Math 115A Homework 7

- 1) a) Find the remainder of 79^{79} divided by 9.
 - b) Find the remainder of 99^{999999} divided by 26.
 - c) Find a multiplicative inverse of 4^{67} modulo 19.

2) a) Let n be an integer not divisible by 3. Prove that $n^7 \equiv n \pmod{63}$.

- b) Let n be an integer divisible by 9. Prove that $n^7 \equiv n \pmod{63}$.
- 3) a) Prove that if n is an integer relatively prime to 72, then $n^{12} \equiv 1 \pmod{72}$.

b) Find the largest integer m such that $n^{12} \equiv 1 \pmod{m}$ for all integers n relatively prime to m. (Note: by part (a) this number must be at least 72).

4) Let m and n be relatively prime positive integers. Prove that $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$.

- 5) Find $\phi(n)$ for each value of n below.
 - a) 64
 - b) 105
 - c) 15!

6) Are there any positive integers n for which $\phi(n) = n/4$? Why or why not?

7) Let m, n be positive integers such that m|n. Show that $\phi(m)|\phi(n)$. Is the converse true (i.e. is it true that if $\phi(m)|\phi(n)$ then m|n)?

8) How difficult was this homework? How long did it take?