Math 250A Final Exam Prep

- 1. Let G be a group of order 24 which contains a non-normal subgroup H of order 8.
 - (a) Including H, how many conjugates of H are there in G?
 - (b) Using the conjugates of H from the previous part, define a homomorphism of G into the group S_3 .
 - (c) Conclude that G is not simple.
- 2. In this problem, you may use part (a) to prove part (b) and part (b) to prove part (c) even if you fail to prove part (a) and/or (b).

Let G be a finite solvable group. A subgroup H of G is called characteristic in G if it is invariant under any automorphism of G.

- (a) If N is a nontrivial minimal normal subgroup of G, meaning that it is nontrivial and contains no proper nontrivial subgroup which is normal in G, show that N is abelian.
- (b) Show that if N is a nontrivial minimal normal subgroup of G then $P := \{x \in N \mid x^p = 1\}$ where $p \mid |N|$ is prime is a characteristic subgroup of N. Deduce that N is a p-group.
- (c) Let M be a maximal proper subgroup of G. Show that [G : M] is a power of a prime. (Hint: Let N be a nontrivial minimal normal subgroup of G; consider the case $N \subset M$ and the case $N \not\subset M$).
- 3. Let t be an indeterminate and consider the function field $K = \mathbb{C}(t)$. Consider the field extension K/F where $F = \mathbb{C}(t^4)$.
 - (a) Prove that K is the splitting field over F of $f(x) = x^4 t^4 \in F[x]$ and show that K/F is Galois.
 - (b) Prove that $f(x) = x^4 t^4$ is irreducible in F[x].
 - (c) Prove that $\operatorname{Gal}(K/F) \cong \mathbb{Z}/4\mathbb{Z}$ and for each $\sigma \in \operatorname{Gal}(K/F)$ write down explicitly $\sigma(t)$. Write down a generator of $\operatorname{Gal}(K/F)$.
 - (d) Determine all the subgroups of Gal(K/F) and the corresponding intermediate fields of K/F under the Galois correspondence.
- 4. Let K be a finite field with an algebraic closure \overline{K} such that char(K) = p > 0. Let $a \in K$ and consider

$$f(x) = x^p - x + a \in K[x]$$

- (a) Let $\alpha \in \overline{K}$ be a root of f(x). Show that $\alpha + 1$ is also a root of f(x).
- (b) Show that either f(x) is irreducible in K[x] or f(x) has all its roots in K.
- (c) Let $a \in \mathbb{F}_p$ be non-zero. Show that the splitting field of $x^p x + a$ over \mathbb{F}_p is an extension of degree p of \mathbb{F}_p .
- (d) Show that the polynomial $x^p x + n$ is irreducible in $\mathbb{Q}[x]$ for an infinite number of choices of $n \in \mathbb{Z}$.
- 5. Prove that if $[F(\alpha) : F]$ is odd then $F(\alpha) = F(\alpha^2)$.
- 6. Let d > 0 be a square-free integer. Show that $\mathbb{Q}(\sqrt[8]{d}, i)/\mathbb{Q}(\sqrt{d})$ is Galois and that its Galois group is the dihedral group with 8 elements. Choose four intermediate fields of this extension and determine the Galois groups of $\mathbb{Q}(\sqrt[8]{d}, i)$ over these fields.