Math 115B Homework 5

- 1) Find the order of
 - a) 2 modulo 11
 - b) 3 modulo 13
 - c) 8 modulo 15
 - d) 9 modulo 17

2) Let $a, m \in \mathbb{Z}$ with m > 0. If a' is the inverse of a modulo m, prove that $\operatorname{ord}_m(a) = \operatorname{ord}_m(a')$. Deduce that if r is a primitive root modulo m, then r' is a primitive root modulo m.

3) Let m be a positive integer and let $a \in \mathbb{Z}$ with (a, m) = 1.

- a) Prove that if $\operatorname{ord}_m(a) = xy$ (with x and y positive integers), then $\operatorname{ord}_m(a^x) = y$.
- b) Prove that if $\operatorname{ord}_m(a) = m 1$, then m is a prime number.

4) Let a and n be positive integers with a > 1. Prove that $n|\phi(a^n - 1)$. *Hint: consider* $ord_{(a^n-1)}(a)$.

5) Let p be an odd prime number and let r be an integer with $p \not| r$. Prove that r is a primitive root modulo p if and only if $r^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

6) Determine the number of incongruent primitive roots modulo each number below.

- a) 60
- b) 61
- c) 62
- d) 63

7) Let p be an odd prime.

a) Prove that any primitive root $r \mod p$ is a quadratic nonresidue mod p.

b) Prove that there are exactly $\frac{p-1}{2} - \phi(p-1)$ incongruent quadratic nonresidues mod p that are not primitive roots mod p.

8) Let m be a positive integer. If a primitive root modulo m exists, prove that the product of all positive integers not exceeding m and relatively prime to m is congruent to $-1 \mod m$.

9) How difficult was this homework? How long did it take?