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ALL LINEAR AND INTEGER PROGRAMS ARE SLIM 3-WAY
TRANSPORTATION PROGRAMS∗

JESÚS A. DE LOERA† AND SHMUEL ONN‡

Abstract. We show that any rational convex polytope is polynomial-time representable as a
3-way line-sum transportation polytope of “slim” (r, c, 3) format. This universality theorem has
important consequences for linear and integer programming and for confidential statistical data dis-
closure. We provide a polynomial-time embedding of arbitrary linear programs and integer programs
in such slim transportation programs and in bitransportation programs. Our construction resolves
several standing problems on 3-way transportation polytopes. For example, it demonstrates that,
unlike the case of 2-way contingency tables, the range of values an entry can attain in any slim 3-way
contingency table with specified 2-margins can contain arbitrary gaps. Our smallest such example
has format (6, 4, 3). Our construction provides a powerful automatic tool for studying concrete ques-
tions about transportation polytopes and contingency tables. For example, it automatically provides
new proofs for some classical results, including a well-known “real-feasible but integer-infeasible”
(6, 4, 3)-transportation polytope of M. Vlach, and bitransportation programs where any feasible bi-
transportation must have an arbitrarily large prescribed denominator.
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1. Introduction. Transportation polytopes, their integer points (called con-
tingency tables by statisticians), and their projections have been used and studied
extensively in the operations research and mathematical programming literature (see,
e.g., [1, 2, 5, 17, 20, 23, 24, 29, 30] and references therein) and in the context of secure
statistical data management by agencies such as the U.S. Census Bureau [28] (see,
e.g., [3, 4, 9, 10, 13, 18, 22] and references therein).

We start right away with the statement of the main theorem of this article. Its
proof will be the subject of section 3. Some of the many implications of the main
theorem for linear and integer programming, combinatorial optimization, and confi-
dential statistical data disclosure will be discussed in section 2. The consequences
include the solution of several long-standing open questions stated by Vlach in 1986
[29]. Following a common convention we denote by R≥0 the nonnegative reals. In
what follows, a 3-way transportation polytope is slim if one of its dimensions has
depth three.
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Theorem 1.1. Any rational polytope P = {y ∈ R
n
≥0 : Ay = b} is polynomial-time

representable as a slim 3-way transportation polytope:

T =

⎧⎨
⎩x ∈ R

r×c×3
≥0 :

∑
i

xi,j,k = wj,k ,
∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j

⎫⎬
⎭ .

By saying that a polytope P ⊂ R
p is representable as a polytope Q ⊂ R

q we mean
in the strong sense that there is an injection σ : {1, . . . , p} −→ {1, . . . , q} such that
the coordinate-erasing projection

π : R
q −→ R

p : x = (x1, . . . , xq) �→ π(x) = (xσ(1), . . . , xσ(p))

provides a bijection between Q and P and between the sets of integer points Q∩Z
q and

P ∩Z
p. In particular, if P is representable as Q, then P and Q are isomorphic in any

reasonable sense: They are linearly equivalent, and hence all linear programming re-
lated problems over the two are polynomial-time equivalent; they are combinatorially
equivalent and hence have the same facial structure; and they are integer equivalent,
and therefore all integer programming and integer counting related problems over the
two are polynomial-time equivalent as well. The polytope T in the theorem is a 3-way
transportation polytope with specified line-sums (ui,j), (vi,k), (wj,k) (2-margins in the
statistical context to be elaborated upon below). The arrays in T are of size (r, c, 3);
that is, they have r rows, c columns, and “slim” depth 3, which is the best possi-
ble: 3-way line-sum transportation polytopes of depth ≤ 2 are equivalent to ordinary
2-way transportation polytopes which are not universal.

An appealing feature of Theorem 1.1 is that the defining system of T has only
{0, 1}-valued coefficients and depends only on r and c. Thus, every rational polytope
has a representation by one such system, where all information enters through the
right-hand side (ui,j), (vi,k), (wj,k).

We have also proved a second universality theorem about the following bitrans-
portation problems: Given supply vectors s1, s2 ∈ R

r
≥0, demand vectors d1, d2 ∈ R

c
≥0,

and capacity matrix u ∈ R
r×c
≥0 , find a pair of nonnegative “transportations” x1, x2 ∈

R
r×c
≥0 satisfying supply and demand requirements

∑
j x

k
i,j = ski ,

∑
i x

k
i,j = dkj , k = 1, 2,

and capacity constraints x1
i,j + x2

i,j ≤ ui,j . In other words, find x1, x2 ≥ 0 such that

xk has row-sum sk and column-sum dk for k = 1, 2, and x1 + x2 ≤ u.
Theorem 1.2. Any rational polytope P = {y ∈ R

n
≥0 : Ay = b} is polynomial-time

representable as a bitransportation polytope

F =

⎧⎨
⎩(x1, x2) ∈ R

r×c
≥0 ⊕ R

r×c
≥0 : x1

i,j + x2
i,j ≤ ui,j ,

∑
j

xk
i,j = ski ,

∑
i

xk
i,j = dkj , k = 1, 2

⎫⎬
⎭ .

The proof is an easy adjustment of part of the proof of Theorem 1.1 (i.e., Theorem
3.3) and is presented in section 3.5. The theorem remains valid if we take all supplies
to have the same value ski = U , i = 1, . . . , r, k = 1, 2; further, all capacities ui,j can
be taken to be {0, U}-valued, giving a stronger statement.

The bitransportation problem gives at once a very simple two-commodity flow
network as follows: start with the directed bipartite graph with vertex set I 
 J ,
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|I| = r, |J | = c, and arc set I × J with capacities ui,j , and augment it with two
sources a1, a2 and two sinks b1, b2 and with arcs (ak, i), i ∈ I, (j, bk), j ∈ J , k = 1, 2
with capacities u(ak, i) := ski , u(j, bk) := dkj . The feasible bitransportations are then
precisely the two-commodity flows of maximal total value. This implies a result first
obtained by A. Itai [19]: every linear program is polynomially equivalent to a two-
commodity flow problem. It is worth noting that our transformation is in fact much
simpler than Itai’s. In particular, the above network is exceedingly special: every
dipath has length three and is of the form (ak, i, j, bk) for some k ∈ {1, 2}, i ∈ I, and
j ∈ J and involves only one “interesting” arc ij. Further, each such arc ij carries flow
of each commodity on precisely one path.

To demonstrate the concrete nature of our transformations, the procedures that
convert any given data A, b to data to the representations of Theorems 1.1 and 1.2
have been implemented in a computer program which is available on-line (see [27]).

2. The consequences of the main results. We now discuss some conse-
quences of Theorems 1.1 and 1.2. A few of them were first presented in [7].

2.1. Universality of transportation polytopes: Solution of Vlach’s prob-
lems. As mentioned above, there is a large body of literature on the structure of
various transportation polytopes. In particular, in the comprehensive paper [29], M.
Vlach surveys some ten families of necessary conditions published over the years by
several authors (including Schell, Haley, Smith, Morávek, and Vlach) on the line-sums
(ui,j), (vi,j), (wi,j) for a transportation polytope to be nonempty, and raises several
concrete problems regarding these polytopes. Specifically, [29, Problems 4, 7, 9, 10]
ask about the sufficiency of some of these conditions. Our results say that transporta-
tion polytopes (in fact already of slim, (r, c, 3), arrays) are universal and include all
polytopes. This indicated that the answer to each of Problems 4, 7, 9, and 10 has to
be negative. Indeed we have already verified this.

Example 2.1 (Smith II conditions are not sufficient). Using our encoding, in
particular, applying the algorithm of Theorem 3.2 to the infeasible polyhedron P =
{(x, y) : x+ y = 1, x+ y = 2, x, y ≥ 0}, with 2 as an upper bound on its entry values,
we obtained concrete 2-margins (below). These 2-margins satisfy conditions (8.1)–
(8.3) on page 72 of [29] while giving an infeasible system; thus the example solves
open problem 7 in [29]. Note for reference that for the given matrices the top-left
corners are the margin values u1,1, v1,1, w1,1.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 2 0 0 2 0 0 0
0 0 0 0 2 0 0 0 2 0 0
0 0 2 0 2 0 0 0 0 2 0
0 0 0 0 2 0 0 0 0 0 2
0 0 0 0 0 2 0 2 0 0 0
0 2 0 0 0 2 0 0 2 0 0
0 0 0 0 0 2 0 0 0 2 0
0 0 0 2 0 2 0 0 0 0 2
0 2 0 0 0 0 2 2 0 0 0
2 0 0 0 0 0 2 0 2 0 0
0 0 0 2 0 0 2 0 0 2 0
0 0 2 0 0 0 2 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2
2 0 2
2 2 2
2 0 2
2 0 2
2 2 2
2 0 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0
2 2 0
2 2 0
2 2 0
7 0 1
6 0 2
3 0 5
0 2 4
0 2 4
0 2 4
0 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, Problem 12 on page 76 of [29] asks whether all dimensions can occur as that
of a suitable transportation polytope: the affirmative answer, given very recently in
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[15], follows also at once from our universality result. Our construction also provides
a powerful tool for studying concrete questions about transportation polytopes and
their integer points, by allowing us to write down simple systems of equations that
encode desired situations and lifting them up. Here is an example to this effect.

Example 2.2 (Vlach’s rational-nonempty integer-empty transportation). Using
our construction, we automatically recover the smallest known example, first discov-
ered by Vlach [29], of a rational-nonempty integer-empty transportation polytope, as
follows. We start with the polytope P = {y ≥ 0 : 2y = 1} in one variable, containing
a (single) rational point but no integer point. Our construction represents it as a
transportation polytope T of (6, 4, 3)-arrays with line-sums given by the three matri-
ces below; by Theorem 1.1, T is integer equivalent to P and hence also contains a
(single) rational point but no integer point.

⎛
⎜⎝

1 0 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
1 0 0 1 0 1

⎞
⎟⎠ ,

⎛
⎝ 1 1 1 1 0 0

1 1 0 0 1 1
0 0 1 1 1 1

⎞
⎠ ,

⎛
⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎠ .

Returning to the Vlach problems, [29, Problem 13] asks for a characterization of
those line-sums margins that guarantee an integer point in a 3-way transportation
polytope T . In [18], Irving and Jerrum showed that deciding whether T ∩ Z

r×c×h �=
∅ is NP-complete, and hence an efficient such characterization cannot exist unless
NP = coNP . An immediate corollary of Theorem 1.1 strengthens this result to hold
for slim arrays:

Corollary 2.3. Deciding if a slim, (r, c, 3), transportation polytope has an
integer point is NP-complete.

A comprehensive complexity classification of this decision problem under various
assumptions on the array size and on the input, as well as of the related lattice point
counting problem and other variants, appeared in [6].

The last Vlach problem [29, Problem 14] asks whether there is a strongly polynomial-
time algorithm for deciding the (real) feasibility T �= ∅ of a transportation polytope.
Since the system defining T is {0, 1}-valued, the results of Tardos [26] provide an
affirmative answer. However, the existence of a strongly polynomial-time algorithm
for linear programming in general is open and of central importance; our construction
embeds any linear program in an (r, c, 3) transportation program in polynomial-time,
but unfortunately this process is not strongly polynomial. Nonetheless, our construc-
tion may shed some light on the problem and may turn out useful in sharpening
the boundary (if any) between strongly and weakly polynomial-time solvable linear
programs.

2.2. Universality for approximations. The representation manifested by The-
orem 1.1 allows us to represent an arbitrary integer programming problem min{cy :
y ∈ N

n, Ay = b} as a problem of finding minimum cost integer transportation,

min

⎧⎨
⎩
∑
i,j,k

pi,j,kxi,j,k : x ∈ N
r×c×3 ,

∑
i

xi,j,k = wj,k ,

∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j

⎫⎬
⎭ ,
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by simply extending the cost vector c by zeros to a cost array p. In particular, the
feasible (integer) solutions y to the original problem are in cost-preserving bijection
with the feasible (integer) transportations x (that is, cy = px for any corresponding
pair). This shows that the representation preserves approximations, and that mini-
mum cost transportation problems of slim format (r, c, 3) are universal for approxi-
mation as well. In particular, any nonapproximability result—say, for the maximum
clique problem [14]—lifts at once to the slim minimum cost transportation problem:
just start with an integer programming formulation of the maximum clique prob-
lem with {0, 1}-valued right-hand-side vector b, and lift it up. We get the following
hardness-of-approximation result.

Corollary 2.4. Under the assumption P �= NP , there is an ε > 0 such that
there is no polynomial-time (rc)ε-approximation algorithm for the minimum cost slim
(r, c, 3) line-sum transportation problem.

We do not attempt here to provide the largest possible ε. Note, of course, that
in particular, unless P = NP , there is no constant ratio approximation for the 3-way
transportation problem (the problem is not in the class Apx).

2.3. Confidential statistical data disclosure: Entry-range. Next, we briefly
discuss some of the applications to statistical model theory: a comprehensive treat-
ment can be found in [8]. A central goal of statistical data management by agencies
such as the U.S. Census Bureau is to allow public access to information on their data
base while protecting confidentiality of individuals whose data is in the base. A com-
mon practice [10], taken in particular by the Bureau [28], is to allow the release of
some margins of tables in the base but not the individual entries themselves. The
security of an entry is closely related to the range of values it can attain in any table
with the fixed released collection of margins: if the range is “simple,” then the entry
may be exposed, whereas if it is “complex” the entry may be assumed secure.

In this subsection only, we use the following notation, which is common in sta-
tistical applications. A d-table of size n = (n1, . . . , nd) is an array of nonnega-
tive integers x = (xi1,...,id), 1 ≤ ij ≤ nj . For any 0 ≤ k ≤ d and any k-subset
J ⊆ {1, . . . , d}, the k-margin of x corresponding to J is the k-table xJ := (xJ

ij :j∈J) :=

(
∑

ij :j /∈J xi1,...,id) obtained by summing the entries over all indices not in J . For in-

stance, the 2-margins of a 3-table x = (xi1,i2,i3) are its line-sums x12, x13, x23 such as
x13 = (x13

i1,i3
) = (

∑
i2
xi1,i2,i3), and its 1-margins are its plane-sums x1, x2, x3 such as

x2 = (x2
i2

) = (
∑

i1,i3
xi1,i2,i3).

A statistical model is a triple M = (d,J , n), where J is a set of subsets of
{1, . . . , d} none containing the other and n = (n1, . . . , nd) is a tuple of positive integers.
The model dictates the collection of margins for d-tables of size n to be specified. Our
results concern the models (3, {12, 13, 23}, (r, c, 3)), that is, slim, (r, c, 3)-tables, with
all three of their 2-margins specified.

For any model M = (d,J , n) and any specified collection of margins u = (uJ : J ∈
J ) under the model M, the corresponding set of contingency tables with collection
of margins u is

C(M;u) := {x ∈ N
n1×···×nd : xJ = uJ , J ∈ J } .

Clearly, this set is precisely the set of integer points in the corresponding transporta-
tion polyhedron.

Finally, we define entry-ranges. Permuting coordinates, we may always consider
the first entry x1, where 1 := (1, . . . , 1). The entry-range of a collection of margins
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u under a model M is the set R(M;u) := {x1 : x ∈ C(M;u)} ⊂ N of values x1 can
attain in any table with these margins.

Often, the entry-range is an interval and hence “simple” and vulnerable, that is,
for some a, b ∈ N, R(M;u) = {r ∈ N : a ≤ r ≤ b}. For instance, as shown in [8], this
indeed is the case for any 1-margin model M = (d, {1, 2, . . . , d}, (n1, . . . , nd)) and any
collection of margins u = (u1, . . . , ud) under M.

In striking contrast with this situation and with recent attempts by statisticians
to better understand entry behavior of slim 3-tables (cf. [3, 4, 10]), we have the
following surprising consequence of Theorem 1.1, implying that entry-ranges of 2-
margined slim 3-table models consist of all finite sets of nonnegative integers and
hence are “complex” and presumably secure. For the proof, see [8].

Corollary 2.5 (universality of entry-range). For any finite set D ⊂ N of
nonnegative integers, there are r, c, and 2-margins for (r, c, 3)-tables such that the
set of values occurring in a fixed entry in all possible tables with these margins is
precisely D.

Example 2.6 (Gap in entry-range of 2-margined 3-tables). Applying our auto-
matic universal generator [27] to the polytope P = {y ≥ 0 : y0−2y1 = 0, y1 +y2 = 1}
in three variables, we obtain the following 2-margins for (16, 11, 3)-tables giving entry-
range D = {0, 2},

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0
0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎝ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 0 0 0 0 2 2 0 0 2 2 0 0 0 0 4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

⎞
⎠ ,

⎛
⎝ 4 1 3 6 6 6 6 0 0 0 0

2 3 3 0 0 0 0 2 2 2 2
0 0 0 2 2 2 2 6 6 6 6

⎞
⎠ ;

with a suitable “human” short cut it is possible to get it down to the following
(possibly smallest) collection of margins for (6, 4, 3)-tables, giving again the entry-
range D = {0, 2} with a gap,

⎛
⎜⎝

2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

⎞
⎟⎠ ,

⎛
⎝ 2 1 2 3 0 0

2 1 0 0 2 1
0 0 2 1 2 3

⎞
⎠ ,

⎛
⎜⎝

2 3 2
2 1 2
2 1 2
2 1 2

⎞
⎟⎠ .
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Further applications of Theorem 1.1 to statistical model theory are discussed in
[8]; these include important consequences for Markov bases of 2-margined slim 3-way
models. (Recall that a Markov basis is a set of moves that connects any pair of tables
in the model that have the same set of margins, and is needed for the design of a
random walk on the space of tables with fixed margins to address the problems of
sampling and estimating various statistics on this space; see [8] for more details.)

2.4. Universality of the bitransportation problem. Our construction for
Theorem 1.2 allows automatic generation of bitransportation programs with inte-
ger supplies, demands and capacities, where any feasible bitransportation must have
an arbitrarily large prescribed denominator, in contrast with Hu’s celebrated half-
integrality theorem for the undirected case [16].

Example 2.7 (Bitransportations with arbitrarily large denominator). Fix any
positive integer q. Start with the polytope P = {y ≥ 0 : qy = 1} in one variable
containing the single point y = 1

q . Our construction represents it as a bitransportation
polytope F with integer supplies, demands and capacities, where y is embedded as the
transportation x1

1,1 of the first commodity from supply vertex 1 ∈ I to demand vertex

j ∈ J . By Theorem 1.2, F contains a single bitransportation with x1
1,1 = y = 1

q . For
instance, for q = 3 we get the bitransportation problem with the data

u =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0
0 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1
0 0 1 0 0 1 1 0
1 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠ , s1 =

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎠ , s2 =

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎠ ,

d1 = ( 1 1 1 1 1 1 0 0 ) , d2 = ( 0 0 0 1 1 1 2 1 ) ,

which has the following unique, {0, 1
3 ,

2
3}-valued, bitransportation solution:

x1 =
1

3

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 2 0 0 0 0
0 2 0 1 0 0 0 0
0 1 0 0 2 0 0 0
0 0 2 0 1 0 0 0
0 0 1 0 0 2 0 0
2 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ , x2 =

1

3

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 2 0
0 0 0 2 0 0 0 1
0 0 0 0 1 0 2 0
0 0 0 0 2 0 0 1
0 0 0 0 0 1 2 0
0 0 0 0 0 2 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

By Theorem 1.2, any (say, feasibility) linear programming problem can be encoded
as such a bitransportation problem (unbounded programs can also be treated by
adding to the original system a single equality

∑n
j=0 yj = U with y0 a new “slack”

variable and U derived from the Cramer’s rule bound of Theorem 10.3 [25]). Thus,
any (hopefully combinatorial) algorithm for the bitransportation problem will give
an algorithm for general linear programming. There has been much interest lately
(A. Levin [21]) in combinatorial approximation algorithms for (fractional) multiflows,
e.g., [11, 12]; these yield, via Theorem 1.2, approximation algorithms for general
linear programming, which might prove a useful and fast solution strategy in practice.
Details of this will appear elsewhere.

3. The three-stage construction. Our construction consists of three stages
which are independent of each other as reflected in Lemma 3.1 and Theorems 3.2
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and 3.3 below. Stage one, in section 3.1, is a simple preprocessing based on standard
scaling ideas, in which a given polytope is represented as another whose defining sys-
tem involves only small, {−1, 0, 1, 2}-valued coefficients, at the expense of increasing
the number of variables. This enables us to make the entire construction run in time
polynomial in the size of the input. However, for systems with small coefficients, such
as in the examples above, this may result in unnecessary blow-up and can be skipped.
Stage two, in section 3.2, represents any rational polytope as a 3-way transportation
polytope with specified plane-sums and forbidden-entries. In the last stage, in sec-
tion 3.3, any plane-sum transportation polytope with upper-bounds on the entries is
represented as a slim 3-way line-sum transportation polytope. In section 3.4 these
three stages are integrated to give Theorem 1.1, and a complexity estimate is provided
to close the presentation. Theorem 1.2 is a result of an easy modification of Theorem
3.2, and it is the content of section 3.5.

3.1. Preprocessing: Coefficient reduction. Let P = {y ≥ 0 : Ay = b}
where A = (ai,j) is an integer matrix and b is an integer vector. We represent it
as a polytope Q = {x ≥ 0 : Cx = d}, in polynomial-time, with a {−1, 0, 1, 2}-
valued matrix C = (ci,j) of coefficients, as follows. Consider any variable yj and let
kj := max{�log2 |ai,j |� : i = 1, . . . ,m} be the maximum number of bits in the binary
representation of the absolute value of any ai,j . We introduce variables xj,0, . . . , xj,kj

,
and relate them by the equations 2xj,s − xj,s+1 = 0. The representing injection σ
is defined by σ(j) := (j, 0), embedding yj as xj,0. Consider any term ai,j yj of the

original system. Using the binary expansion |ai,j | =
∑kj

s=0 ts2
s with all ts ∈ {0, 1},

we rewrite this term as ±
∑kj

s=0 tsxj,s. To illustrate, consider a system consisting of
the single equation 3y1 − 5y2 + 2y3 = 7. Then the new system is

2x1,0 −x1,1 = 0,

2x2,0 −x2,1 = 0,

2x2,1 −x2,2 = 0,

2x3,0 −x3,1 = 0,

x1,0 +x1,1 −x2,0 −x2,2 +x3,1 = 7.

It is easy to see that this procedure provides the sought representation, and we
get the following.

Lemma 3.1. Any rational polytope P = {y ≥ 0 : Ay = b} is polynomial-time
representable as a polytope Q = {x ≥ 0 : Cx = d} with {−1, 0, 1, 2}-valued defining
matrix C.

3.2. Representing polytopes as plane-sum entry-forbidden transporta-
tion polytopes. The next stage of construction we are about to explain will normally
be applied to the output Q = {x ≥ 0 : Cx = d} of stage one, but we present the
construction for a general polyhedron P since the construction holds in that gener-
ality. Let P = {y ≥ 0 : Ay = b}, where A = (ai,j) is an m × n integer matrix and
b is an integer vector: we assume that P is bounded and hence a (possibly empty)
polytope, with an integer upper bound U on the value of any coordinate yj of any
y ∈ P (U can be derived efficiently from Cramer’s rule as explained in Theorem 10.3
of [25]).
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For each variable yj , let rj be the maximum of the sum of the positive coefficients
of yj over all equations and the sum of absolute values of the negative coefficients of
yj over all equations:

rj := max

(∑
k

{ak,j : ak,j > 0} ,
∑
k

{|ak,j | : ak,j < 0}
)

.

Let r :=
∑n

j=1 rj , R := {1, . . . , r}, h := m+1, and H := {1, . . . , h}. We now describe

how to construct vectors u, v ∈ Z
r, w ∈ Z

h, and a set E ⊂ R×R×H of triples—the
“enabled,” non-“forbidden” entries—such that the polytope P is represented as the
corresponding transportation polytope of r×r×h arrays with plane-sums u, v, w and
only entries indexed by E enabled:

T =

⎧⎨
⎩x ∈ R

r×r×h
≥0 : xi,j,k = 0 for all (i, j, k) /∈ E , and

∑
i,j

xi,j,k = wk ,
∑
i,k

xi,j,k = vj ,
∑
j,k

xi,j,k = ui

⎫⎬
⎭ .

We also indicate the injection σ : {1, . . . , n} −→ R × R × H giving the desired
embedding of the coordinates yj as the coordinates xi,j,k and the representation of P
as T (see paragraph following Theorem 1.1).

Basically, each equation k = 1, . . . ,m will be encoded in a “horizontal plane”
R × R × {k} (the last plane R × R × {h} is included for consistency and its entries
can be regarded as “slacks”); and each variable yj , j = 1, . . . , n, will be encoded in a
“vertical box” Rj × Rj × H, where R =

⊎n
j=1 Rj is the natural partition of R with

|Rj | = rj , namely with Rj := {1 +
∑

l<j rl, . . . ,
∑

l≤j rl}.
Now, all “vertical” plane-sums are set to the same value U , that is, uj := vj := U

for j = 1, . . . , r. All entries not in the union
⊎n

j=1 Rj ×Rj ×H of the variable boxes
will be forbidden. We now describe the enabled entries in the boxes; for simplicity we
discuss the box R1×R1×H, the others being similar. We distinguish between the two
cases r1 = 1 and r1 ≥ 2. In the first case, R1 = {1}; the box, which is just the single
line {1}×{1}×H, will have exactly two enabled entries (1, 1, k+), (1, 1, k−) for suitable
k+, k− to be defined later. We set σ(1) := (1, 1, k+), namely embed y1 = x1,1,k+ . We
define the complement of the variable y1 to be ȳ1 := U−y1 (and likewise for the other
variables). The vertical sums u, v then force ȳ1 = U − y1 = U − x1,1,k+ = x1,1,k− ,
so the complement of y1 is also embedded. Next, consider the case r1 ≥ 2. For each
s = 1, . . . , r1, the line {s} × {s} ×H (respectively, {s} × {1 + (smod r1)} ×H) will
contain one enabled entry (s, s, k+(s)) (respectively, (s, 1 + (smod r1), k

−(s)). All
other entries of R1 × R1 ×H will be forbidden. Again, we set σ(1) := (1, 1, k+(1)),
namely embed y1 = x1,1,k+(1); it is then not hard to see that, again, the vertical sums
u, v force xs,s,k+(s) = x1,1,k+(1) = y1 and x

s,1+(smod r1),k−(s)
= U − x1,1,k+(1) = ȳ1

for each s = 1, . . . , r1. Therefore, both y1 and ȳ1 are each embedded in r1 distinct
entries.

To clarify the above description it is helpful to visualize the R×R matrix (xi,j,+)

whose entries are the vertical line-sums xi,j,+ :=
∑h

k=1 xi,j,k. For instance, if we have
three variables with r1 = 3, r2 = 1, r3 = 2 then R1 = {1, 2, 3}, R2 = {4}, R3 = {5, 6},
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and the line-sums matrix x = (xi,j,+) is

⎛
⎜⎜⎜⎜⎜⎝

x1,1,+ x1,2,+ 0 0 0 0
0 x2,2,+ x2,3+ 0 0 0

x3,1,+ 0 x3,3,+ 0 0 0
0 0 0 x4,4,+ 0 0
0 0 0 0 x5,5,+ x5,6,+

0 0 0 0 x6,5,+ x6,6,+

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

y1 ȳ1 0 0 0 0
0 y1 ȳ1 0 0 0
ȳ1 0 y1 0 0 0
0 0 0 U 0 0
0 0 0 0 y3 ȳ3

0 0 0 0 ȳ3 y3

⎞
⎟⎟⎟⎟⎟⎠ .

We now encode the equations by defining the horizontal plane-sums w and the
indices k+(s), k−(s) mentioned above as follows. For k = 1, . . . ,m, consider the
kth equation

∑
j ak,jyj = bk. Define the index sets J+ := {j : ak,j > 0} and

J− := {j : ak,j < 0}, and set wk := bk + U ·
∑

j∈J− |ak,j |. The last coordinate of

w is set for consistency with u, v to be wh = wm+1 := r · U −
∑m

k=1 wk. Now, with
ȳj := U−yj the complement of variable yj as above, the kth equation can be rewritten
as

∑
j∈J+

ak,jyj +
∑
j∈J−

|ak,j |ȳj =

n∑
j=1

ak,jyj + U ·
∑
j∈J−

|ak,j | = bk + U ·
∑
j∈J−

|ak,j | = wk.

We encode this equation by setting, for each j ∈ J+, k+(s) = k for |ak,j | many
different values of s (respectively, for each j ∈ J− we set k−(s) = k for enough values
of s). By suitably setting k+(s) := k or k−(s) := k, this has the effect of pulling
enough copies of the variables yj or ȳj to the corresponding kth horizontal plane.
Of course, once a variable is used at a certain horizontal level it cannot be used
in others. By the choice of rj there are sufficiently many copies of variables yj ȳj ,
possibly with a few redundant copies which are absorbed in the last hyperplane by
setting k+(s) := m + 1 or k−(s) := m + 1. For instance, if m = 8, the first variable
y1 has r1 = 3 as above, its coefficient a4,1 = 3 in the fourth equation is positive, its
coefficient a7,1 = −2 in the seventh equation is negative, and ak,1 = 0 for k �= 4, 7,
then we set k+(1) = k+(2) = k+(3) := 4 (so σ(1) := (1, 1, 4) embedding y1 as x1,1,4),
k−(1) = k−(2) := 7, and k−(3) := h = 9. This way, all equations are suitably
encoded, and we obtain the following theorem.

Theorem 3.2. Any rational polytope P = {y ∈ R
n
≥0 : Ay = b} is polynomial-time

representable as a plane-sum entry-forbidden 3-way transportation polytope

T =

⎧⎨
⎩x ∈ R

r×r×h
≥0 : xi,j,k = 0 for all (i, j, k) /∈ E , and

∑
i,j

xi,j,k = wk ,
∑
i,k

xi,j,k = vj ,
∑
j,k

xi,j,k = ui

⎫⎬
⎭ .

Here E denotes the set of enabled, nonforbidden entries.
Proof. The proof follows from the construction outlined above and Lemma

3.1.

3.3. Representing plane-sum entry-bounded as slim line-sum entry-
free. Here we start with a transportation polytope of plane-sums and upper-bounds
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ei,j,k on the entries,

P =

⎧⎨
⎩y ∈ R

l×m×n
≥0 :

∑
i,j

yi,j,k = ck ,
∑
i,k

yi,j,k = bj ,
∑
j,k

yi,j,k = ai , yi,j,k ≤ ei,j,k

⎫⎬
⎭ .

Clearly, this is a more general form than that of T appearing in Theorem 3.2 above;
the forbidden entries can be encoded by setting a “forbidding” upper-bound ei,j,k := 0
on all forbidden entries (i, j, k) /∈ E and an “enabling” upper-bound ei,j,k := U on
all enabled entries (i, j, k) ∈ E. Thus, by Theorem 3.2, any rational polytope is
representable also as such a plane-sum entry-bounded transportation polytope P .
We now describe how to represent, in turn, such a P as a slim line-sum (unrestricted-
entry) transportation polytope of the form of Theorem 1.1,

T =

{
x ∈ R

r×c×3
≥0 :

∑
I

xI,J,K = wJ,K ,
∑
J

xI,J,K = vI,K ,
∑
K

xI,J,K = uI,J

}
.

This stage of our construction was first presented in [6] while studying the complexity
of deciding if T has an integer point; we include the details for completeness of the
presentation. We give explicit formulas for uI,J , vI,K , wJ,K in terms of ai, bj , ck, and
ei,j,k as follows. Put r := l · m and c := n + l + m. The first index I of each entry
xI,J,K will be a pair I = (i, j) in the r-set

{(1, 1), . . . , (1,m), (2, 1), . . . , (2,m), . . . , (l, 1), . . . , (l,m)} .

The second index J of each entry xI,J,K will be a pair J = (s, t) in the c-set

{(1, 1), . . . , (1, n), (2, 1), . . . , (2, l), (3, 1), . . . , (3,m)} .

The last index K will simply range in the 3-set {1, 2, 3}. We represent P as T via the
injection σ given explicitly by σ(i, j, k) := ((i, j), (1, k), 1), embedding each variable
yi,j,k as the entry x(i,j),(1,k),1. Let U now denote the minimum between the two values
max{a1, . . . , al} and max{b1, . . . , bm}. The 2-margins entries will be

u(i,j),(1,t) = ei,j,t, u(i,j),(2,t) =

{
U if t = i,
0 otherwise,

u(i,j),(3,t) =

{
U if t = j,
0 otherwise,

v(i,j),t =

⎧⎨
⎩
U if t = 1,
ei,j,+ if t = 2,
U if t = 3,

w(i,j),1 =

⎧⎨
⎩
cj if i = 1,
m · U − aj if i = 2,
0 if i = 3.

w(i,j),2 =

⎧⎨
⎩
e+,+,j − cj if i = 1,
0 if i = 2,
bj if i = 3.

w(i,j),3 =

⎧⎨
⎩

0 if i = 1,
aj if i = 2,
l · U − bj if i = 3.
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Theorem 3.3. Any rational plane-sum entry-bounded 3-way transportation poly-
tope

P =

⎧⎨
⎩y ∈ R

l×m×n
≥0 :

∑
i,j

yi,j,k = ck ,
∑
i,k

yi,j,k = bj ,
∑
j,k

yi,j,k = ai , yi,j,k ≤ ei,j,k

⎫⎬
⎭

is strongly-polynomial-time representable as a line-sum slim transportation polytope

T =

{
x ∈ R

r×c×3
≥0 :

∑
I

xI,J,K = wJ,K ,
∑
J

xI,J,K = vI,K ,
∑
K

xI,J,K = uI,J

}
.

Proof. We outline the proof; complete details appeared in [6]. First, consider any
y = (yi,j,k) ∈ P ; we claim the embedding via σ of yi,j,k in x(i,j),(1,k),1 can be extended
uniquely to x = (xI,J,K) ∈ T . First, the entries xI,(3,t),1, xI,(2,t),2 and xI,(1,t),3 for all
I = (i, j) and t are zero since so are the line-sums w(3,t),1, w(2,t),2 and w(1,t),3. Next,
consider the entries xI,(2,t),1: since all entries xI,(3,t),1 are zero, examining the line-
sums uI,(2,t) and vI,1 = U , we find x(i,j),(2,i),1 = U−

∑n
t=1 x(i,j),(1,t),1 = U−yi,j,+ ≥ 0

whereas for t �= i we get x(i,j),(2,t),1 = 0. This also gives the entries xI,(2,t),3: we have
x(i,j),(2,i),3 = U − x(i,j),(2,i),1 = yi,j,+ ≥ 0 whereas for t �= i we have x(i,j),(2,t),3 = 0.
Next, consider the entries xI,(1,t),2: since all entries xI,(1,t),3 are zero, examining the
line-sums u(i,j),(1,k) = ei,j,k we find x(i,j),(1,k),2 = ei,j,k − yi,j,k ≥ 0 for all i, j, k. Next
consider the entries xI,(3,t),2: since all entries xI,(2,t),2 are zero, examining the line-

sums u(i,j),(3,t) and v(i,j),2 = ei,j,+, we find x(i,j),(3,j),2 = ei,j,+ −
∑l

k=1 x(i,j),(1,k),2 =
yi,j,+ ≥ 0 whereas for t �= j we get x(i,j),(3,t),2 = 0. This also gives the entries
xI,(3,t),3: we have x(i,j),(3,j),3 = U − x(i,j),(3,j),2 = U − yi,j,+ ≥ 0 whereas for t �= j we
get x(i,j),(3,t),3 = 0. Using the relations established above, one can easily check that
all line-sums are correct.

Conversely, given any x = (xI,J,K) ∈ T , let y = (yi,j,k) with yi,j,k := x(i,j),(1,k),1.
Since x is nonnegative, so is y. Further, ei,j,k−yi,j,k = x(i,j),(1,k),2 ≥ 0 for all i, j, k and
hence y obeys the entry upper-bounds. Finally, using the relations established above
x(i,j),(3,t),2 = 0 for t �= j, x(i,j),(2,t),3 = 0 for t �= i, and x(i,j),(3,j),2 = x(i,j),(2,i),3 =
yi,j,+, we obtain

∑
i,j

yi,j,k =
∑
i,j

x(i,j),(1,k),1 = w(1,k),1 = ck , 1 ≤ k ≤ n ;

∑
i,k

yi,j,k =
∑
i

x(i,j),(3,j),2 = w(3,j),2 = bj , 1 ≤ j ≤ m ;

∑
j,k

yi,j,k =
∑
j

x(i,j),(2,i),3 = w(2,i),3 = ai , 1 ≤ i ≤ l .

This shows that y satisfies the plane-sums as well and hence is in P . Since integrality
is also preserved in both directions, this completes the proof.

3.4. The main theorem and a complexity estimate. Call a class P of ratio-
nal polytopes polynomial-time representable in a class Q if there is a polynomial-time
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algorithm that represents any given P ∈ P as some Q ∈ Q. The resulting binary
relation on classes of rational polytopes is clearly transitive. Thus, the composition of
Theorem 3.2 (which incorporates Lemma 3.1) and Theorem 3.3 gives at once Theorem
1.1 stated in the introduction. Working out the details of our three-stage construc-
tion, we can give the following estimate on the number of rows r and columns c in
the resulting representing transportation polytope, in terms of the input. The com-
putational complexity of the construction is also determined by this bound, but we
do not dwell on the details here.

Theorem 1.1 (with complexity estimate). Any polytope P ={y ∈ R
n
≥0 :Ay = b}

with integer m × n matrix A = (ai,j) and integer b is polynomial-time representable
as a slim transportation polytope

T =

⎧⎨
⎩x ∈ R

r×c×3
≥0 :

∑
i

xi,j,k = wj,k ,
∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j

⎫⎬
⎭ ,

with r = O(m2(n + L)2) rows and c = O(m(n + L)) columns, where

L :=

n∑
j=1

m
max
i=1

�log2 |ai,j |�.

3.5. Proof of the universality of the bitransportation problem. We con-
clude with the modification of the proof of Theorem 3.3 that establishes Theorem 1.2.

Theorem 1.2. Any rational polytope P = {y ∈ R
n
≥0 : Ay = b} is polynomial-time

representable as a bipartite bitransportation polytope

F =

⎧⎨
⎩(x1, x2) ∈ R

r×c
≥0 ⊕ R

r×c
≥0 : x1

i,j + x2
i,j ≤ ui,j ,

∑
j

xk
i,j = ski ,

∑
i

xk
i,j = dkj , k = 1, 2

⎫⎬
⎭ .

Here r, c are the same values as presented in Theorem 1.1 above. Moreover, the
statement remains valid with all supplies ski having the same value U and all capacities
ui,j being 0 or U for some suitable nonnegative integer U .

Proof. We do an easy adjustment of the proof of Theorem 3.3 above: We essen-
tially need to describe the capacities, demands and supplies (for each of two com-
modities) for a bipartite network with l · m nodes for the first part and n + l + m
nodes in the second part, with l · m · (n + l + m) arcs. Take the capacities of the
arcs to be ui,j as defined in section 3.3; take the supplies to be s1

i := vi,1 = U and
s2
i := vi,3 = U for all i, and take the demands to be d1

j := wj,1 and d2
j := wj,3 for all

j. Note that by taking s2
i and d2

j to be vi,3 and wj,3 instead of vi,2 and wj,2 we can
guarantee that all supplies have the same value U . Moreover, since the proof follows
by the composition of Theorem 3.2 and Theorem 3.3, and the former makes use of
forbidden entries only, rather than upper bounds, it is easy to see that we can take all
upper bounds ei,j,k in the latter (and hence all ui,j) to be either 0 or U , proving the
stronger statement. More visually, the data can also be described in matrix form as
follows:
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u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1,1,1 e1,1,2 · · · e1,1,n U 0 · · · 0 U 0 · · · 0
e1,2,1 e1,2,2 · · · e1,2,n U 0 · · · 0 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

e1,m,1 e1,m,2 · · · e1,m,n U 0 · · · 0 0 0 · · · U

e2,1,1 e2,1,2 · · · e2,1,n 0 U · · · 0 U 0 · · · 0
e2,2,1 e2,2,2 · · · e2,2,n 0 U · · · 0 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

e2,m,1 e2,m,2 · · · e2,m,n 0 U · · · 0 0 0 · · · U

...
...

...
...

...
...

...
...

...
...

...
...

el,1,1 el,1,2 · · · el,1,n 0 0 · · · U U 0 · · · 0
el,2,1 el,2,2 · · · el,2,n 0 0 · · · U 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

el,m,1 el,m,2 · · · el,m,n 0 0 · · · U 0 0 · · · U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

s1 = s2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
U
...
U

U
U
...
U

...

U
U
...
U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d1 = ( c1, c2, . . . , cn, m · U − a1, m · U − a2, . . . , m · U − al, 0, 0, . . . , 0 ) ,

d2 = ( 0, 0, . . . , 0, a1, a2, . . . , al, l · U − b1, l·, U − b2, . . . , l · U − bm ) .
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