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Systems of polynomial equations over the complex or real numbers can be used to model com-
binatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colourable,
Hamiltonian, etc.) if and only if a related system of polynomial equations has a solution.

For an infeasible polynomial system, the (complex) Hilbert Nullstellensatz gives a certificate
that the associated combinatorial problem is infeasible. Thus, unless P = NP, there must exist
an infinite sequence of infeasible instances of each hard combinatorial problem for which the
minimum degree of a Hilbert Nullstellensatz certificate of the associated polynomial system grows.

In the first part of the paper, we show that the minimum degree of a Nullstellensatz certificate
for the non-existence of a stable set of size greater than the stability number of the graph is the
stability number of the graph. Moreover, such a certificate contains at least one term per stable
set of G. In contrast, for non-3-colourability, we proved that the minimum degree of a Nullstel-
lensatz certificate is at least four. Our efforts so far have only yielded graphs with Nullstellensatz
certificates of precisely that degree.

In the second part of this paper, for the purpose of computation, we construct new polynomial
encodings for the problems of finding in a graph its longest cycle, the largest planar subgraph,
the edge-chromatic number, or the largest k-colourable subgraph. We include some applications
to graph theory.
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1. Introduction

N. Alon [1] used the term ‘polynomial method’ to refer to the use of non-linear polynomials
for solving combinatorial problems. Although the polynomial method is not yet as widely used
by combinatorists as, for instance, polyhedral or probabilistic techniques, the literature in this
subject continues to grow. Prior work on encoding combinatorial properties includes colourings
[2, 11, 14, 17, 27, 30, 31, 32], stable sets [11, 26, 27, 39], matchings [15], and flows [2, 32,
33]. Non-linear encodings of combinatorial problems are often compact. This contrasts with the
exponential sizes of systems of linear inequalities that describe the convex hull of incidence
vectors of many combinatorial structures (see [40]).

The polynomial method has been mostly used to obtain theoretical results but not so much
for actual computation. But recent work demonstrates that one can derive good semidefinite
programming relaxations for combinatorial optimization problems from the encodings of these
problems as polynomial systems (see [24] and references therein for details). Lasserre [22],
Laurent [23] and Parrilo [35, 34] studied the problem of minimizing a general polynomial func-
tion f(x) over an algebraic variety having only finitely many solutions. Laurent proved that when
the variety consists of the solutions of a zero-dimensional ideal I , there is a way to set up the
optimization problem min{f(x) : x ∈ variety(I)} as a finite sequence of semidefinite programs
terminating with the optimal solution (see [23]). These SDP relaxations have been used in actual
computation with great success (see, e.g., [4, 12]).

The polynomial method combined with semidefinite programming is a way to approach op-
timization problems. In this paper, we look instead at feasibility or decision problems. Our key
observation is that the sequence of SDPs is replaced by a simpler sequence of large-scale linear
algebra problems. The main idea to generate these systems of linear equations is to rely on
the (complex) Hilbert’s Nullstellensatz. For a combinatorial feasibility problem, e.g., deciding
the k-colourability of graphs, we associate a system of polynomial equations J such that the
system has a solution if and only if the combinatorial problem is indeed feasible. On the other
hand, the famous Hilbert Nullstellensatz (see [9]) states that a system of polynomial equations
J = {f1(x) = 0, f2(x) = 0, . . . , fr(x) = 0} with complex coefficients has no solution in Cn if
and only if there exist polynomials α1, . . . , αr ∈ C[x1, . . . , xn] such that 1 =

∑
αifi. Thus, if the

polynomial system J has no solution, there exists a certificate that the associated combinatorial
problem is infeasible. If the coefficients αi have fixed degree D, the Nullstellensatz certificate
is equivalent to a linear algebra system whose number of variables grows with the number of
monomials of degree D. We will explain details of the construction of this linear algebra system
in Section 2. The main purpose of this article is to investigate the complexity and growth of these
linear algebra systems.

There are well-known upper bounds, due to Kollar [20], for the degrees of the coefficients αi in
the Hilbert Nullstellensatz certificate for general systems of polynomials, and they turn out to be
sharp. For instance, the following well-known example (due to Mora, Lazard, Masser, Philippon
and Kollár) shows that the degree of α1 is at least dm:

f1 = xd1, f2 = x1 − xd2, . . . , fm−1 = xm−2 − xdm−1, fm = 1 − xm−1x
d−1
m .

But polynomial systems for combinatorial optimization problems are not necessarily pathologic-
ally complicated. The natural question is: How large are the degrees of Nullstellensatz certificates



Combinatorial Problems and Polynomial Equations 553

of infeasibility for combinatorial ideals? A fundamental result by Lazard [25] (see also [6])
proves that for combinatorial ideals, like the ones discussed in Section 2, there is an upper bound
that is linear on the number of variables, improving the exponential bound of [20]. In Section 2
we will see that the linear bound of Lazard is tight for the stability number of graphs but it seems
too pessimistic for 3-colourability.

There is a fascinating connection between the Nullstellensatz and computational complexity.
As we will see in Section 2, unless P = NP, for every hard combinatorial problem there must
exist an infinite sequence of infeasible instances for which the minimum degree of a Nullstel-
lensatz certificate, for the associated system of polynomials, grows arbitrarily large. This was
first observed by L. Lovász, who then proposed the problem of finding explicit graphs exhibiting
such growth (see [27]). A main contribution of this article is to explicitly exhibit the growth of
degree of specific families of graphs. In the first part of the paper we discuss the growth of degree
for the NP-complete problems ‘stable set’ and ‘3-colourability’. We establish the following main
theorem.

Theorem 1.1.

(i) Given a graph G, let α(G) denote its stability number. A minimum-degree Nullstellensatz
certificate for the non-existence of a stable set of size greater than α(G) has degree equal to
α(G) and contains at least one term per stable set in G.

(ii) Every Nullstellensatz certificate for non-3-colourability of a graph has degree at least four.
Moreover, in the case of a graph containing an odd-wheel or a clique as a subgraph, a
minimum-degree Nullstellensatz certificate for non-3-colourability has degree exactly
four.

The motivation of our work is to use the Nullstellensatz linear algebra method as a compu-
tational tool much in the same way that linear and semidefinite programming have been used
already by combinatorists. Our general scheme is as follows. If we can encode a combinatorial
problem with polynomial equations in R[x1, . . . , xn] that generate a zero-dimensional (variety is
finite) ideal, then we generate the finite sequence of linear algebra systems that can help decide
feasibility of our combinatorial problem. This highlights the importance of finding systems of
polynomials for various combinatorial optimization problems. The second part of this paper
proposes new polynomial system encodings for the problems, with respect to an input graph, of
finding a longest cycle, a largest planar subgraph, a largest k-colourable subgraph, or a minimum
edge colouring. In particular, we establish the following result.

Theorem 1.2.

(i) A simple graph G with nodes 1, . . . , n has a cycle of length L if and only if the following
zero-dimensional system of polynomial equations has a solution.

n∑
i=1

yi = L. (1.1)
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For every node i = 1, . . . , n,

yi(yi − 1) = 0,

n∏
s=1

(xi − s) = 0, (1.2)

yi
∏

j∈Adj(i)

(xi − yjxj + yj)(xi − yjxj − yj(L − 1)) = 0. (1.3)

Here Adj(i) denotes the set of nodes adjacent to node i.
(ii) Let G be a simple graph with n nodes and m edges. G has a planar subgraph with K edges if

and only if the following zero-dimensional system of equations has a solution.
For every edge {i, j} ∈ E(G),

z2
{ij} − z{ij} = 0,

∑
{i,j}∈E(G)

z{ij} − K = 0.

For k = 1, 2, 3, every node i ∈ V (G) and every edge {i, j} ∈ E(G),

n+m∏
s=1

(x{i}k − s) = 0,

n+m∏
s=1

(y{ij}k − s) = 0,

sk

( ∏
i,j∈V (G)

i<j

(
x{i}k − x{j}k

) ∏
i∈V (G),

{u,v}∈E(G)

(
x{i}k − y{uv}k

) ∏
{i,j},{u,v}∈E(G)

(
y{ij}k − y{uv}k

))
= 1.

For k = 1, 2, 3, and for every pair of a node i ∈ V (G) and incident edge {i, j} ∈ E(G),

z{ij}
(
y{ij}k − x{i}k − Δ{ij,i}k

)
= 0. (1.4)

For every pair of a node i ∈ V (G) and edge {u, v} ∈ E(G) that is not incident on i,

z{uv}
(
y{uv}1 − x{i}1 − Δ{uv,i}1

)(
y{uv}2 − x{i}2 − Δ{uv,i}2

)
×

(
y{uv}3 − x{i}3 − Δ{uv,i}3

)
= 0,

z{uv}
(
x{i}1 − y{uv}1 − Δ{i,uv}1

)(
x{i}2 − y{uv}2 − Δ{i,uv}2

)
×

(
x{i}3 − y{uv}3 − Δ{i,uv}3

)
= 0.

For every pair of edges {i, j}, {u, v} ∈ E(G) (regardless of whether or not they share an
endpoint),

z{ij}z{uv}
(
y{ij}1 − y{uv}1 − Δ{ij,uv}1

)(
y{ij}2 − y{uv}2 − Δ{ij,uv}2

)
×

(
y{ij}3 − y{uv}3 − Δ{ij,uv}3

)
= 0,

z{ij}z{uv}
(
y{uv}1 − y{ij}1 − Δ{uv,ij}1

)(
y{uv}2 − y{ij}2 − Δ{uv,ij}2

)
×

(
y{uv}3 − y{ij}3 − Δ{uv,ij}3

)
= 0.

For every pair of nodes i, j ∈ V (G) (regardless of whether or not they are adjacent),(
x{i}1 − x{j}1 − Δ{i,j}1

)(
x{i}2 − x{j}2 − Δ{i,j}2

)(
x{i}3 − x{j}3 − Δ{i,j}3

)
= 0,(

x{j}1 − x{i}1 − Δ{j,i}1
)(
x{j}2 − x{i}2 − Δ{j,i}2

)(
x{j}3 − x{i}3 − Δ{j,i}3

)
= 0.
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For every Δindex (e.g., Δ{ij,uv}k,Δ{ij,i}k, etc.) variable appearing in the above system,

n+m−1∏
d=1

(
Δindex − d

)
= 0.

(iii) A graph G has a k-colourable subgraph with R edges if and only if the following zero-
dimensional system of equations has a solution.∑

{i,j}∈E(G)

yij − R = 0. (1.5)

For every vertex i ∈ V (G),

xki = 1. (1.6)

For every edge {i, j} ∈ E(G),

y2
ij − yij = 0, yij

(
xk−1
i + xk−2

i xj + · · · + xk−1
j

)
= 0. (1.7)

(iv) Let G be a simple graph with maximum vertex degree Δ. The graph G has edge-chromatic
number Δ if and only if the following zero-dimensional system of polynomials has a solution.
For every edge {i, j} ∈ E(G),

xΔ
ij = 1. (1.8)

For every node i ∈ V (G),

si

( ∏
j,k∈Adj(i)

j<k

(xij − xik)

)
= 1, (1.9)

where Adj(i) is the set of nodes adjacent to node i. (By Vizing’s theorem, if the system has no
solution, then G has edge-chromatic number Δ + 1.)

The paper is organized as follows. In Section 2 we show that, under the assumption that P �=
NP, the minimum degree of a Nullstellensatz certificate for an NP-hard problem must grow
with respect to the input size (we work out all details for 3-colourability). We explain how to
generate the linear algebra systems associated with minimum-degree Nullstellensatz certificates.
In Section 2.1, this time without the assumption of P �= NP, we demonstrate the degree growth
of Nullstellensatz certificates for the stable set problem and show that the number of monomials
in the certificate grows exponentially. This is in essence the proof of Theorem 1.1(i). Section 2.2
contains the proof of Theorem 1.1(ii). We also briefly discuss our computer experiments with
non-3-colourable graphs where there is no growth of degree. Section 3 (specifically Section 3.1)
contains the encoding with polynomials for the problems (1) longest cycle, (2) largest planar
subgraph, (3) edge-chromatic number, and (4) largest k-colourable subgraph. We conclude in
Section 3.2 with a graph theory application, by proposing a notion of dual colouring of graphs.

2. Nullstellensatz degree growth and combinatorics

The Hilbert Nullstellensatz states that a system of polynomial equations

{f1(x) = 0, f2(x) = 0, . . . , fr(x) = 0} ⊆ C[x1, . . . , xn]
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has no solution in Cn if and only if there exist polynomials α1, . . . , αr ∈ C[x1, . . . , xn] such that
1 =

∑
αifi (see [9]). The purpose of this section is to investigate the degree growth of the

coefficients αi. In particular, we investigate the degree growth of Nullstellensatz certificates
related to systems of polynomials arising in combinatorial optimization.

Definition. For a Nullstellensatz certificate 1 =
∑r

i=1 αifi, its degree is max1�i�r{deg(αi)}.

In our investigations, we will often need to find explicit Nullstellensatz certificates for specific
graphs. This can be done via linear algebra. First, given a system of polynomial equations,
fix a tentative degree for the coefficient polynomials αi in the Nullstellensatz certificate. This
yields a linear system of equations whose variables are the coefficients of the monomials of
the polynomials α1, . . . , αr. Then, solve this linear system. If the system has a solution, we have
found a Nullstellensatz certificate. Otherwise, try a higher degree for the polynomials αi. For the
Nullstellensatz certificates, the degrees of the polynomials αi cannot be more than known bounds
(see, e.g., [6, 20, 25] and references therein); thus we have a finite (but potentially long) procedure
to decide whether or not a system of polynomials is feasible. An important point, which we have
observed in practice, is that very low-degree certificates often work well under the linear bounds
of [25] for our special ideals. We also remark that this linear algebra method finds not only a
Nullstellensatz certificate (if it exists), but it finds one of the minimum-possible degree.

Next, we illustrate the generation of linear algebra systems from the Nullstellensatz in a
concrete situation. D. Bayer established a characterization of 3-colourability via a system of
polynomial equations [5], which we will use throughout this paper. In fact, one can establish that
Bayer’s result generalizes as follows (see [29]).

Lemma 2.1. Graph G is k-colourable if and only if the following zero-dimensional system of
equations,

xki − 1 = 0, for every node i ∈ V (G),

k−1∑
d=0

xk−1−d
i xdj = 0, for every edge {i, j} ∈ E(G),

has a solution. Moreover, the number of solutions equals the number of distinct k-colourings
multiplied by k!.

Example 1. Suppose that we wish to test K4 for 3-colourability, and we assume that the αi in
the Nullstellensatz certificate all have degree 1. After encoding K4 with the system of polynomial
equations, we ‘conjecture’ that there exists a Nullstellensatz certificate of the following form:

1 = (c0x0 + c1x1 + c2x2 + c3x3 + c4)(x
3
0 − 1) + (c5x0 + c6x1 + c7x2 + c8x3 + c9)(x

3
1 − 1)

+ (c10x0 + · · · + c14)(x
3
2 − 1) + (c15x0 + · · · + c19)(x

3
3 − 1)

+ (c20x0 + · · · + c24)(x
2
0 + x0x1 + x2

1) + (c25x0 + · · · + c29)(x
2
0 + x0x2 + x2

2)

+ (c30x0 + · · · + c34)(x
2
0 + x0x3 + x2

3) + (c35x3 + · · · + c39)(x
2
1 + x1x2 + x2

1)

+ (c40x0 + · · · + c44)(x
2
1 + x1x3 + x2

3) + (c45x0 + · · · + c49)(x
2
2 + x2x3 + x2

3).
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When we multiply out this certificate, we group together like powers of x0, x1, x2, x3 as follows:

1 = c0x
4
0 + · · · + c12x

4
2 + · · · + c7x

3
1x2 + · · · + (c21 + c20 + c26 + c31)x

2
0x1 + · · ·

+ (c34 + c44 + c49)x
2
3 + · · · + (−c14 − c19 − c4 − c9).

Because the Nullstellensatz certificate is identically one, this identity gives rise to the following
system of linear equations: 0 = c0, 0 = c12, 0 = c7, 0 = c21 + c20 + c26 + c31, 0 = c34 + c44 +

c49, . . . , 1 = −c14 − c19 − c4 − c9. In other words, we have a large-scale sparse system of linear
equations that consists only of 1s and −1s. In this example, it turns out that degree 1 is not
sufficient for generating a Nullstellensatz certificate, that is, this linear system has no solution.
Ultimately, we discovered that degree four is required, and we were able to produce the following
certificate:

1 =

(
4

9
x4

1 − 5

9
x3

1x2 − 2

9
x3

1x3 − 4

9
x3

1x0 +
2

9
x2

1x2x0 +
2

9
x2

1x3x0

)
(x2

1 + x2x1 + x2
2)

+

(
1

9
x4

1 +
2

9
x3

1x2 − 1

9
x3

1x0 − 2

9
x2

1x2x0

)
(x2

2 + x3x2 + x2
3) +

1

3
x3

1x2(x
2
2 + x0x2 + x2

0)

+

(
2

9
x4

1 +
1

9
x3

1x2 +
1

9
x3

1x0 +
2

9
x2

1x2x0

)
(x2

1 + x3x1 + x2
3) +

1

3
x4

1(x
2
1 + x0x1 + x2

0)

+

(
−1

3
x4

1 − 1

3
x3

1x2

)
(x2

3 + x0x3 + x2
0) + (−x3

1 − 1)(x3
1 − 1). (2.1)

Our investigations of degree growth of the Nullstellensatz were motivated by the following key
point.

Lemma 2.2. If P �= NP, then there must exist an infinite family of graphs whose minimum-
degree non-3-colourability Nullstellensatz certificates have unbounded growth with respect to
the number of vertices and edges in the graph.

Proof. Our proof is by contradiction with the hypothesis P �= NP. Consider a non-3-colourable
graph whose 3-colourability has been encoded as the system of polynomial equations x3

i − 1 = 0

for i ∈ V (G), and x2
i + xixj + x2

j = 0 for {i, j} ∈ E(G). Assume that every minimum-degree
non-3-colourability Nullstellensatz certificate has deg(αi) < d for some constant d. We will show
that P = NP by providing a polynomial-time algorithm for solving graph-3-colouring.

(1) Given a graph G, encode it as the above system of polynomial equations.
(2) Construct and solve the associated linear system for monomials of degree < d.
(3) If the system has a solution, a Nullstellensatz certificate exists, and the graph is non-3-

colourable: Return no.
(4) If the system does not have a solution, there does not exist a Nullstellensatz certificate, and

the graph is 3-colourable: Return yes.

Now we analyse the running time of this algorithm. In step (1), our encoding has one poly-
nomial equation per vertex and one polynomial equation per edge. Since there are O(n2) edges
in a graph, our polynomial system has n + n2 = O(n2) equations. Because every equation only
contains coefficients ±1 and is of degree three or less, encoding the graph as the above system
of polynomial equations clearly runs in polynomial time.
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For step (2), we note that by Corollary 3.2b of [37], if a system of linear equations Ax = b

has a solution, then it has a solution polynomially bounded by the bit sizes of the matrix A and
the vector b (see [37] for a definition of bit size). In this case, the vector b contains only zeros
and ones. To calculate the bit size of A, we recall our assumption that, for every αi, deg(αi) < d

for some constant d. Therefore, an upper bound on the number of terms in each αi is the total
number of monomials in n variables of degree less than or equal to d. Therefore, the number of
terms in each αi is(

n + d − 1

n − 1

)
+

(
n + d − 2

n − 1

)
+ · · · +

(
n − 1

n − 1

)
= O(nd) + O(nd−1) + · · · + O(1) = O(nd).

Because there are O(n2) equations, there are at most O(nd+2) unknowns in the linear system,
and thus, O(nd+2) columns in A. Because the vertex equations (x3

i − 1) = 0 have two terms, and
the edge equations (x2

i + xixj + x2
j ) = 0 have 3 terms, there are O(nd+2) terms in the expanded

Nullstellensatz certificate, and O(nd+2) rows in A. Because entries in A are 0,±1, the matrix
A contains only entries of bit size at most 2. Therefore, the bit sizes of both A and b are
polynomially bounded in n, and by Theorem 3.3 of [37], the linear system can be solved in
polynomial time.

Therefore, we have demonstrated a polynomial-time algorithm for solving graph-3-colouring,
and because graph-3-colouring is NP-complete ([16]), this implies P = NP, which contradicts
our hypothesis. Therefore, deg(αi) � d for any constant d.

Thus, in the linear algebra approach to finding a minimum-degree Nullstellensatz certificate,
the existence of a universal constant bounding the degree is impossible under a well-known
conjecture of complexity theory. Clearly, a similar result can be obtained for other encodings
(see [29]). Note that the linear algebra method does not rely on any property that is unique to a
particular combinatorial or NP-complete problem; the only assumption is that the problem can be
represented as a system of polynomial equations. We will use it to find Nullstellensatz certificates
of non-3-colourability and sizes of stable sets of graphs.

2.1. The Nullstellensatz and stable sets of graphs

Recall that a stable set or independent set in a graph G is a subset of vertices such that no two
vertices in the subset are adjacent. The maximum size α(G) of a stable set is called the stability
number of G. The problem of finding a stable set in a graph can be encoded as the following
system of polynomial equations.

Lemma 2.3 (Lovász [27]). Graph G has stability number at least k if and only if the following
zero-dimensional system of equations,

x2
i − xi = 0, for every node i ∈ V (G),

xixj = 0, for every edge {i, j} ∈ E(G),
n∑

i=1

xi = k,

has a solution.
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Lovász [27] stated the challenge of finding an explicit family of graphs with growth in the
minimum degree of their Nullstellensatz certificates. Here we solve his challenge for the stable
set problem. Note that we do not assume P �= NP. Our main result is stated in Theorem 1.1: for
every graph G, there exists a Nullstellensatz certificate of degree α(G) (the stability number of
G), certifying that G has no stable set of size greater than α(G); moreover, this is the minimum-
possible degree for all graphs. In what follows, for any graph G with stability number α(G) and
an integer r � 1, the Nullstellensatz certificate has the general form

1 = A

(
−(α(G) + r) +

n∑
i=1

xi

)
+

∑
i∈V (G)

Qi(x
2
i − xi) +

∑
{i,j}∈E(G)

Qij(xixj). (2.2)

In this section, we refer to the coefficient polynomials using these particular letters (that is,
A,Qi, Qij , etc.)

Lemma 2.4. For any graph G and a Nullstellensatz certificate

1 = A

(
−(α(G) + r) +

n∑
i=1

xi

)
+

∑
i∈V (G)

Qi(x
2
i − xi) +

∑
{i,j}∈E(G)

Qij(xixj), (2.3)

certifying that G has no stable set of size (α(G) + r) (with r � 1), we can construct a ‘reduced’
Nullstellensatz certificate

1 = A′
(

−(α(G) + r) +

n∑
i=1

xi

)
+

∑
i∈V (G)

Q′
i(x

2
i − xi) +

∑
{i,j}∈E(G)

Q′
ij(xixj),

satisfying the following.

(1) The coefficient A′ multiplying −(α(G) + r) +
∑n

i=1 xi has only square-free monomials sup-
ported on stable sets of G, and thus deg(A′) � α(G).

(2) max{deg(A), deg(Qi), deg(Qij)}=max{deg(A′), deg(Q′
i), deg(Q′

ij)}. Thus, if the original
Nullstellensatz certificate has minimum degree, the ‘reduced’ certificate also has minimum
degree.

Proof. Let I be the ideal generated by x2
i − xi (for every node i ∈ V (G)), and xixj (for every

edge {i, j} ∈ E(G)). Furthermore, let B := −(α(G) + r) +
∑n

i=1 xi. We apply reductions modulo
I to (2.3). If a non-square-free monomial appears in polynomial A, say xα1

i1
xα2

i2
· · · xαkik with at least

one αj > 1, then we can subtract the polynomial xα1

i1
xα2

i2
· · · , xαj−2

ij
xαkik B(x2

ij
− xij ) from AB and

simultaneously add it to
∑

Qs(x
2
s − xs). Thus, eventually we obtain a new certificate that has

only square-free monomials in A′. Furthermore, if Q′
s has new monomials, they are of degree

less than or equal to what was originally in A.
Similarly, if xi1xi2 · · · xik appears in A, but xi1xi2 · · · xik contains an edge {i, j} ∈ E(G) (if xixj

divides xi1xi2 · · · xik ), then we can again subtract B(xi1xi2 · · · xik/xixj)(xixj) from AB, and, at
the same time, add it to

∑
{i,j}∈E(G) Qijxixj . Furthermore, the degree is maintained, and we have

reached the form we claim exists for A′.
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We now show that, for every graph, there exists an explicit Nullstellensatz certificate of degree
α(G). In order to prove this claim, we introduce the following notation. Let Si be the set of all
stable sets of size i in G. For any stable set I ∈ Si, if I consists of the vertices {c1, c2, . . . , ci}, then
xI := xc1

xc2
· · · xci , and we refer to the monomial xI as a ‘stable set’. We define S0 := Ø, and

xØ = 1. If we say I ∪ k ∈ Si+1, we explicitly mean that I ∩ k = Ø, and that xIxk is a square-free
stable-set monomial of degree i + 1. If I ∪ k /∈ Si+1, we explicitly mean that I ∩ k = Ø but I ∪ k

contains at least one edge {k, cj}. In other words, xIxk is a square-free non-stable-set monomial
of degree i + 1. In this case, let mink(I) denote the smallest cj ∈ I such that {k, cj} ∈ E(G).
Finally, let

Pi :=
∑
I∈Si

xI , with P0 := 1, and Li :=
iLi−1

α(G) + r − i
, with L0 :=

1

α(G) + r
.

Theorem 2.5. Given a graph G, there exists a Nullstellensatz certificate of degree α(G) certify-
ing the non-existence of a stable set of size α(G) + r (for r � 1) such that

1 = A

(
−(α(G) + r) +

n∑
i=1

xi

)
+

∑
{u,v}∈E(G)

Quvxuxv +

n∑
k=1

Qk(x
2
k − xk), (2.4)

where

A = −
α(G)∑
i=0

LiPi, Quv =

α(G)∑
i=1

( ∑
I∈Si:I∪v /∈Si+1and

minv(I)=u

Li+1xI\u

)
and

Qk =

α(G)∑
i=0

( ∑
I∈Si:I∪k∈Si+1

Li+1xI

)
.

Proof. Our proof is the direct verification of (2.4). For convenience of notation, we let

B := −(α(G) + r) +

n∑
i=1

xi, C :=
∑

{u,v}∈E(G)

Quvxuxv and D :=

n∑
k=1

Qk(x
2
k − xk).

It is easy to see that

−L0P0

(
−(α(G) + r)

)
= − 1

α(G) + r

(
−(α(G) + r)

)
= 1.

We will now show that the coefficient for every other monomial in (2.4) simplifies to zero. We
begin by observing that every monomial in A,Qk or Quv is a stable set, and furthermore, that the
stable-set monomials in Qk do not contain the variable xk, and the stable-set monomials in Quv

contain neither xu nor xv. Therefore, in the expanded certificate AB + C + D, only three types
of monomials appear: square-free stable-set monomials, square-free non-stable-set monomials,
and stable-set monomials with exactly one variable squared.

• Square-free stable set. Let I = {c1, c2, . . . , cm} be any stable set of size m. The monomial xI
is created in AB in two ways: xI\ckxck (formed m times, one for each ck), or xI

(
−(α(G) + r

)
.
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Figure 1. Turán graph T (5, 3).

Thus, the coefficient for xI in AB is

−mLm−1 − Lm

(
−(α(G) + r)

)
= −m

Lm(α(G) + r − m)

m
+ Lm(α(G) + r) = mLm.

The monomial xI does not appear in C, because xI is a stable-set monomial. However, the
monomial xI is produced by xI\ck (−xck ) in D (formed m times, one for each ck), and the
coefficient for xI in D is −mLm. Therefore, we see that

mLm︸︷︷︸
from AB

−mLm︸ ︷︷ ︸
from D

= 0.

• Square-free non-stable set. Let I = {c1, c2, . . . , cm−1, u} be any stable set of size m, and
consider the monomial xIxv where u = minv I and {u, v} ∈ E(G). Now, consider all

(
m+1
m

)
subsets of {c1, c2, . . . , cm−1, u, v}, and let M be the number of stable sets among those

(
m+1
m

)
subsets. Each of those M subsets appears as a stable-set monomial in A. Therefore, the
monomial xIxv is created M times in AB, and the coefficient for xIxv in AB is −MLm.
The monomial xIxv does not appear in D, because it is a non-stable-set monomial, and it
appears exactly M times in C. Therefore, the coefficient for xIxv in C is MLm, and we see
that

−MLm︸ ︷︷ ︸
from AB

+MLm︸ ︷︷ ︸
from C

= 0.

• Stable set with one variable squared. Let I = {c1, c2, . . . , cm−1, k} be any stable set of size
m, and consider the monomial xI\kx

2
k. This monomial is created in AB by the direct product

xIxk, and the coefficient is −Lm. This monomial is not created in C, because it contains no
edges, and it is created in D by xI\kx

2
k. Thus, the coefficient for xIxk in D is Lm, and we

see that

−Lm︸︷︷︸
from AB

+ Lm︸︷︷︸
from D

= 0.

Therefore, we have shown that the constant term in AB + C + D is one, and the coefficient
for every other monomial is zero. Therefore, (2.4) is a Nullstellensatz certificate of
degree α(G).

Example 2. We display a certificate from Theorem 2.5. Figure 1 depicts the Turán
graph T (5, 3). It is clear that α(T (5, 3)) = 2. Therefore, we ‘test’ for a stable set of size 3. The
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certificate is

1 =

(
1

3
x4 +

1

3
x2 +

1

3

)
x1x3 +

(
1

3
x2 +

1

3

)
x1x4 +

(
1

3
x2 +

1

3

)
x1x5 +

(
1

3
x4 +

1

3

)
x2x3

+

(
1

3

)
x2x4 +

(
1

3

)
x2x5 +

(
1

3
x4 +

1

3

)
x3x5 +

(
1

3

)
x4x5 +

(
1

3
x2 +

1

6

)
(x2

1 − x1)

+

(
1

3
x1 +

1

6

)
(x2

2 − x2) +

(
1

3
x4 +

1

6

)
(x2

3 − x3) +

(
1

3
x3 +

1

6

)
(x2

4 − x4)

+

(
1

6

)
(x2

5 − x5) +

(
−1

3

(
x1x2 + x3x4

)
− 1

6

(
x1 + x2 + x3 + x4 + x5

)
− 1

3

)
︸ ︷︷ ︸

stable-set polynomial

× (x1 + x2 + x3 + x4 + x5 − 3).

Note that the coefficient for the stable-set polynomial contains one monomial for every stable
set in T (5, 3). For example, note that the term − 1

3
x1x2 corresponds to the stable set formed by

vertices 1 and 2 in Figure 1. Furthermore, note that every monomial in every coefficient is also a
stable set in T (5, 3).

We will now prove that the stability number α(G) is the minimum degree for any Nullstel-
lensatz certificate for the non-existence of a stable set of size greater than α(G). To prove this, we
rely on two lemmas. For convenience of notation, in the next two lemmas, we let

B := −(α(G) + r) +

n∑
i=1

xi, C :=
∑

{i,j}∈E(G)

Q′
ijxixj and D :=

n∑
i=1

Q′
i(x

2
i − xi).

Lemma 2.6. Let G be a graph, and let

1 = A′
(

−(α(G) + r) +

n∑
i=1

xi

)
+

∑
{i,j}∈E(G)

Q′
ijxixj +

n∑
i=1

Q′
i(x

2
i − xi), (2.5)

be a reduced (via Lemma 2.4) Nullstellensatz certificate proving the non-existence of a stable set
of size α(G) + r (for r � 1). Then the constant term in A′ is −L0, and the coefficient for xi in A′

is −L1.

Proof. The certificate presented in (2.5) must simplify to one. A constant only appears in the
expanded certificate A′B + C + D via the product of a constant term in A′ and the constant term
in B. Therefore, letting β0 be the constant term in A′, we see

−(α(G) + r)β0 = 1 =⇒ β0 = − 1

α(G) + r
= −L0.

Now let βi be the coefficient of xi in A′ and let D = deg(Q′
i). Therefore,

Q′
i = MDx

D
i + MD−1x

D−1
i + · · · + M1xi + M0 + other terms in Q′

i that are not powers of xi.
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Now consider the coefficients for xi, x2
i in the expanded certificate A′B + C + D, which must

simplify to zero:

xi : 0 = βi
(
−(α(G) + r)

)
− M0 − L0,

x2
i : 0 = βi + M0 − M1.

Now consider the coefficients for the monomials xD+2
i , xD+1

i , . . . , x3
i in the expanded certificate

A′B + C + D, which are MD,−MD + MD−1,−MD−1 + MD−2, . . . ,−M2 + M1. Each of these
coefficients must simplify to zero, which implies each of these equations is equal to zero. Note
that when the coefficients for xD+2

i , xD+1
i , . . . , x3

i , x
2
i are summed together in one equation, we

have a telescopic sum yielding βi + M0 = 0. Therefore, the equation for xi becomes

βi
(
−(α(G) + r)

)
+ βi − L0 = 0,

βi(α(G) + r) − βi = −L0,

βi = − L0

α(G) + r − 1
,

βi = −L1.

Thus, we see that coefficient of xi in A′ is equal to −L1.

Lemma 2.7. Let G be a graph, and let

1 = A′
(

−(α(G) + r) +

n∑
i=1

xi

)
+

∑
{i,j}∈E(G)

Q′
ijxixj +

n∑
i=1

Q′
i(x

2
i − xi), (2.6)

be a reduced (via Lemma 2.4) Nullstellensatz certificate proving the non-existence of a stable set
of size α(G) + r (for r � 1). Let I = {c1, c2, . . . , cm+1} be a stable set in G. If the coefficient for
xI\ci in A′ is −Lm, then the coefficient for xI in A′ is −Lm+1.

Proof. Let βI be the coefficient for xI in A′, denote x
γ
I := xγ1

c1
· · · xγm+1

cm+1 by x
γ
I , set N =

max{deg(Q′
c1
), . . . , deg(Q′

cm+1
)}, and let Nγ be the set of {γ1, . . . , γm+1}-tuples such that γi � 0

and
∑m+1

i=1 γi � N. Therefore, let

Q′
ci

=
∑
γ∈Nγ

Mci
Iγx

γ
I + other terms in Q′

ci
.

Now consider the coefficients for xI , xI\cix
2
ci

in the expanded certificate A′B + C + D.

• xI. This monomial is formed in two ways in A′B, xI
(
−(α(G) + r)

)
, or xI\cixci (formed m + 1

times, once for each ci), and formed in one way in D, xI\ci(−xci ) (formed m + 1 times, once
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for each ci), yielding

βI
(
−(α(G) + r)

)
− (m + 1)Lm −

m+1∑
i=1

Mci
I\ci︸ ︷︷ ︸

E

= 0. (2.7)

• xI\ci
x2

ci
. This monomial is formed in one way in A′B, xIxci , and formed in three ways in

D, xI (−xci ), xI\cix
2
ci

, or x2
ci
xI\{ci∪cj}(−xcj ) (formed m times, once for each cj with j �= i),

yielding

βI − Mci
I + Mci

I\ci −
m+1∑
j=1

j �=i

M
cj
I\(ci∪cj ) = 0. (2.8)

Now we will consider (2.8) for each individual ci, with i = 1, . . . , m + 1, and sum those m + 1

equations. This yields

(m + 1)βI −
m+1∑
i=1

Mci
I +

m+1∑
i=1

Mci
I\ci︸ ︷︷ ︸

E

−
m+1∑
i=1

m+1∑
j=1

j �=i

M
cj
I\(ci∪cj ) = 0. (2.9)

Notice that part E in (2.9) is equal to part E in (2.7). Now, as in Lemma 2.6, we sum (2.9) with the
equations for the coefficients of every other monomial xγI in Q′

ci
, excluding xI (and thus (2.7)).

As before, every Mci
Iγ appears in exactly two equations, once with a positive sign and once with a

negative sign, (corresponding to the multiplication x2
ci

and −xci , respectively). Thus, when (2.9)
is summed with the equations corresponding to every other monomial excluding xI , the sum
will telescope and every Mci

Iγ excluding part E will cancel. The negative component for part E is
contained in (2.7), which is not included in this sum, which is why part E does not cancel. Thus,
we see

(m + 1)βI = −
m+1∑
i=1

Mci
I\ci︸ ︷︷ ︸

E

. (2.10)

Substituting (2.10) into (2.7), we see

βI
(
−(α(G) + r)

)
− (m + 1)Lm + (m + 1)βI = 0,

βI (α(G) + r) − (m + 1)βI = −(m + 1)Lm,

βI = − (m + 1)Lm

α(G) + r − (m + 1)
,

βI = −Lm+1.

Thus, the coefficient of xI in A′ is equal to −Lm.

Using Lemmas 2.6 and 2.7, we can now prove the main theorem of this section.
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Theorem 2.8. Given a graph G, any Nullstellensatz certificate for the non-existence of a stable
set of size greater than α(G) has degree at least α(G).

Proof. Our proof is by contradiction. Let

1 = A

(
−(α(G) + r) +

n∑
i=1

xi

)
+

∑
{i,j}∈E(G)

Qijxixj +

n∑
i=1

Qi(x
2
i − xi)

be any Nullstellensatz certificate for the non-existence of a stable set of size α(G) + r, with r � 1,
such that deg(A), deg(Qi), deg(Qij) < α(G), and let

1 = A′
(

−(α(G) + r) +

n∑
i=1

xi

)
︸ ︷︷ ︸

B

+
∑

{i,j}∈E(G)

Q′
ijxixj

︸ ︷︷ ︸
C

+

n∑
i=1

Q′
i(x

2
i − xi)

︸ ︷︷ ︸
D

(2.11)

be the reduced certificate via Lemma 2.4. The proof of Lemma 2.4 implies deg(A′) � deg(A) <

α(G). Let M = {c1, c2, . . . , cα(G)} be any maximum stable set in G. Via Lemma 2.6, we know that
xc1

appears in A′ with the non-zero coefficient −L1, which implies (via Lemma 2.7) that xc1
xc2

appears in A′ with non-zero coefficient −L2, which implies that xc1
xc2

xc3
appears in A′ and so

on. In particular, xc1
xc2

· · · xcα(G)
appears in A′ with non-zero coefficient −Lα(G). This contradicts

our assumption that deg(A′) < α(G). Therefore, there can be no Nullstellensatz certificate with
deg(A) < α(G); thus, the degree of any Nullstellensatz certificate is at least α(G).

Lemmas 2.6 and 2.7 also give rise to the following corollary.

Corollary 2.9. Given a graph G, any Nullstellensatz certificate for the non-existence of a stable
set of size greater than α(G) contains at least one monomial for every stable set in G.

Proof. Given any Nullstellensatz certificate, we create the reduced certificate via Lemma 2.4.
The proof of the Lemma 2.4 implies that the number of terms in A is equal to the number of terms
in A′. Via Lemmas 2.6 and 2.7, A′ contains one monomial for every stable set in G. Therefore, A
also contains one monomial for every stable set in G.

This brings us to the last theorem of this section.

Theorem 2.10. Given a graph G, a minimum-degree Nullstellensatz certificate for the non-
existence of a stable set of size greater than α(G) has degree equal to α(G) and contains at least
one term for every stable set in G.

Proof. This theorem follows directly from Theorems 2.5 and 2.8, and Corollary 2.9.

Finally, our results establish new lower bounds for the degree and number of terms of Nullstel-
lensatz certificates. In earlier work, researchers in logic and complexity showed both logarithmic
and linear growth of degree of the Nullstellensatz over finite fields or for special instances, e.g.,
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Nullstellensatz related to the pigeonhole principle (see [7], [18] and references therein). Our main
complexity result below settles a question of Lovász [27].

Corollary 2.11. There exist infinite families of graphs Gn, on n vertices, such that the degree
of a minimum-degree Nullstellensatz certificate grows linearly in n and, at the same time, the
number of terms in the coefficient polynomials of the Nullstellensatz certificate is exponential
in n.

Proof. We give two concrete families that prove the statement. First, the disjoint union of
n/3 triangles has exactly 4n/3 − 1 stable sets and the minimum degree of the Nullstellensatz
certificate is n/3. Second, the complements of complete graphs have α(G) = n, and the number
of stable sets is 2n.

It is worth emphasizing that the Nullstellensatz certificates are extremely dense as all square-
free monomials representing stable sets appear in them. This represents a serious obstacle for
computation and, in this case, shows that the computation of Hilbert’s Nullstellensatz is at least
as hard as counting all possible stable sets inside a graph, which is known to be #P -complete,
even for graphs of low vertex-degree [13].

2.2. The Nullstellensatz and 3-colourability

In this subsection, we investigate the degree growth of Nullstellensatz certificates for the
non-3-colourability of graphs, using the polynomial encoding previously introduced in
Lemma 2.1.

2.2.1. Minimum-degree Nullstellensatz certificates. Curiously, every non-3-colourable graph
that we have investigated thus far has a minimum-degree Nullstellensatz certificate of degree
four. We begin by proving that four is indeed a lower bound on the degree of non-3-colourability
certificates.

Theorem 2.12. Every Nullstellensatz certificate for non-3-colourability has degree at least four.

Proof. Our proof is by contradiction. Suppose there exists a Nullstellensatz certificate of degree
three or less. Such a certificate has the following form:

1 =

n∑
i=1

P{i}(x
3
i − 1) +

∑
{i,j}∈E

P{ij}(x
2
i + xixj + x2

j ), (2.12)

where P{i} and P{ij} represent general polynomials of degree less than or equal to three. To be
precise,

P{i} =

n∑
s=1

a{i}sx
3
s +

n∑
s=1

n∑
t=1

t�=s

b{i}stx
2
s xt

+

n∑
s=1

n∑
t=s+1

n∑
u=t+1

c{i}stuxsxtxu +

n∑
s=1

n∑
t=1

d{i}stxsxt +

n∑
s=1

e{i}sxs + f{i},
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and

P{ij} =

n∑
s=1

a{ij}sx
3
s +

n∑
s=1

n∑
t=1

t�=s

b{ij}stx
2
s xt

+

n∑
s=1

n∑
t=s+1

n∑
u=t+1

c{ij}stuxsxtxu +

n∑
s=1

n∑
t=1

d{ij}stxsxt +

n∑
s=1

e{ij}sxs + f{ij}.

Because we work with undirected graphs, note that a{ij}s = a{ji}s, and this fact applies to all
coefficients a to f. Note also that when {i, j} is not an edge of the graph, Pij = 0 and thus
a{ij}s = 0. Again, this fact holds for all coefficients a to f.

When P{i} multiplies (x3
i − 1), this generates cross-terms of the form P{i}x

3
i and −P{i}. In

particular, this generates monomials of degree six or less. Notice that P{ij}(x
2
i + xixj + x2

j ) does
not generate monomials of degree six, only monomials of degree five or less. We begin the
process of deriving a contradiction from (2.12) by considering all monomials of the form x3

s x
3
i

that appear in the expanded Nullstellensatz certificate. These monomials are formed in only two
ways: either (1) x3

s (x
3
i − 1), or (2) x3

i (x
3
s − 1). Therefore, the n2 equations for x3

s x
3
i (denoted as

I.1 to I.n2) are either a{i}i = 0 for x6
i , or a{s}i + a{i}s = 0 for x3

s x
3
i . Summing these equations, we

see

0 =

n∑
i=1

n∑
s=1

a{i}s. (2.13)

Let us now consider monomials of the form x2
s xtx

3
i (with s �= t). These monomials are formed

in only one way: by multiplying b{i}stx
2
s xt by x3

i . Therefore, because the coefficient for x2
s xtx

3
i

must simplify to zero in the expanded Nullstellensatz certificate, b{i}st = 0 for all b{i}. When we
consider monomials of the form xsxtxux

3
i (with s < t < u), we see that c{i}stu = 0 for all c{i}, for

the same reasons as above.
As we continue toward our contradiction, we now consider monomials of degree three in

the expanded Nullstellensatz certificate. In particular, we consider the coefficient for x3
s . The

monomial x3
s is generated in three ways: (1) f{s}(x

3
s − 1), (2) a{i}sx

3
s (x

3
i − 1) (from the vertex

polynomials), and (3) e{st}sxs(x
2
s + xsxt + x2

t ) (from the edge polynomials). The n equations for
x3
s are of the following form:

0 = f{s} −
n∑

i=1

a{i}s +
∑

t∈Adj(s)

e{1s}1.

Summing these equations, we see

0 =

n∑
i=1

f{i} −
( n∑

i=1

n∑
s=1

a{i}s

)
+

n∑
s=1

n∑
t∈Adj(s)

e{st}s. (2.14)

Because the degree-three-or-less Nullstellensatz certificate (2.12) is identically one, the constant
terms must sum to one. Therefore, we know

∑n
i=1 f{i} = −1. Furthermore, recall that e{st}s = 0

if the undirected edge {s, t} does not exist in the graph. Therefore, applying (2.13) to (2.14), we
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have the following equation:

1 =

n∑
s,t=1,

s �=t

e{st}s. (2.15)

To give a preview of our overall proof strategy, the equations to come will ultimately show that
the right-hand side of (2.15) also equals zero, which is a contradiction.

Now we will consider the monomial x2
s xt (with s �= t). We recall that b{i}st = 0 for all b{i}

(where b{i}st is the coefficient for x2
s xt in the ith vertex polynomial). Therefore, we do not need to

consider b{i}st in the equation for the coefficient of monomial x2
s xt. In other words, we only need

to consider the edge polynomials, which can generate this monomial in two ways: (1) e{st}sxs ·
xsxt, and (2) e{si}txt · x2

s . The 2
(
n
2

)
equations for these coefficients are of the following form:

0 = e{st}s +
∑

i∈Adj(s)

e{si}t.

Summing these equations, we see

n∑
s=1

n∑
t=1,

t�=s

e{st}s +

( n∑
s=1

∑
t∈Adj(s)

e{st}t

)
︸ ︷︷ ︸

partial sum A

+

( n∑
s=1

∑
t∈Adj(s)

n∑
u=1,

u�=s,t

e{st}u

)

︸ ︷︷ ︸
partial sum B

= 0. (2.16)

However, recall that e{st}u = 0 when {s, t} does not exist in the graph, and also that e{st}t = e{ts}t.
Thus, we can rewrite partial sum A from (2.16) as

n∑
s=1

∑
t∈Adj(s)

e{st}t =

n∑
s=1

n∑
t=1,

t�=s

e{st}t =

n∑
s=1

n∑
t=1,

t�=s

e{ts}t.

Substituting the above into (2.16) yields

2

n∑
s,t=1,

s �=t

e{st}s +

( n∑
s=1

∑
t∈Adj(s)

n∑
u=1,

u�=s,t

e{st}u

)

︸ ︷︷ ︸
partial sum B

= 0. (2.17)

Finally, we consider the monomial xsxtxu (with s < t < u). We have already argued that c{i}stu =

0 for all c{i} (where c{i}stu is the coefficient for xsxtxu in the ith vertex polynomial). Therefore, as
before, we need only consider the edge polynomials, which can generate this monomial in three
ways: (1) e{st}uxu · xsxt, (2) e{su}txt · xsxu, and (3) e{tu}sxs · xtxu. As before, these coefficients
must cancel in the expanded certificate, which yields

(
n
3

)
equations of the following form:

0 = e{st}u + e{su}t + e{tu}s.

Summing these equations, we see

n−2∑
s=1

n−1∑
t=s+1

n∑
u=t+1

(
e{st}u + e{su}t + e{tu}s

)
= 0. (2.18)
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Now we come to the critical argument of the proof. We claim that the following equation
holds: ( n∑

s=1

∑
t∈Adj(s)

n∑
u=1,

u�=s,t

e{st}u

)
= 2

(n−2∑
s=1

n−1∑
t=s+1

n∑
u=t+1

(
e{st}u + e{su}t + e{tu}s

))
. (2.19)

Notice that the left-hand and right-hand sides of this equation consist only of coefficients e{st}u
with s, t, u distinct. Consider any such coefficient e{st}u. Notice that e{st}u appears exactly once
on the right-hand side of the equation. Furthermore, either e{st}u appears exactly twice on the
left-hand side of this equation (because s ∈ Adj(t) implies t ∈ Adj(s)), or e{st}u = 0 (because the
edge {s, t} does not exist in the graph). Therefore, (2.19) is proved. Applying this result (and
(2.18)) to (2.17) gives us the following: ∑

1�s,t�n

s �=t

e{st}s = 0. (2.20)

But (2.20) contradicts (2.15) (1 = 0), thus there can be no certificate of degree less than four.

It is important to note that when we try to construct certificates of degree four or greater, the
equations for the degree-six monomials become considerably more complicated. In this case,
the edge polynomials do contribute monomials of degree six, which causes the above argument
to break.

2.2.2. Cliques, odd-wheels and their Nullstellensatz certificates...

Theorem 2.13. For Kn with n � 4, a minimum-degree Nullstellensatz certificate for non-3-
colourability has degree four.

Proof. It is easy to see that K4 is a subgraph of K5, which is a subgraph of K6, and so on. If H
is a subgraph of G, and H has a minimum-degree non-3-colourability Nullstellensatz certificate
of degree k, then G also has a minimum-degree non-3-colourability Nullstellensatz certificate of
degree k. Thus, because K4 has a degree-four Nullstellensatz certificate ((2.1)), Kn with n � 4

also has a degree-four certificate.

The odd-wheels consist of an odd-cycle rim, with a centre vertex connected to all other
vertices. The (2k + 1)-odd-wheel refers to a rim of length 2k + 1, which implies that the actual
graph contains 2k + 2 vertices, and 4k + 2 edges. It is easy to see that the odd-wheels are non-3-
colourable. It is natural to ask about the degree of a minimum-degree Nullstellensatz certificate
for non-3-colourability.

Theorem 2.14. The (2k + 1)-odd-wheel has a minimum-degree Nullstellensatz certificate for
non-3-colourability of degree four.

Proof. Our proof is by induction on k. We will show that for every k, we can construct a
certificate of degree four with very particular properties. By Theorem 2.12, any certificate of
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Figure 2. Here we show the evolution of the (2k + 1)-odd-wheel to the (2(k + 1) + 1)-odd-wheel.

degree four is minimal. Our base case is k = 1. The 3-odd-wheel is isomorphic to K4 (the
4-complete graph), and a certificate of degree four was previously displayed in (2.1). Based
on that equation, we denote the non-3-colourability certificate for the 3-odd-wheel as follows:

1 = α1v1 + α{12}e{12} + α{23}e{23} + α̃e{13} + α{20}e{20} + α{10}e{10} + α{30}e{30},

where v1 = x3
1 − 1, and e{ij} = x2

i + xixj + x2
j and α1, α{ij} and α̃ denote polynomials of degree

four in R[x0, x1, x2, x3]. In particular, via (2.1), we see

α̃ =
2

9
x4

1 +
1

9
x3

1x2 +
1

9
x3

1x0 +
2

9
x2

1x2x0. (2.21)

For our induction hypothesis, we assume that there exists a degree-four certificate for the (2k +

1)-odd-wheel of the following specific form:

1 = γ1v1 + γ{12}e{12} + · · · + γ{2k,2k+1}e{2k,2k+1} + α̃e{1,2k+1} + γ{10}e{10}

+ · · · + γ{0,2k+1}e{0,2k+1}, (2.22)

where γ1, γ{ij} denote polynomials of degree four in R[x0, x1, . . . , x2k+1]. Note in particular that
the coefficient for the edge {1, 2k + 1} in the (2k + 1)-odd-wheel certificate is exactly the same
as the coefficient for the {1, 3} edge in the 3-odd-wheel certificate: both are equal to α̃.

Now, we will show that there exists a degree-four certificate for the
(
2(k + 1) + 1

)
-odd-wheel

such that the coefficient for the {1, 2(k + 1) + 1} edge is still α̃. In Figure 2, we can see that
the topological difference between the (2k + 1)-odd-wheel and the (2(k + 1) + 1)-odd-wheel is
that the edge {1, 2k + 1} is lost, and the 2(k + 1), 2(k + 1) + 1 vertices are gained, along with
associated edges

{
(
2k + 1, 2(k + 1)

)
,
(
2(k + 1), 2(k + 1) + 1

)
,
(
1, 2(k + 1) + 1

)
,(

0, 2(k + 1)
)
,
(
0, 2(k + 1) + 1

)
}.

Suppose there exists an algebraic relation or syzygy of the specific form

α̃e{1,2k+1} = α̃e{1,2(k+1)+1} + β{2k+1,2(k+1)}e{2k+1,2(k+1)}

+ β{2(k+1),2(k+1)+1}e{2(k+1),2(k+1)+1} + β{01}e{01} + β{0,2k+1}e{0,2k+1}

+ β{0,2(k+1)}e{0,2k+1} + β{0,2(k+1)+1}e{0,2(k+1)+1}, (2.23)

where β{ij} ∈ R[x0, x1, x2, x2k+1, x2(k+1), x2(k+1)+1] and deg(β{ij}) = 4. Note that the coefficients
for e{1,2k+1} and e{1,2(k+1)+1} are the same: both are equal to α̃. Therefore, in order to construct
a degree-four certificate for the

(
2(k + 1) + 1

)
-odd-wheel, we can simply substitute (2.23) for

the α̃e{1,2k+1} term in (2.22). Thus, demonstrating the existence of a syzygy such as (2.23) will
conclude our proof.
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This special syzygy was indeed found explicitly via computer and it is listed below for the
3-odd-wheel to the 5-odd-wheel. For space considerations we do not list it for general k; however,
it can be easily generalized to match the indices of (2.23) via the following variable substitutions:
x3 → x2k+1, x4 → x2(k+1), x5 → x2(k+1)+1. Notice that α̃ ∈ R[x0, x1, x2]. Therefore, α̃ is invari-
ant under this substitution.

0 = −
(

2

9
x4

1 +
1

9
x3

1x2 +
1

9
x3

1x0 +
2

9
x2

1x2x0

)
︸ ︷︷ ︸

α̃

(x2
1 + x3x1 + x2

3)︸ ︷︷ ︸
e{13}

+

(
2

9
x4

1 +
1

9
x3

1x2 +
1

9
x3

1x0 +
2

9
x2

1x2x0

)
︸ ︷︷ ︸

α̃

(x2
1 + x5x1 + x2

5)︸ ︷︷ ︸
e{15}

+

(
2

9
x3

1x0 +
1

9
x1x2x0x5 − 1

9
x1x2x4x5 − 1

9
x1x3x

2
0 − 2

9
x1x3x0x4 − 2

9
x2x

3
0

− 1

9
x2x

2
0x4 +

1

9
x4

4

)
(x2

3 + x3x4 + x2
4)︸ ︷︷ ︸

e{34}

+

(
−2

9
x4

1 − 2

9
x2

1x2x0 − 1

9
x2

1x2x4 +
1

9
x2

1x0x4 − 1

9
x1x2x3x0 +

1

9
x1x2x3x4 − 1

9
x1x2x

2
0

+
1

9
x1x2x

2
4 − 2

9
x4

0 +
1

9
x3

0x4 − 1

9
x4

4 +
1

9
x3

4x5 − 1

9
x4x

3
5

)
(x2

4 + x4x5 + x2
5)︸ ︷︷ ︸

e{45}

+

(
−1

3
x1x3x

2
0 − 2

9
x3x0x

2
4 − 5

9
x1x

2
3x0 − 1

3
x2

1x3x0 +
2

9
x2

1x4x5 +
2

9
x2

0x4x5 − 1

9
x1x4x

2
5

+
2

9
x2

3x0x4 +
2

9
x2x3x

2
4 +

1

9
x2

1x2x3 − 1

9
x2

1x2x5 +
2

9
x3

1x3 − 2

9
x3

1x5 +
1

9
x2

1x0x5

− 2

9
x2

1x
2
0 +

2

9
x2

1x
2
4 − 4

9
x1x

2
3x4 − 2

3
x1x3x0x4 − 4

9
x1x0x4x5 − 5

9
x1x

2
0x4 − 4

9
x1x0x

2
4

− 1

9
x1x0x

2
5 − 1

9
x1x

2
4x5 − 2

9
x1x

3
0 +

2

9
x2x

2
3x0 +

1

9
x2x

2
3x4 − 1

9
x2x3x

2
5 +

2

9
x2x0x

2
4

+
1

3
x2x3x0x4 − 1

9
x2x3x0x5 +

1

9
x2x

3
4 − 4

9
x3

3x0 − 1

3
x4

3 − 1

9
x3

3x4

+
2

9
x2

3x
2
4 +

2

9
x2

0x
2
5 − 1

9
x0x

3
4

)
(x2

0 + x0x1 + x2
1)︸ ︷︷ ︸

e{01}

+

(
2

9
x4

1 +
1

9
x3

1x2 +
4

9
x3

1x0 +
4

9
x3

1x4 − 1

9
x2

1x2x4 +
1

3
x2

1x
2
3 +

1

9
x2

1x3x0 +
1

9
x2

1x3x4

+
5

9
x2

1x
2
0 +

5

9
x2

1x0x4 +
2

9
x2

1x
2
4 − 2

9
x1x2x

2
0 − 1

9
x1x2x0x4 − 1

9
x1x2x0x5

+
1

9
x1x2x4x5 +

1

3
x1x

2
3x0 +

2

9
x1x3x

2
0 +

1

3
x1x3x0x4 +

1

3
x2

3x
2
0

− 1

9
x3x

3
0 − 1

9
x3x

2
0x4 − 2

9
x3x0x

2
4 − 2

9
x4

0 − 2

9
x3

0x4

)
(x2

0 + x0x3 + x2
3)︸ ︷︷ ︸

e{03}
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+

(
1

9
x3

1x5 − 2

9
x2

1x2x3 +
1

9
x2

1x2x5 − 4

9
x2

1x
2
3 − 1

9
x1x2x3x4 +

1

9
x1x2x

2
0 − 1

9
x1x2x

2
4

+
1

9
x1x3x

2
0 +

2

9
x1x3x0x4 +

1

3
x1x

3
0 +

1

9
x1x

2
0x4 +

1

9
x1x

2
0x5 +

1

9
x2x3x0x5

+
1

9
x2x3x

2
5 +

2

9
x3

3x0 +
1

9
x2

3x0x4 − 1

9
x2

3x
2
4 +

1

3
x3x

3
0

+
1

9
x3x0x

2
4 − 1

9
x3x

3
4 +

2

9
x4

0

)
(x2

0 + x0x4 + x2
4)︸ ︷︷ ︸

e{04}

+

(
−1

9
x3

1x2 +
1

9
x3

1x4 +
1

9
x2

1x2x3 +
1

9
x2

1x2x4 − 1

9
x2

1x
2
0 +

2

9
x1x2x3x0 − 1

9
x1x2x3x4

+
1

9
x1x2x

2
0 − 1

9
x1x2x

2
4 − 1

9
x1x

3
0 +

1

9
x1x

2
0x4 − 1

9
x2x3x0x4 − 1

9
x2x3x

2
4

− 1

9
x0x

2
4x5 − 1

9
x0x4x

2
5 +

1

9
x2

4x
2
5 +

1

9
x4x

3
5

)
(x2

0 + x0x5 + x2
5)︸ ︷︷ ︸

e{05}

. �

Finally, the reader may easily observe that Theorem 1.1(ii) follows directly from Theorem 2.13,
Theorem 2.14, and the fact that when H is a subgraph of G, and H has a minimum-degree
non-3-colourability Nullstellensatz certificate of degree k, then G also has a minimum-degree
non-3-colourability Nullstellensatz certificate of degree k.

2.2.3. Computer generation of Nullstellensatz certificates for non-3-colourable graphs...

To deal with various non-3-colourable graphs, we implemented an exact-arithmetic linear system
solver for the purpose of finding explicit Nullstellensatz certificates (we had previously observed
that the systems of linear equations were numerically unstable in floating-point arithmetic). With
our implementation we ran several experiments. The systems of linear equations are also quite
large in practice, as the bound on the degree of the polynomial coefficients grows. Thus we need
ways to reduce the number of unknowns.

We will not discuss ad hoc methods we used to deal with the particular polynomial system at
hand (see [29]), but let us at least observe one useful trick for reducing the size of our systems of
linear equations. Instead of allowing all monomials of degree � d to appear in the construction of
the linear system of equations, we can randomly set unknowns in the linear system of equations
to be equal to zero, e.g., set each variable to 0 with probability p, independently, to get a smaller
system.

This heuristic worked quite well. In Figure 3 we see the results of a probabilistic search for
Nullstellensatz certificates. On the x-axis is the probability p of keeping an unknown in the linear
system. Thus, if p = 0.1, 90% of the time we set the unknown to 0, and only 10% of the time, we
keep it in the system. For the cliques and odd-wheels, we know that there is always a certificate
of degree four. For every probability 0.1, 0.2, . . . , 1 we performed 100 searches for a degree-
four certificate. For the cliques and odd-wheels at p = 0.1 and p = 0.2, we almost never found
certificates. But for p = 0.4, we found certificates 95% of the time. In practice, we can reduce
the number of variables in the linear system by 60%, and still find a Nullstellensatz certificate
90% of the time.
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Figure 3. Probability tests on cliques and odd-wheels.

Figure 4. These graphs (from left to right) are (1) a uniquely 3-colourable graph, labelled with its unique
3-colouring [8], (2) the Grötzsch graph, and (3) the Jin graph.

We now report the results of our computational experiments. With the aid of a computer, we
searched hundreds of non-3-colourable graphs, hoping to find explicit examples with growth in
the certificate degree. Every graph we have investigated so far has a Nullstellensatz certificate of
degree four. In contrast to the stable set case, most graphs appear to have low-degree Nullstel-
lensatz proofs of non-3-colourability. For example, in Figure 4, we describe the Jin and Grötzch
graphs, and in Figure 5, we describe the ‘flower’ family. Kneser graphs are described in most
graph theory books. In Table 1 we present a sampling of the many graphs we tried during our
computational experiments. Note that we often used our probabilistic linear algebra algorithm,
selecting p = 0.4 as a likely threshold for feasibility.

A uniquely 3-colourable graph is a graph that can be coloured with three colours in only one
way, up to permutation of the colour labels. Figure 4 displays a uniquely 3-colourable triangle-
free graph [8]. Because the graph is uniquely 3-colourable, the addition of a single edge between
two similarly coloured vertices will result in a new non-3-colourable graph. Table 1 also details
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Table 1. Experimental investigations for flowers, Kneser graphs, the Jin graph and the
Grötzch graphs. Here G denotes the uniquely colourable graph displayed in Figure 4.

Graph Vertices Edges Row Col. p deg

flower 8 16 32 51819 49516 0.4 4
flower 10 20 40 178571 362705 1 4
flower 11 22 44 278737 278844 0.5 4
flower 13 26 52 629666 495051 0.4 4
flower 14 28 56 923580 705536 0.4 4
flower 16 32 64 1979584 1674379 0.4 4
flower 17 34 68 2719979 2246535 0.4 4
flower 19 38 76 4862753 3850300 0.5 4
Kneser-(6,2) 15 45 39059 68811 0.5 4
Kneser-(7,2) 21 105 230861 558484 0.5 4
Kneser-(8,2) 28 210 1107881 3307971 0.5 4
Kneser-(9,2) 36 378 1107955 3304966 0.5 4
Kneser-(10,2) 45 630 15567791 36785283 0.5 4
Jin graph 12 24 12168 13150 0.4 4
Grötzsch 11 20 7903 8109 0.4 4
G + {(3, 4)} 12 24 12257 13091 0.4 4
G + {(7, 12)} 12 24 12201 13085 0.4 4
G + {(1, 8)} 12 24 12180 13124 0.4 4
G + {(3, 4), (12, 7)} 12 25 12286 13804 0.4 4

Figure 5. 3-, 4- and 5-flowers (left to right). Note that the 3-flower is 3-colourable, whereas the 4- and 5-flowers are
non-3-colourable. It is easy to see that only flowers that are multiples of 3 are 3-colourable.

these experiments. Finally, we investigated all non-3-colourable graphs on six vertices or less:
every one has a Nullstellensatz certificate of degree four.

3. Encodings and an applications to graph theory

Finally, we establish encodings for the combinatorial problems stated in Theorem 1.2. At the end
of this section we introduce the notion of dual colouring and simultaneous chromatic numbers of
graphs.

A comment about our purpose is in order. One can easily find a 0/1 polynomial encoding
for SAT, and thus construct polynomial encodings for all NP-complete problems via polynomial
reductions to SAT. However, this approach is not computationally practical for us because of the
blow-up in the size of the underlying linear algebra systems. We previously saw that the stable-
set encoding using constraints of the form xi(xi − 1) led to dense certificate with linear growth
in degree, but other type of constraints (e.g., root of unity constraints as in graph-3-colourability)
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may behave better in practice with respect to the Nullstellensatz. Because we care about com-
putation, we care about finding encodings that better capture the combinatorial structure with
respect to the Nullstellensatz (this is very evident, for example, in planarity questions).

3.1. Proof of Theorem 1.1

Proof of Theorem 1.2(i). Suppose that a cycle C of length L exists in the graph G. We set yi = 1

or 0 depending on whether node i is on C or not. Next, starting the numbering at any node of C,
we set xi = j if node i is the jth node of C. It is easy to check that (1.1) and (1.2) are satisfied.

To verify (1.3), note that because C has length L, if vertex i is the jth node of the cycle, then
one of its neighbours, say k, must be the ‘follower’, namely the (j + 1)th element of the cycle.
If j < L, then the factor (xi − xk − 1) = 0 appears in the product equation associated with the
ith vertex, and the product is zero. If j = L, then the factor (xi − xk − (L − 1)) = 0 appears, and
the product is again 0. Because this is true for all vertices that are turned ‘on’, and for all vertices
that are ‘off’, we have (1.3) automatically equal to zero, all of the equations of the polynomials
vanish.

Conversely, from a solution of the system above, we see that L variables yi are not zero; call
this set C. We claim that the nodes i ∈ C must form a cycle. Because yi �= 0, the polynomial of
(1.3) must vanish; thus, for some j ∈ C,

(xi − xj + 1) = 0 or (xi − xj − (L − 1)) = 0.

Note that (1.3) reduces to this form when yi = 1. Therefore, either vertex i is adjacent to a vertex
j (with yj = 1) such that xj equals the next integer value (xi + 1 = xj), or xi − L = xj − 1

(again, with yj = 1). In the second case, because xi and xj are integers between 1 and L, this
forces xi = L and xj = 1. By the pigeonhole principle, this implies that all integer values from 1
to L must be assigned to some node in C starting at vertex 1 and ending at L (which is adjacent
to the node receiving 1).

We have the following corollary.

Corollary 3.1. A graph G has a Hamiltonian cycle if and only if the following zero-dimensional
system of n variables and 2n equations has a solution. For every node i ∈ V (G), we have two
equations:

n∏
s=1

(xi − s) = 0 and
∏

j∈Adj(i)

(xi − xj + 1)(xi − xj − (n − 1)) = 0.

The number of Hamiltonian cycles in the graph equals the number of solutions of the system
divided by 2n.

Proof. Clearly, when L = n we can just fix all yi to 1, and thus many of the equations simplify
or become obsolete. We only have to check the last statement on the number of Hamiltonian
cycles. For that, we remark that no solution appears with multiplicity because the ideal is radical.
That the ideal is radical is implied by the fact that every variable appears as the only variable in
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a unique square-free polynomial (see p. 246 of [21]). Finally, note that for every cycle there are
n ways to choose the initial node to be labelled as 1, and then two possible directions to continue
the labelling.

Note that similar results can be established for the directed graph version; thus one can con-
sider paths or cycles with orientation. Also note that we can use the polynomials systems above
to investigate the distribution of cycle lengths in a graph (and similarly for path lengths and
cut sizes). This topic has several outstanding questions. For example, a still-unresolved question
of Erdős and Gyárfás [38] asks: If G is a graph with minimum degree three, is it true that G
always has a cycle having length that is a power of two? Define the cycle-length polynomial as
the square-free univariate polynomial whose roots are the possible cycle lengths of a graph (the
same can be done for cuts). Considering L as a variable, the reduced lexicographic Gröbner basis
(with L the last variable) computation provides us with a unique univariate polynomial on L that
is divisible by the cycle-length polynomial of G.

Now we proceed to the proof of part (ii) of Theorem 1.2. For this we recall Schnyder’s
characterization of planarity in terms of the dimension of a poset [36]. For an n-element poset
P , a linear extension is an order-preserving bijection σ : P → {1, 2, . . . , n}. The poset dimension
of P is the smallest integer t for which there exists a family of t linear extensions σ1, . . . , σt of
P such that x < y in P if and only if σi(x) < σi(y) for all σi. The incidence poset P (G) of a
graph G with node set V and edge set E is the partially ordered set of height two on the union
of nodes and edges, where we say x < y if x is a node and y is an edge, and y is incident
to x.

Lemma 3.2 (Schnyder’s theorem [36]). A graph G is planar if and only if the poset dimension
of P (G) is no more than three.

Thus our first step is to encode the linear extensions and the poset dimension of a poset
P in terms of polynomial equations. The idea is similar to our characterization of cycles via
permutations.

Lemma 3.3. Let P = (E,>) be a poset, and C[xi(k),Δij , sk] be a polynomial ring in p|E| +

(|E|2 − |E|) + p variables (where i = 1, . . . , |E|, j = 1, . . . , |E|, j �= i, and k = 1, . . . , p). Then P

has poset dimension at most p if and only if the following system of equations has a solution.
For k = 1, . . . , p,

|E|∏
s=1

(xi(k) − s) = 0, for every i ∈ {1, . . . , |E|}, and

sk

( ∏
{i,j}∈{1,...,|E|},

i<j

xi(k) − xj(k)

)
= 1.

(3.1)

For k = 1, . . . , p, and every ordered pair of comparable elements ei > ej in P ,

xi(k) − xj(k) − Δij(k) = 0. (3.2)
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Figure 6. Via Schnyder’s theorem, the square is planar because P (square) has dimension at most three.

For every ordered pair of incomparable elements of P (i.e., ei �> ej and ej �> ei),

p∏
k=1

(
xi(k) − xj(k) − Δij(k)

)
= 0,

p∏
k=1

(
xj(k) − xi(k) − Δji(k)

)
= 0, (3.3)

For k = 1, . . . , p, and for every pair {i, j} ∈ {1, . . . , |E|},

|E|−1∏
d=1

(Δij(k) − d) = 0,

|E|−1∏
d=1

(Δji(k) − d) = 0.

Proof. With (3.1) and (3.2), we assign distinct numbers 1 to |E| to the poset elements, such
that the properties of a linear extension are satisfied. Equations (3.1) and (3.2) are repeated p

times, so p linear extensions are created. If the intersection of these extensions is indeed equal
to the original poset P , then for every incomparable pair of elements in P at least one of the p

linear extensions must detect the incomparability. But this is indeed the case for (3.3), which says
that for the lth linear extension the values assigned to the incomparable pair ei, ej do not satisfy
xi(l) < xj(l), but instead satisfy xj(l) > xi(l).

Proof of Theorem 1.2(ii). We simply apply the above lemma to the particular pairs of order
relations of the incidence poset of the graph. Note that in the formulation we added variables
z{ij} that have the effect of turning on or off an edge of the input graph.

Example 3 (posets and planar graphs). In Figure 6 we give a demonstration of how
Schnyder’s theorem can be used to show planarity of graphs.

Proof of Theorem 1.2(iii). Using Lemma 2.1, we can finish the proof of part (iii). For a k-
colourable subgraph H of size R, we set yij = 1 if edge {i, j} ∈ E(H) or yij = 0 otherwise.
By Lemma 2.1, the resulting subsystem of equations has a solution. Conversely, from a solu-
tion, the subgraph H in question is read off from those yij �= 0. Solvability implies that H is
k-colourable.

Before we prove Theorem 1.2(iv), we recall that the edge-chromatic number of a graph is the
minimum number of colours necessary to colour every edge of a graph such that no two edges
of the same colour are incident on the same vertex.
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Proof of Theorem 1.2(iv). If the system of equations has a solution, then (1.8) ensures that
all variables xij are assigned Δ roots of unity. Equation (1.9) ensures that no node is incident
on two edges of the same colour. Because the graph contains a vertex of degree Δ, the graph
cannot have an edge-chromatic number less than Δ, and because the graph is edge-Δ-colourable,
this implies that the graph has edge-chromatic number exactly Δ. Conversely, if the graph has
an edge-Δ-colouring, simply map the colouring to the Δ roots of unity and all equations are
satisfied. Because Vizing’s classic result shows that any graph with maximum vertex degree Δ

can be edge-coloured with at most Δ + 1 colours, if there is no solution, then the graph must
have an edge-chromatic number of Δ + 1.

3.2. Normal forms and dual colourings

In [2] Alon and Tarsi show another polynomial encoding of k-colourability. Here we consider one
curious consequence of the polynomial method for graph colourings when we use an algebraic
encoding similar to that of [2]. By taking a closer look at the normal form of the polynomials
involved, we can derive a notion of dual colouring, which has the nice property that a graph is
dually d-colourable if and only if it is d-colourable. This gives rise to an appealing new graph
invariant: the simultaneous chromatic number σ(G), defined to be the smallest d such that G has
a d-labelling that is simultaneously a colouring and a dual colouring.

Fix a graph G = (V , E) with V := {1, . . . , n} and E ⊆
(
V
2

)
, fix a positive integer d, and let

D := {0, 1 . . . , d − 1}. Let α := exp( 2πi
d

) ∈ C be the primitive complex dth root of unity, so that
α0, . . . , αd−1 are distinct and αd = 1. For a d-labelling c : V −→ D of the vertices of G, let

ε(c) :=
∏

{(αc(i) − αc(j)) : i < j, {i, j} ∈ E}.

Clearly, c is a proper d-colouring of G if and only if ε(c) �= 0.
With every orientation O = (V ,A) of G (where A denotes the set of ‘arrows’ or directed edges)

associate a sign, signO = ±1, defined by the parity of the number |{(i, j) ∈ A : i > j}| of flips of
O from the standard orientation (where every directed edge (i, j) has i < j), and an out-degree
vector δO := (δO1 , . . . , δ

O
n ) with δOi the out-degree of vertex i in O. For a non-negative integer

k let [k] ∈ D be the representative of k modulo d, and for a vector δ = (δ1, . . . , δn) ∈ Vn let
[δ] = ([δ1], . . . , [δn]) ∈ DV . For a labelling c∗ : V −→ D of the vertices of G, let

ε∗(c∗) :=
∑

{signO : O orientation of G with [δO] = c∗}.

Call c∗ a dual d-colouring of G if ε∗(c∗) �= 0.

Theorem 3.4. A graph has a d-colouring, namely c ∈ DV with ε(c) �= 0 (so it is d-colourable) if
and only if it has a dual d-colouring, namely c∗ ∈ DV with ε∗(c∗) �= 0 (so it is dually
d-colourable).

Proof. Let G be a graph on n vertices. Consider the following radical zero-dimensional ideal I
in C[x1, . . . , xn] and its variety variety(I) in Cn:

I := 〈xd1 − 1, . . . , xdn − 1〉, variety(I) := {αc := (αc(1), . . . , αc(n)) ∈ Cn : c ∈ DV }.

It is easy to see that the set {xd1 − 1, . . . , xdn − 1} is a universal Gröbner basis (see [3]
and references therein). Thus, the (congruence classes of) monomials xc

∗
, c∗ ∈ DV (where
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xc
∗
:=

∏n
i=1 x

c∗(i)
i ), which are those monomials not divisible by any xdi , form a vector space

basis for the quotient C[x1, . . . , xn]/I . Therefore, every polynomial f =
∑

aδ · xδ has a unique
normal form [f] with respect to this basis, namely the polynomial that lies in the vector space
spanned by the monomials xc

∗
, c∗ ∈ DV , and satisfies f − [f] ∈ I . It is not very hard to show

that this normal form is given by [f] =
∑

aδ · x[δ].
Now consider the graph polynomial of G,

fG :=
∏

{(xi − xj) : i < j, {i, j} ∈ E}.

The labelling c ∈ DV is a d-colouring of G if and only if ε(c) = fG(αc) �= 0. Thus, G is not
d-colourable if and only if fG vanishes on every αc ∈ variety(I), which holds if and only if f ∈ I,

because I is radical. It follows that G is d-colourable if and only if the representative of fG is not
zero. Because fG =

∑
signO · xδO , with the sum extending over the 2|E| orientations O of G, we

obtain

[fG] =
∑

signO · x[δO] =
∑
c∗∈DV

ε∗(c∗) · xc∗
.

Therefore [fG] �= 0 and G is d-colourable if and only if there is a c∗ ∈ DV with ε∗(c∗) �= 0.

Example 4. Consider the graph G = (V , E), V = {1, 2, 3, 4} and E = {12, 13, 23, 24, 34}, and
let d = 3. The normal form of the graph polynomial can be shown to be

[fG] = x2
1x

2
2x3 − x2

1x
2
2x4 + x2

1x2x
2
4 − x2

1x2x
2
3 + x2

1x
2
3x4 − x2

1x3x
2
4

+ x1x2 − x1x2x
2
3x4 + x1x

2
3x

2
4 − x1x3 + x1x

2
2x3x4

− x1x
2
2x

2
4 + x2

3 − x3x4 + x2
2x3x

2
4 − x2

2 + x2x4 − x2x
2
3x

2
4.

Note that, in general, the number of monomials appearing in the expansion of fG can be as
much as the number of orientations 2|E|; but usually it will be smaller due to cancellations that
occur. Moreover, there will usually be further cancellations when moving to the normal form, so
typically [fG] will have fewer monomials. In our example, out of the 2|E| = 25 = 32 monomials
corresponding to the orientations, in the expansion of fG only 20 appear, and in the normal form
[fG] only 18 appear due to the additional cancellation,

−[x1x
3
3x4] + [x1x

3
2x4] = −x1x4 + x1x4 = 0.

Note that the graph G in this example has only six 3-colourings (which are in fact the same
up to relabelling of the colours), but as many as 18 dual 3-colourings c∗ corresponding to
monomials xc

∗
appearing in [fG]. For instance, consider the labelling c∗(1) = c∗(2) = c∗(4) =

0, c∗(3) = 2: the only orientation O that satisfies [δOj ] = c∗(j) for all j is one with edges ori-
ented as 21, 23, 24, 31, 34, having signO = 1 and out-degrees δO1 = δO4 = 0, δO3 = 2 and δO2 = 3,
contributing to [fG] the non-zero term ε∗(c∗) ·

∏4
j=1 x

c∗(j)
j = 1 · x0

1x
0
2x

2
3x

0
4 = x2

3. Thus, c∗ is a
dual 3-colouring (but, because c∗(1) = c∗(2), it is neither a usual 3-colouring nor a simultaneous
3-colouring; see below).
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Figure 7. Left: a vertex labelling. Right: an acyclic orientation labelled with out-degrees.

Note that in this example, and seemingly often, there are many more dual colourings than col-
ourings; this suggests a randomized heuristic to find a dual d-colouring for verifying
d-colourability.

A particularly appealing notion that arises is the following: call a vertex labelling s : V −→
D a simultaneous d-colouring of a graph G if it is simultaneously a d-colouring and a dual
d-colouring of G. The simultaneous chromatic number σ(G) is then the minimum d such that
G has a simultaneous d-colouring. This is a strong notion that may prove useful for inductive
arguments, perhaps in the study of the 4-colour problem of planar graphs, and which provides
an upper bound on the usual chromatic number χ(G). First note that, like the usual chromatic
number, it can be bounded in terms of the maximum degree Δ(G) as follows.

Theorem 3.5. The simultaneous chromatic number of any graph G satisfies σ(G) � Δ(G) +

1. Moreover, for any G and d � Δ(G) + 1, there is an acyclic orientation O whose out-degree
vector δO = (δO1 , . . . , δ

O
n ) provides a simultaneous d-colouring s defined by s(i) := δOi for every

vertex i.

Proof. We prove the second (stronger) claim, by induction on the number n of vertices. For
n = 1, this is trivially true. Suppose n > 1, and let d := Δ(G) + 1. Pick any vertex i of maximum
degree Δ(G), and let G′ be the graph obtained from G by removing vertex i and all edges incident
on i. Let O′ be an acyclic orientation of G′ and s′ the corresponding simultaneous d-colouring of
G′ guaranteed to exist by induction. Extend O′ to an orientation O of G by orienting all edges
incident on i away from i, and extend s to the corresponding vertex labelling of G by setting
s(i) := δOi = d − 1. Then O is acyclic, and therefore O is the unique orientation of G with out-
degree vector δO. Thus,

ε∗(s) =
∑

{signθ : θ orientation of G with [δθ] = s = δO} = ±1 �= 0,

and therefore s is a dual d-colouring of G. Moreover, if j is any neighbour of i in G, then the
degree of j in G′ is at most d − 2, and therefore its label s′(j) = δO

′
(j) � d − 2, and hence

s(j) = s′(j) �= d − 1 = s(i). Therefore, s is also a d-colouring of G, completing the induction.

Example 5 (simultaneous 4-colouring of the Petersen graph). According to Figure 7, δO =

(2, 1, 0, 2, 0, 3, 1, 2, 3, 1). By inspection of Figure 7, s(i) := δOi does indeed describe a valid
4-colouring of the Petersen graph.
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There are many new combinatorial and computational problems related to this new graph
invariant, which behaves quite differently from the usual chromatic number. For instance, the
direct analogue of Brooks’ theorem (every connected graph with maximum degree Δ that is
neither complete nor an odd cycle is Δ-colourable) fails. It is not hard to verify that the sim-
ultaneous chromatic number of the cycle Cn is 2 if and only if n is a multiple of 4; thus, the
hexagon satisfies σ(C6) = 3 > Δ(C6). Which are the simultaneous chromatic Brooks graphs,
i.e., those with σ(G) = Δ(G)? What is the complexity of deciding if a graph is simultaneously
d-colourable? Which graphs are simultaneously d-colourable for small d? For d = 2, the com-
plete answer was given by L. Lovász [28] during a discussion at the Oberwolfach Mathematical
Institute, as follows.

Theorem 3.6 (Lovász). A connected bipartite graph G = (A,B, E) has simultaneous chro-
matic number σ(G) = 2 if and only if at least one of |A| and |B| has the same parity as |E|.
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