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Theorem 1 Let G be an infinite cyclic group.

1. G is isomorphic to Z, and in fact there are two such isomorphisms.

2. Every subgroup of G is cyclic. Furthermore, for every positive integer
n, nZ is the unique subgroup of Z of index n.

3. If n1 and n2 are positive integers, then 〈n1〉+ 〈n2〉 = 〈gcd(n1, n2)〉 and
〈n1〉 ∩ 〈n2〉 = 〈lcm(n1, n2)〉.

Proof: We omit the proof of (1). Using it, we reduce (2) to the case when
G = Z. Let H be a subgroup of Z. If H = {0} there is nothing to prove.
Otherwise H∩Z+ is nonempty and has a smallest element n. Then if m ∈ H,
we can write m = nq + r with q ∈ Z and 0 ≤ r < n. Since n,m ∈ H, it
follows that r ∈ H, and hence r = 0. Thus H = 〈n〉. It is clear that 〈n〉 has
index n, since each coset has a unique representative i with 0 ≤ i < n. On
the other hand, if H is any subgroup of index n, then as we have seen it is
cyclic, say generated by n′ > 0. But then the index of H is n′, so in fact
n′ = n.

For (3), we use the fact that the subgroup H := 〈n1〉 + 〈n2〉 is cyclic.
Let n be its positive generator. Since n1 and n2 belong to H, n divides n1
and n2. On the other hand, since n ∈ H, it follows that there exist integers
x and y such that n = xn1 + yn2. Then any common divisor of n1 and n2 is
also a divisor of n so n is the greatest common divisor. We omit the proof
for intersections.

Theorem 2 Let G be a cyclic group of order n.

1. Every subgroup of G is cyclic.

1



2. For every divisor d of n, G has a unique subgroup Hd of order d, and
Hd = {g ∈ G : gd = e}.

3. For every d ∈ Z, Hd = Hd′, where d′ := gcd(d, n) .

4. G has φ(n) generators, where φ(n) is the cardinality of the set of i
with 1 ≤ i < n which are relatively prime to n.

5. Auut(G) has order φ(n).

Proof: A choice of a generator for G determines a surjective homomor-
phism π:Z→ G. Let K be its kernel, so that G ∼= Z/K. Then the index of
K is the order of G, which must be n. If H is a subgroup of G, then π−1(H)
is a subgroup of Z containing K, and in particular is cyclic. It follows that
H is cyclic. In fact π−1 defines an index-preserving bijection between the
subgroups of G and the subgroups of Z containing K. It follows that G
has a unique subgroup of index m for every m dividing n, and hence also
a unique subgroup of order d for every d dividing n. In particular, for such
a d, let Hd := {g ∈ G : gd = e}. Then Hd is a subgroup of G (since G is
commutative), and in particular is cyclic, hence generated by an element of
maximal order and hence has at most d elements. On the other hand, it
contains π(n/d), which is an element of of order d, and, it follows that Hd is
the unique subgroup of order d. Now let G be any group of order n and let
d and d′ be as in (3). Write d = d′c and n = d′m. Let us note that gd

′
= e

iff gd = e. Indeed, if gd
′

= e, then also gd = gd
′c

= e. Moreover, there exist
integers x, y such that d′ = xd+yn. Then gd

′
= gxdgyn = dxd so if gd = e, it

follows also that gd
′

= e. This proves (3). In particular, the homomorphism
φd: g 7→ gd is bijective iff it is injective iff gcd(n, d) = 1. Furthermore, φd is
bijective iff it is an isomorphism iff it takes generators to generators, so if g
is a generator, gd is another generator iff gcd(d, n) = 1. This shows that the
numbe of generators is φ(d), as well as the number of automorphisms, since
every automorphism is of this form.

For any group G, let mG(d) be the number of elements of G of (exact)
order d. Then

|G| =
∑
d

mG(d).

Corollary 1 If n is a positive integer,

n =
∑
d|n

φ(m).
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Proof: Let G be any cyclic group of order n Then mG(d) is zero if d does
not divide n and otherwise is the number of generators of the group Hd

defined above. Since Hd is cyclic of order d, Hd has φ(d) generators. Thus
mG(d) = φ(d), and the corollary follows from the formula above.

Theorem 3 Let G be a finite group. Then the following conditions are
equivalent:

1. G is cyclic.

2. For each d ∈ Z+, the number of g ∈ G such that gd = e is less than
or equal to d.

3. For each d ∈ Z+, G has at most one subgroup of order d.

4. For each d ∈ Z+, G has at most φ(d) elements of order d.

Note: In statements (2)–(4), one may restrict to those d which divide n.

Proof: The implication of (2) by (1) follows from Theorem 2.
Suppose that (2) holds and d ∈ Z+. Let H be a subgroup of G of order

d. Then gd = e for every g ∈ H. According to (2), there are at most d such
elements. But then H = {g ∈ G : gd = e}, and hence H is unique.

Suppose (3) holds. If there are no elements of order d, then there is
nothing to check. If g is an element of order d, then 〈g〉 is a subgroup of
order d, and by (3), it is the unique such subgroup. Hence if g′ is any element
of order d, g′ ∈ 〈g〉. Since 〈g〉 contains exactly φ(d) elements of order d, we
see that G has exactly φ(d) elements of order d.

Suppose that (4) holds. For each divisor d of the order of G, let m(d)
denote the number of elements of G of order d. If G is a group of order n
and satisfies (3) we find that

n =
∑
d|n

m(d) ≤
∑
d|n

φ(d) = n

Since each 0 ≤ m(d) ≤ φ(d) for each d, we see that the equality
∑

d|nm(d) =∑
d|n φ(d) implies that each m(d) = φ(d) for every d. In particular m(n) =

φ(n) 6= 0. This means that G has at least one element of order n, and hence
is cyclic.

Corollary 2 Every finite subgroup of a field is cyclic.

Proof: We use the fact that a polynomial of degree d has at most d roots
to conclude that any such group has at most d elements of order d.
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