
Math 22 A: Homework 2

Due Thursday, January 25

1. Calculate the following matrix vector product in the two ways that we discussed in class: As a linear combi-
nation of the columns and in terms of inner products of the rows.
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2. In class we showed that the matrix 
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corresponds to the function on vectors given by
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Now find the matrix that corresponds to the function
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3. Decide if there is a three by three matrix A such that
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for all x, y, z in R.

4. Decide if there is a three by three matrix A such that
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for all x, y, z in R.

5. Find the three by three matrix A such that
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for all x, y, z in R.
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Find the two by two matrix A such that
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Give the geometric interpretation of this function.

7. We mentioned in class that if A is an n ⇥ n matrix and x and y are n-component vectors and c is a scalar
then

A · (x+ y) = A · x+A · y

A · (c · x) = c · (A · x)

Verify these two properties by direct computation in the case where
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