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Proof that the group An is simple for all n 5

Let n be an integer 5.
To show that the alternating group An is simple, we must show that any normal subgroup of An

which contains a nonidentity element x must be all of An . What this comes down to showing is that
starting with any such x, we can, by using the group operations and the operations of conjugating by
various elements of An , eventually come up with every other element y An . Now to get from any
nonidentity element x to any other element y is a formidable task. To make it more manageable, we
shall go via an easy-to-handle intermediate class of group elements. The even permutations that move the
smallest number of elements are the cycles of length 3; and the main steps of our proof will in fact be:

Step I. If a normal subgroup N of An contains a nonidentity element x, then it contains a cycle
(a1, a2, a3) of length 3.

Step II. If a normal subgroup N of An contains a cycle of length 3, then it contains every cycle of
length 3.

Step III. If a subgroup N of An contains every cycle of length 3, then it is all of An .

Of these, Step I is the most work. The idea is as follows. Let us say that an element i {1, ... , n} is
‘‘moved by ’’ if (i) i; in the contrary case we will say that i is ‘‘fixed by ’’; and let us think of
a permutation as ‘‘small’’ if it moves few elements of {1, ... , n}. If x is any element of N and a
‘‘small’’ even permutation, then the conjugate x –1, which by normality of N also lies in N, will
differ only ‘‘slightly’’ from x; i.e., will agree with x except on a small number of elements. Hence if
we ‘‘divide’’ the former element by the latter, the resulting permutation, ( x –1)x–1, will be relatively
‘‘small’’. By applying this principle with a little ingenuity, we will be able to get from an arbitrarily
‘‘large’’ permutation down to a cycle of length 3.

Let us begin with a lemma making explicit the computational trick sketched above.

Lemma 1. Let x, An . Then every element i {1, ... , n} that is moved by x –1x–1 is either an
element moved by , or the image under x of an element moved by .

Proof. Suppose i {1, ... , n} is neither an element moved by nor the image under x of such an
element. The latter condition implies that the element whose image under x is i, namely x–1(i), is not
moved by , hence is not moved by –1 either. Hence we get x –1x–1(i) = (x( –1(x–1(i)))) =
(x(x–1(i))) = (i) = i as required. (The second step, i.e., the second ‘‘=’’, uses the fact that x–1(i) is
not moved by , the third step uses the identity x x–1 = , and the last step, the assumption that i is
not moved by .)

Now let N be any nontrivial normal subgroup of An . We shall apply the above lemma in each of a
series of cases, to show that in every case, N contains a cycle of length 3. We shall also use repeatedly
the fact that if x N and An , then x –1x–1 is the product of the two elements x –1 and x–1

of N, and hence also a member of N.

Case A. N contains an element x whose expression as a product of disjoint cycles involves at least
one cycle of length greater than 3.

Let such a cycle be (a1, a2, a3, a4, ... , ar ). (Here r may equal 4, so the ‘‘ ... , ar ’’ may be empty;
but since r > 3, a1, a2, a3, a4 are distinct.) Thus, x = (a1, a2, a3, a4, ... , ar ) P, where P is either
the identity, or a product of cycles that do not move any of a1, ... , ar . Let = (a1, a2, a3). The
elements of {1, ... , n} that are moved by are a1, a2, a3, and the images under x of those elements
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are a2, a3, a4. Hence by Lemma 1, the permutation x –1x–1 cannot move any elements but a1, a2,
a3, a4. Therefore we can describe x –1x–1 by determining what it does on those four elements. Go
through this calculation. You will find that x –1x–1 = (a1, a2, a4). Hence in this case N indeed
contains a cycle of length 3, as claimed.

Now if a nonidentity element x N, when expressed as a product of disjoint cycles, does not involve a
cycle of length greater than 3, then it must be a product of disjoint cycles each of length 2 or length 3.
Also note that if an element x is written as a product of disjoint cycles 1 ... r , then 1, ... , r
commute with each other; hence for any integer d, we have xd = 1

d ... r
d. In particular, if the x we

are interested in here involves both cycles of length 2 and cycles of length 3, then x2 involves only
cycles of length 3 (since the square of a cycle of length 2 is the identity, while the square of a cycle of
length 3 is another cycle of length 3); and similarly, x3 involves only cycles of length 2. Thus by either
squaring or cubing such an x, we can see that N contains an element which is either a product of one or
more disjoint cycles of length 2, or of one or more disjoint cycles of length 3. We now consider those
cases:

Case B. N contains an element x which is a product of one or more disjoint cycles of length 3. If x
is a single cycle of length 3, we have what we want. In the contrary case, let us write it as
(a1, a2, a3) (a4, a5, a6) P, where P is again either the identity or a product of cycles that do not move
any of a1, ... , a6. In this case, let us take = (a2, a3, a4). Using Lemma 1, we find that x –1x–1

can only move some subset of {a1, ... , a5}. Calculating, we find that x –1x–1 = (a1, a4, a2, a3, a5), a
cycle of length 5. Applying the result of Case A, we conclude that N also contains a cycle of length 3.

Case C. N contains an element x which is a product of one or more disjoint cycles of length 2. In
this case there must be at least two such cycles, since a single cycle of length 2 is an odd permutation,
while N was assumed a subgroup of the group An of even permutations. Hence let us write x =
(a1, a2) (a3, a4) P, with P as before. Taking = (a1, a2, a3), we find that x –1x–1 =
(a1, a3)(a2, a4).

This is still a product of cycles of length 2, so have we accomplished anything? Yes, we have gotten
rid of P, and thus have a member of N which moves only 4 elements of {1, ... , n}. Since n 5, this
means that at least one element is fixed by this permutation. And this puts us in our final case:

Case D. N contains an element x such that the expression for x as a product of disjoint cycles
involves a cycle (a1, a2) of length 2 , and such that x fixes at least one element a3. In this situation, let
us write x = (a1, a2) P where P moves none of a1, a2, a3, and let = (a1, a2, a3). By Lemma 1,
x –1x–1 can move only some subset of {a1, a2, a3}. Computing its action on this set, you will find

that it equals (a1, a3, a2), a cycle of length 3. This completes our proof that in every case, N contains
such an element.

For Step II of our proof, we must show that if N contains a cycle (a1, a2, a3) of length 3, it contains
every cycle (b1, b2, b3) of that length. To do this, we will need an explicit formula for the result of
conjugating a cycle of length 3 by any other permutation . I claim that such a formula is

(a1, a2, a3)
–1 = ( (a1), (a2), (a3)).

Indeed, it is easy to see that the two sides agree on the three elements (a1), (a2) and (a3). If i is
not one of these elements, then –1(i) is not one of a1, a2 or a3, hence it is not moved by the cycle
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(a1, a2, a3), so (a1, a2, a3)
–1(i) = –1(i) = i; so the left-hand side of the above display agrees

with the right-hand side on such elements i as well.
Hence if our subgroup N contains a cycle (a1, a2, a3) and we want to show it to contain some other

cycle of length 3, (b1, b2, b3), the obvious thing to do is find a permutation such that (a1) = b1,
(a2) = b2, (a3) = b3; which we can do, roughly speaking, by writing = ... a1 ... a2 ... a3 ...b1 b2 b3

and
filling in the remaining entries of the bottom row in any way such that each integer from 1 to n gets
used exactly once. (I say ‘‘roughly speaking’’ because the way I have written this permutation assumes
a1 < a2 < a3. When that is not so, the columns shown will appear in a different order.)

This will indeed give us a permutation such that (a1, a2, a3)
–1 = (b1, b2, b3); and if this is

even, i.e., is a member of An , that will show that the normal subgroup N of An , in addition to
(a1, a2, a3), also contains (b1, b2, b3). But what if is odd? There are various ways one can ‘‘cure’’
this; the one we will use is to let = (b2, b3) . Since (b2, b3) is, like , odd, will be even. It
will again send the three elements a1, a2, a3 to b1, b2, b3, but in a different order; and we see that
(a1, a2, a3)

–1 = (b1, b3, b2). Now the square of this cycle is the desired cycle (b1, b2, b3); so
again, if N contains (a1, a2, a3), it also contains (b1, b2, b3), completing Step II.

For Step III, we must prove that the cycles of length 3 together generate An . A key fact will be

Lemma 2. If x is a permutation which moves at least three elements, then there exists a cycle of
length 3 such that –1x moves fewer elements than x does.

Proof. Let a1 be an element moved by x. If we write a2 = x(a1), this is a second element moved by
x. Since there are at least three elements moved by x, we can choose a third such element, a3. Letting
= (a1, a2, a3), we observe that

–1x does not move any elements that are not moved by x (since
neither x nor –1 does); hence if we can prove that –1x fixes some element that is moved by x, we
will have the desired conclusion. And indeed, it is immediate from the way we defined that –1x
fixes a1.

Since the only permutations that move fewer than three elements are the identity and the transpositions,
we see that every nonidentity element of An moves at least three elements. Hence if x is a nonidentiy
element of An , we can use the above lemma to find a cycle 1 of length 3 such that 1

–1x moves
fewer elements than x. If 1

–1x is not the identity, we can similarly use the lemma to find a cycle 2
of length 3 such that 2

–1
1
–1x moves fewer elements than 1

–1x, and so forth. This process must
eventually stop, so we must eventually get an expression for the identity permutation as

r
–1 ... 1

–1x

where 1, ... , r are cycles of length 3. This condition can be written ( 1 ... r)
–1x = , equivalently,

x = 1 ... r , showing that the general element x of An is indeed a product of cycles of length 3.

In summary, we have shown that for n 5, any normal subgroup N of An which contains a
nonidentity element contains a cycle of length 3, from this that N contains all cycles of length 3, and
from this that N contains all elements of An . Thus An has no proper nontrivial normal subgroup; i.e.,
it is simple.


