Math 22 A: Homework 1

1. Let

$$\overline{x} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \ \overline{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Draw in the plane the vectors \overline{x} , \overline{y} , $\overline{x} + \overline{y}$, $2 \cdot \overline{x} - 3 \cdot \overline{y}$.

 $2. \ Let$

$$\overline{x} = \begin{bmatrix} 2\\1\\-3 \end{bmatrix}, \quad \overline{y} = \begin{bmatrix} 1\\-4\\3 \end{bmatrix}$$

Let \overline{a} be an arbitrary linear combination of \overline{x} and \overline{y} , hence there are scalars c_1, c_2 with

$$\overline{a} = c_1 \cdot \overline{x} + c_2 \cdot \overline{y}$$

Write

$$\overline{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Show that, whatever the values of c_1 and c_2 are, one has

$$a_1 + a_2 + a_3 = 0$$

Use this to find a vector that is not a linear combination of \overline{x} and \overline{y} .

3. Find all pairs (c_1, c_2) of scalars c_1 and c_2 such that

$$c_1 \cdot \begin{bmatrix} -5\\2 \end{bmatrix} + c_2 \cdot \begin{bmatrix} 10\\-4 \end{bmatrix} = \overline{0}$$

4. Let

$$\overline{x} = \begin{bmatrix} \pi \\ 1 \\ 2 \end{bmatrix}, \quad \overline{y} = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad \overline{z} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Calculate the inner product $\overline{x}\cdot\overline{y}$ and $(\overline{x}+\overline{y})\cdot\overline{z}$

5. For \overline{y} and \overline{z} as in the previous problem, verify that

$$|\overline{y} \cdot \overline{z}| \le ||\overline{y}|| \cdot ||\overline{z}||$$

Recall that a unit vector is a vector of length 1. Find a unit vector in the direction of

$$\overline{x} = \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$$

7. Let \overline{x} and \overline{y} be unit vectors. Hence $\overline{x} \cdot \overline{x} = \overline{y} \cdot \overline{y} = 1$. Calculate the inner products $\overline{x} \cdot (-\overline{x})$ and $(\overline{x} + \overline{y}) \cdot (\overline{x} - \overline{y})$.

8. Find non-zero vectors \overline{x} and \overline{y} that are both orthogonal to

and orthogonal to each other.

9. Find all vectors orthogonal to

$\begin{bmatrix} -1\\ 3 \end{bmatrix}$

 $\begin{bmatrix} 1\\1\\1\\1\end{bmatrix}$