Math 250A Homework 6, due 11/24/2021

1) Let K/F be a Galois extension with [K : F] = n. Show that if p|n is a prime then there is a subfield L of K with [K : L] = p.

2) Let K/F be a Galois extension with $\operatorname{Gal}(K/F) \cong A_4$. Show that there is no intermediate field M of the extension K/F such that [M:F] = 2.

3) Show that if K/F is a Galois extension such that there are no proper intermediate fields between K and F, then [K:F] is a prime number. Is this still true if K/F is not a Galois extension?

4) Let K/F be a Galois extension and $\alpha \in K$ and $H = \text{Gal}(K/F(\alpha))$. Let [K : F] = nand $[F(\alpha) : F] = r$. Suppose that $\{\tau_1, \dots, \tau_r\}$ is a set of left coset representatives of H in Gal(K/F). Show that the minimal polynomial of α over F is given by

$$m(x) = \prod_{i=1}^{r} (x - \tau_i(\alpha))$$

and show that

$$\prod_{\sigma \in \operatorname{Gal}(K/F)} (x - \sigma(\alpha)) = m(x)^{n/r}$$

5) Let K/F be a Galois extension with $\operatorname{Gal}(K/F) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{char}(F) \neq 2$. Show that $K = F(\sqrt{\alpha}, \sqrt{\beta})$ for some $\alpha, \beta \in F$.

6) Let K be the splitting field of $x^8 - 1$ over \mathbb{Q} . Find $\operatorname{Gal}(K/\mathbb{Q})$ and describe all intermediate fields of K/\mathbb{Q} .

7) Let $S = \{\sqrt{p} \mid p \text{ a prime}\}$ and $K = \mathbb{Q}(S)$. For $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$ define

$$Y_{\sigma} = \{\sqrt{p} \mid \sigma(\sqrt{p}) = -\sqrt{p}\}$$

Show the following:

- (i) K is normal and separable over \mathbb{Q}
- (ii) If $Y_{\sigma} = Y_{\tau}$, then $\sigma = \tau$
- (iii) If Y is a subset of S then there exists $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$ such that $Y = Y_{\sigma}$

(iv) Let P(S) denote the set of all subsets of S. Show that

$$[K:\mathbb{Q}] = |S|$$

and

$$|\operatorname{Aut}(K/\mathbb{Q})| = |P(S)|$$

[Note that it follows that $|\operatorname{Aut}(K/\mathbb{Q})| > [K : \mathbb{Q}]$]

8) Let K be a subfield of \mathbb{C} such that K/\mathbb{Q} is a Galois extension. Let $c \in \operatorname{Aut}(\mathbb{C})$ be complex conjugation.

a) Show that c(K) = K and the restriction $c|_K$ of c to K is an element of $\text{Gal}(K/\mathbb{Q})$.

b) Show that $\mathcal{F}(c|_K) = K \cap \mathbb{R}$ and $[K : K \cap \mathbb{R}] \leq 2$.

c) Give an example of K where $[K: K \cap \mathbb{R}] = 1$ and an example of K where $[K: K \cap \mathbb{R}] = 2$.

9) Let k be a field of characteristic p > 0, let K = k(x, y) be the rational function field in two variables over k, and let $F = k(x^p, y^p)$.

- a) Prove that $[K:F] = p^2$.
- b) Prove that $K^p \subseteq F$ (see Homework 5 for definition of K^p).
- c) Prove that there is no $\alpha \in K$ with $K = F(\alpha)$.
- d) Exhibit an infinite number of intermediate fields of K/F.

10) Let $K = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ and let $F = \mathbb{Q}$. Show directly that there exists a $\sigma \in \operatorname{Aut}(K/F)$ such that $\sigma(\sqrt[3]{2}) = \zeta_3 \sqrt[3]{2}$ and $\sigma(\zeta_3) = \zeta_3^2$.

11) Let K/F be a Galois extension. Two intermediate fields L_1 , L_2 are called conjugate if there is $\sigma \in \text{Gal}(K/F)$ such that $\sigma(L_1) = L_2$. Characterize conjugate intermediate fields in terms of the corresponding subgroups of Gal(K/F).

12) Consider the quaternion group Q_8 which as a set is given by $\{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication determined by $i^2 = j^2 = k^2 = -1$ and ij = k = -ji. Let F be a field. Find a degree 4 polynomial $f(x) \in F[x]$ whose splitting field over F is Galois with Galois group isomorphic to Q_8 or show that no such polynomial exists.