dsjc1000.1.col 1,000 | 49,629 15 24
ash608GPIA.col 1,216 | 7,844 23 44
3-Insertions5.col 1,406 9,695 56 110
ash958GPIA.col 1,916 | 12,506 24 45

Table 2: Original graph vs. non-3-colorable subgraph.

An overall analysis of these computational experimentsvsttbatNulLA performs best on
sparse graphs. For example, thelnsertions_5 graph (with 1,406 nodes and 9,695 edges)
runs in 83 seconds, while tte&e-FullIns 5 graph (with 2,030 nodes and 33,751 edges) runs
in 15027 seconds. Another examplepi®at700-2 (with 700 nodes and 121,728 edges) and
will199GPIA (with 701 nodes and 7,065 edgesNulLA proved the non-3-colorability of
will199GPIA in 35 seconds, while hat700-2 took 30115 seconds.

Finally, as an informal measure of the distribution of degtieree certificates (certificates
with B codficients of degree one or less), we generated random grapl&raides with edge
probability .27. We selected this probability because it lies on the bagnbetween feasible
and infeasible instances. In other words, graphs with edgbability less than27 were al-
most always 3-colorable, and graphs with edge probabiligatgr than27 were almost always
non-3-colorable. However, we experimentally found thaedge probability of27 created a
distribution that was almost exactly half and half. Of 10@lf, 48 were infeasible. Of those
48 graphs, 40 had degree three certificates and 8 had degiertificates. Of these remaining
8 instances, we were able to find degree three certificates|fBrby appending degree-cutters
or by finding alternative Nullstellensatz certificates. Stantative measure indicates that non-3-
colorability certificates of degrees greater than three beasare.

4.4. NulLA vs. other algorithms

In this section, we compaidulLA to two other algebraic methods for detecting 3-colorabil-
ity: the Alon-Tarsi (AT) method, and the Grobner basis (®B3thod. We also briefly comment
on NulLA’s relation to well-known graph coloring heuristics such@SATUR and Branch-
and-Cut [28]. We implemented the Alon-Tarsi method i+C and used CoCaA Lib [6] to test
the Grobner basis method. For brevity, we do not record &mgrhal data” about the various
algorithmic runs, such as the size of the underlying lingatesns solved byWuILA or the
maximum number of monomials in the normal forms producedhgyAlon-Tarsi method. In
the tables below, all certificates have degree theeméficients of degree one or less) and a “—”
signifies that the method was terminated after 4 hours of caation.

The Grobner basis method refers to simply taking the Gebbasis of the ideal defined in
Lemma 3.1. By Hilbert’s Nullstellensatz, the Grobner basia constant if and only if the graph
is non-3-colorable.
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cogf

Graph vertices| edges rows cols deg sec
miles500.col 128 2,340 143,640 299,521 1 1.35
miles1000.col 128 6,432 284,042 823,297 1 7.52
miles1500.col 128 10,396 349,806 1,330,689 1 24.23
mulsol.i.5.col 197 3,925 606,959 773,226 1 6
zeroin.i.1.col 211 4,100 643,114 865,101 1 6
gueenl6l6.col 256 12,640 | 1,397,473 | 3,235,841 1 106
hamming8-4.clq 256 20,864 | 2,657,025 | 5,341,185 1 621.1
schoollnsh.col 352 14,612 | 4,051,202 | 5,143,425 | 1 210.74
MANN _a27.clq 378 70,551 | 9,073,144 | 26,668,279 1 9809.22
brock40Q4.clq 400 59,765 | 10,579,085| 23,906,001 1 4548.59

gen400p0.965.clq 400 71,820 | 10,735,248| 28,728,001| 1 | 9608.85
le4505d.col 450 9,757 4,168,276 | 4,390,651 1 304.84
fpsol2.i.1.col 496 11,654 | 4,640,279 | 57,803,85 1 93.8
C500.9.clq 500 112,332 | 20,938,304| 56,166,001| 1 72752

homer.col 561 3,258 1,189,065 | 1,827,739 1 8
p-hat700-2.clq 700 121,728 | 48,301,632| 85,209,601 1 30115
willL199GPIA.col 701 7,065 | 5,093,201 | 4,952,566 | 1 35
inithx.i.1.col 864 18,707 | 13,834,511| 16,162,849| 1 1021.76
gg.order30.col 900 26,100 | 23,003,701| 23,490,001 1 13043
wap06a.col 947 43,571 | 37,703,503| 41,261,738 1 1428
dsjc1000.1.col 1,000 49,629 | 45,771,027| 49,629,001 1 2981.91
5-Fullins4.col 1,085 11,395 | 13,149,910| 12,363,576| 1 200.09
3-Fullins5.col 2,030 | 33,751 | 70,680,086 68,514,531 1 | 15027.9

Table 3: Graphs with 4-cliques.

The Alon-Tarsi method is based on the following (see Sedtiof{1] and references therein):

Theorem 4.1. Given a graph G with n vertices, let (xi —1,...,x3 - 1). Additionally, let

Pc = 1_[ (% = X))

(i,))eE(G)
Then R € I if and only if G is non-3-colorable

In order to compute with the Alon-Tarsi method, we note thatgdetB = {xi -1,..., -1}
is a Grobner basis fdg. Thus, we simply take the normal form Bf with respect taB. If the
normal form is zeroPg € |, and the graph is non-3-colorable. THaaency of the Alon-Tarsi
method can be increased by incrementally construd®ndl4]: we order the edges, and then
find the normal form of¥;, —x;,) with respect td, and then the normal form ok — x;, ) (%i,— Xj,)
with respect tdB, etc.

We comparedNulLA to the Grobner basis and Alon-Tarsi methods on graphs wihaath-
out 4-cliques; results are displayed in Tables 6 and 7, otispdy. NulLA consistently out-
performed the Grobner basis method. For examplezeain.i. 1, NulLA ran in 6 seconds,
while CoCoA Lib took almost one hour. These experimentalltssndicate thalNulLA scales
better than the Grobner basis method.

NulLA also compared extremely favorably with the Alon-Tarsi neethwhich usually did
not terminate within the requisite time bounds. Howevethim special case when the first few
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vertices and edges of the graph happen to describe a noloigsle subgraph (such as a 4-
clique, or the Grodtzch graph), the Alon-Tarsi method rary\aiickly, because of the iterative
approach incorporated during implementation. Consideretkample of the ninth Mycielski
graph (383 vertices and 7,271 edges): the Alon-Tarsi magroginated in .24 seconds, but after
we permuted the vertices and edges, the method consumed BRFBVbover 4 hours of compu-
tation and only processed 30 edges. This example showhthAtan-Tarsi method is extremely
sensitive to the vertex and edge ordering. If a similar tteezapproach was incorporated either
into NulLA or the Grobner basis method, these algorithms would ligewgérminate early in this
special case.

As another example of the draw-backs of the Alon-Tarsi méth@ considered edge-critical
graphs, where the entire input must be read. For exampledtheheels form a trivial family of
edge-critical non-3-color-able graphs. The Alon-Tarstime was unable to determine the non-
3-colorability of the 17-odd-wheel (18 vertices and 34 esjgafter two hours of computation,
the normal form contained over 19 million monomials, and badsumed over 8 GB of RAM.
The experimental results are displayed in Table 4.

odd-wheels| vertices | edges|| NulLA GB AT
9 10 18 0 0 .05
11 12 22 0 0 .74
13 14 26 0 0 8.47
15 16 30 0 0 369.45
17 18 34 0 0 -
151 152 302 21 2.21 -
501 502 1,002 || 15.58 126.83 -
1001 1,002 | 2,002 || 622.73 || 1706.69 -
2001 2,002 | 4,002 || 12905.6 - -

Table 4:NulLA, GB and AT on odd-wheel graphs.

We conclude with a short comment abdlutILA 's relation to DSATUR and Branch-and-Cut
[28]. These heuristics return bounds on the chromatic nunibb&able 5 (data taken from [28]),
we display the bounds returned by Branch-and-Cut (B&C) aBATUR, respectively. In the
case of these graphBlulLA determined non-3-colorability very rapidly (establighia lower
bound of four), while the two heuristics returned lower bdsiof three and two, respectively.
Thus,NulLA returned a tighter lower bound on the chromatic number th&€ Br DSATUR.
We note that this example does not constitute a rigorous aasgn betweeMNulLA and B&C
or DSATUR.

B&C || DSATUR | NulLA

Graph vertices edgeglb up ||Ib up sec
4-Insertions3 79 156 ||3 4 || 2 4 0
3-Insertions4 281 1,046(|3 5 || 2 5 1
4-Insertions4 475 1,795(13 5 || 2 5 3
2-Insertions5 597 3,936||3 6 |2 6 12
3-Insertions5 1,406 9,695/|3 6 (|2 6 83

Table 5:NulLA vs. Branch-and-Cut and DSATUR.
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Graph vertices | edges || NulLA GB AT

miles500 128 2,340 1.35 133.91 .07
miles1000 128 6,432 7.52 802.23 0

miles1500 128 10,396 || 24.23 || 2598.84 .01
mulsol.i.5 197 3,925 6 18804.5 0
zeroin.i.1 211 4,100 6 2753.37 0
queenl616 256 12,640 106 59466.9 0
hamming8-4| 256 20,864 | 621.1 - -
le4505d 450 9,757 || 304.84 - -

homer 561 3,258 8 - -
dsjc1000.1 | 1,000 | 49,629 | 2981.91 - -
5-Fullins 4 1,085 | 11,395| 200.09 - 557.12
3-Fullins 5 2,030 | 33,751 | 150279 - 3.97

Table 6:NulLA, GB, AT on graphs with 4-cliques.

Graph vertices | edges|| NulLA GB AT
Mycielski 4 11 20 0 .01 .22
Mycielski 5 23 71 0 .08 .23
Mycielski 6 47 236 .04 3.99 .22
Mycielski 7 95 755 46 179.94 .23

Mycielski 8 191 2,360 7.72 9015.06| .23

Mycielski 9 383 | 7,271 | 268.78 22
'\g)éﬂﬁ'jt'gdg 383 | 7,271 || 497.47 - _
(6,2)-Kneser | 15 45 0 03 | 1.87
(8.3)-Kneser | 56 | 280 07 1839 || -

(10, 4)-Kneser 210 1,575 3.92 9771.76| -
(12, 5)-Kneser 792 8,316 || 466.47 - -
ash331GPIA 662 4,185 13.71 - -
1-Insertions4 67 232 .04 3.71 —
2-Insertions4 149 541 .26 32.42 —
1-Insertionsb 202 1,227 1.69 940.7 -
3-Insertions4 281 1,046 97 237.69 -
4-Insertions4 475 1,795 3.02 1596.35 -
2-Insertions5 597 3,936 18.23 - -

Table 7:NulLA, GB, AT on graphs without 4-cliques.

4.5. Hard Instances of 3-colorability

The question of whether “hard” instances of graph 3-coliditpthave specific, identifiable,
and systematically reproducible properties is an area tifeacesearch. Examples of graph-
theoretic properties proposed @asler parameterseparating “easy” instances from “hard” in-
clude 3-paths [34], minimal unsolvable subproblems [2@] frozen developments [8]. Some of
these proposed order parameters have resulted in algsr[@dh[29] [24] for generating infi-
nite families of non-3-colorable graphs conjectured (amahputationally verified) to be “hard”.
In this section, we investigate a link between Nullstelln<ertificate coicient degree and
“hard” non-3-colorable graphs.
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We begin by describing the algorithms for generating “hangtances that we tested, which
were the minimum unsolvable graphs (MUGSs) from [29], and4tueitical graph units (4-CGUS)
from [24]. We conclude by displaying our experimental résudnd comparin§lulLA with the
Grobner basis method on these instances.

4.5.1. Minimal Unsolvable (non-3-colorable) Subgraph4J&k)

In [29], a randomized algorithm for generating infinitelyda instances of quasi-regular, 4-
critical graphs is described. These quasi-regular, 4eatigraphs are referred to by the authors
asminimal unsolvable subgraphwhere the term “unsolvable” refers to the non-3-coloigbil
of the graph. In this casquasi-regulamrefers to graphs containing only vertices of degree three
or four, and4-critical refers to graphs with chromatic number four such that theokatof any
edge decreases the chromatic number from four to three. TH® §eneration algorithm relies
on five core 4-critical, quasi-regular minimal unsolvabtagghs (displayed in Figure 4), which
are randomly chosen and then iteratively constructed usieaddajos calculus, creating larger
and larger 4-critical graphs. The Hajos calculus is a paldr construction used to generate the
entire class of non-3-colorable graphs (see [16] and reéeetherein).

D B

(c)

(d) (€)

Figure 4: 4-critical, near-4-clique-free minimum unsdllegraphs (MUGS).

4.5.2. 4-critical graph units4-CGUSs)

In [24], a randomized algorithm for generating infinitelyda instances of triangle-free, 4-
critical graphs is described. The 4-CGU algorithm condsacparticular 4-critical core, which
is than joined to the previous graph in the sequence usingidies calculus. An example of a
4-CGU is displayed in Figure 5, and the algorithm for gernegg sequence of 4-CGUs follows
below.

4.5.3. Experimental Results on Hard Instances of 3-coliitgb
We implemented both the MUG hard instance generation dlgoriand the 4-CGU hard
instance generation algorithm. We tested both familieh WitlLA , and also with the Grobner
basis method using CoCoA Lib. In [29], the MUG instances wested with the Smallk [9] and
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Figure 5: An example of a Liu-Zhang 4-CGU.

Brélaz heuristics [3], as well as with six major constraiatisfaction problem (CSP) solvers. In
each case, exponential runtime growth was reported by tieeu

When we tested the MUG random instances udiol A , we immediately saw correspond-
ing growth in the degree of the Nullstellensatz. We were atlie to compute the degrees of the
first few certificates in the sequence; thus, it is imposdiblmfer a precise rate of growth for
the MUG family. Furthermore, the use of triangle equationdegree-cutters did not reduce the
degree, and we were also unable to find alternative Nuksisdltz certificates of lower degree
for these graphs. HoweveMulLA with branching proved extremely successful. For example,
on MUG G4, NUlLA without branching took 7736 seconds, whil®lulLA with branching only
took 5348 seconds to solve 6,131 subproblems. Furthernhark A with branching compared
favorably to the Grobner bases method using CoCoA Lib: famneple, MUGG7 took 705814
seconds usingNulLA with branching, but took 1983% with CoCoA Lib. We report on these
results in Table 8.

| NuILA without branching || NUILA with branching|| GB
Graph n m rows cols 53'5 sec || # of subprobs sec sec
MUG G, 10 18 198 181 1 0 1 0 0
MUGG; 20 37 178,012 329,916 4 6.33 9 .01 .05
MUGG, 30 55 | 1,571,328 2,257,211 4 52.83 83 31 .46
MUGG; 39 72 || 6,481,224 8,072,429 4 201.96 479 2.86 55
MUG G, 49 90 | 22,054,196 24,390,486>7 773.16 6,131 53.48 || 150.47
MUG Gs 60 110 - - - - 67,163 946.66 || 1718.62
MUG Gs 69 127 - - - - 103,787 2031.98|3806.17
MUG G; 78 144 - - - - 297,371 7058.14)| 19837.4

Table 8: Hard instances of graph 3-colorability: MUGSs.

In Table 9, we report the results of thellLA experiments on the 4-CGU hard instances of
graph 3-colorability. The 4-CGU instance generation athar has not been tested as thoroughly
with multiple graph coloring algorithms as compared to tHd®4 in [29]. However, the 4-CGUs
were tested with Smallk, and exponential running times weperted in [24]. When we tested
the 4-CGU algorithm wittNulLA , we immediately found corresponding growth in the degree of
the Nullstellensatz certificates, at a rate of growth vemyilsir to the rate of growth in the MUG
family. We also note that the 4-CGUs are triangle-free. Thaogeductions in degree via triangle
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degree-cutter equations are possible. Furthermore, be taise of the MUGs, we could not find
alternative Nullstellensatz certificates for the 4-CGUswdver, branching again proved very
successful on these graphs. Finally, we note that the rgrinimes returned by CoCaA Lib in

the Grobner basis experiments were verfjatent between the MUG and 4-CGU families: for
example, CoCoA Lib found a Grdbner basis for the 4-CGYJ(74 vertices and 139 edges) in
75.02 seconds, as compared with 19883econds for the MUG~ (78 vertices and 144 edges).

NuILA without branching || NUILA with branching|| GB
Graph n m rows cols (cjogb sec || # of subprobs sec sec
4-CGUG, 11 20 247 221 1 0 1 0 0
4-CGUG; 20 37 177,760 329,916 4 7.35 9 .02 A
4-CGUG, 29 54 || 1,306,695 1,947,902 4  82.77 329 1.18 75
4-CGUG; 38 71 || 5,621,140 7,202,749 4 364.28 3,161 18.6 1.65
4-CGUG, 47 88 (17,629,974 20,288,961>7 688.35 21,161 183.01| 10.46
4-CGUGs 56 105 - - - - 92,633 1167.01| 13.41
4-CGUGs 65 122 - - - - 92,641 1679.15|| 20.82
4-CGUG; 74 139 - - - - 3,938,023  84326.9| 75.02
4-CGUGg 83 156 - - - - > 5,148,710 - 570.96

Table 9: Hard instances of graph 3-colorability: 4-CGUs.

The underlying cause in the degree growth of graph 3-collitsabertificates remains an
open question. It is interesting to note that of the hundoddgaphs present in the DIMACS
computational challenge, the only graphs with degreegegrézan three were the MUG graphs,
specifically proposed as “hard” instances of graph 3-cabidita

5. Conclusion

We presented a general algebraic methdalL A , to prove combinatorial infeasibility. We
showed that even though the known worst-case Nullstelterggyree upper bounds for the col-
oring ideals are linear in the number of variables, in pcagtihey often behave as a constant and
can be used to solve even fairly large problem instancesefperimental results illustrated that
many benchmark non-3-colorable graphs have degree thréficages 3 codficients of degree
one or less); indeed, non-3-colorable graphs withfiodent certificate degrees larger than three
appear to be rare. We also showed tkatLA compares well with other algebraic methods and
popular heuristics for colorability.

We expect that this method will open many new avenues of figafon and we want to
mention here three that have been initiated: First, in [A2lew method was proposed that alter-
nates between searching for a coloring and uslo A to test for infeasibility (in some sense,
this is reminiscent of the primal-dual approach in lineatirajzation). The main novelty is that
searching for a coloring is also done using linear algelia,time utilizing the notion obor-
der baseof ideals (see [17, 32, 30] and references therein). Thenseavenue of research is
to use the methodology presented here for other problemddsestability number of graphs
and 3-colorings. In this regard, the papers [10, 13, 18],thedeferences there, propose other
encodings that could be used in practice, but have not bieh tote that in [10] it was demon-
strated thalNulLA has degree growth in the number of vertices of a graph, whitee present
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paper we observed that degree growth for 3-coloring is ngy éafind. Further work is nec-
essary to tell which combinatorial problems have polynémiecodings amenable for use with
theNulLA methodology. Finally, as the time complexity of solving admnatorial system with
the NulLA strategy depends on its certificate degree, it is importannderstand the class of
problems having small fixed degrees because precisely sablems are solvable ByulLA in
polynomial time. For example, Section 2 of [13] gives a camalbdrial characterization of non-3-
colorable graphs whose polynomial system encoding hasraetbgeeNullstellensatz certificate
(8 codficients of degree one or less) of infeasibility in terms ofleyaoverings. Such graphs are
non-3-colorable, yet recognizable in polynomial time tighNulLA .
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