Math 22 A: Homework 6

1. Decide with justification if the following sets of vectors are linearly independent.

$$\begin{array}{c} \text{(i)} & \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\0\\2 \end{bmatrix} \right\} \\ \text{(ii)} & \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\} \\ \text{(iii)} & \left\{ \begin{bmatrix} -2\\2\\3\\-5 \end{bmatrix}, \begin{bmatrix} -1\\1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\1\\0\\1 \end{bmatrix} \right\} \end{array}$$

2. Find a basis of Null(A), C(A), and $C(A^{T})$ for each of the following matrices:

(i)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(ii) $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$
(iii) $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
(iv) $A = \begin{bmatrix} 2 & -4 & 1 & -3 \\ 3 & -6 & 1 & -5 \\ 0 & 0 & 2 & 2 \\ -5 & 10 & 3 & 13 \end{bmatrix}$

- 3. Suppose V is a subspace of \mathbb{R}^n and suppose $\{v_1, v_2, v_3\}$ is a basis of V. Decide if the following sets of vectors are a basis for V:
 - (i) $\{v_2, v_1 5v_3, 2v_3\}$
 - (ii) $\{v_2, v_1 5v_3, 2v_3, 3v_2 + 7v_3 v_1\}$
 - (iii) $\{2v_2 v_3, v_1\}$
- 4. Suppose that two vectors \overline{x} and \overline{y} in \mathbb{R}^n are orthogonal, meaning their inner product satisfies $\overline{x} \cdot \overline{y} = 0$. Show that if both vectors are assumed to be non-zero, then $\{\overline{x}, \overline{y}\}$ are linearly independent. Show that this linear independence fails if at least one of the vectors is the zero vector.