Math 115A Homework 6

1) Let $n \in \mathbb{Z}$ with n > 1. Prove that n is a prime number if and only if $(n-2)! \equiv 1 \pmod{n}$.

2) Let p be an odd prime number.

a) Prove that $((\frac{p-1}{2})!)^2 \equiv (-1)^{(p+1)/2} \pmod{p}$.

b) If $p \equiv 1 \pmod{4}$, prove that $\left(\frac{p-1}{2}\right)!$ is a solution of the quadratic congruence $x^2 \equiv -1 \pmod{p}$.

c) If $p \equiv 3 \pmod{4}$, prove that $\left(\frac{p-1}{2}\right)!$ is a solution of the quadratic congruence $x^2 \equiv 1 \pmod{p}$.

3) Using Fermat's Little Theorem, find the residue \pmod{m} of each integer n below

a) $n = 29^{202}, m = 13.$ b) $n = 71^{71}, m = 17.$ c) $n = 3^{1000000}, m = 19.$

4) Let n be an integer. Prove that $n^{21} \equiv n \pmod{30}$.

- 5) Let a and b be integers not divisible by the prime number p.
 - a) If $a^p \equiv b^p \pmod{p}$, prove that $a \equiv b \pmod{p}$.
 - b) If $a^p \equiv b^p \pmod{p}$, prove that $a^p \equiv b^p \pmod{p^2}$.
- 6) How difficult was this homework? How long did it take?