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Theorem 1 Let G be an infinite cyclic group.
1. G is isomorphic to Z, and in fact there are two such isomorphisms.

2. Every subgroup of G is cyclic. Furthermore, for every positive integer
n, nZ is the unique subgroup of Z of index n.

3. If n1 and ny are positive integers, then (n1)+ (ng) = (ged(ny,n2)) and
(n1) N (n2) = (lem(n1, n2)).

Proof: 'We omit the proof of (1). Using it, we reduce (2) to the case when
G = Z. Let H be a subgroup of Z. If H = {0} there is nothing to prove.
Otherwise HNZ™" is nonempty and has a smallest element n. Then if m € H,
we can write m = ng +r with ¢ € Z and 0 < r < n. Since n,m € H, it
follows that » € H, and hence r = 0. Thus H = (n). It is clear that (n) has
index n, since each coset has a unique representative ¢ with 0 <i <n. On
the other hand, if H is any subgroup of index n, then as we have seen it is
cyclic, say generated by n’ > 0. But then the index of H is n/, so in fact
n' =n.

For (3), we use the fact that the subgroup H := (n1) + (n2) is cyclic.
Let n be its positive generator. Since n; and ny belong to H, n divides ny
and ng. On the other hand, since n € H, it follows that there exist integers
x and y such that n = xny +yne. Then any common divisor of ny and ne is
also a divisor of n so n is the greatest common divisor. We omit the proof
for intersections. O

Theorem 2 Let G be a cyclic group of order n.

1. Every subgroup of G is cyclic.



2. For every divisor d of n, G has a unique subgroup Hy of order d, and
Hy={ge€G:gl=¢e}.

3. For everyd € Z, Hy = Hy, where d' := ged(d,n) .

4. G has ¢(n) generators, where ¢p(n) is the cardinality of the set of i
with 1 <1 < n which are relatively prime to n.

5. Auut(G) has order ¢(n).

Proof: A choice of a generator for G determines a surjective homomor-
phism 7:Z — G. Let K be its kernel, so that G = Z /K. Then the index of
K is the order of G, which must be n. If H is a subgroup of G, then 7= (H)
is a subgroup of Z containing K, and in particular is cyclic. It follows that
H is cyclic. In fact 7! defines an index-preserving bijection between the
subgroups of GG and the subgroups of Z containing K. It follows that G
has a unique subgroup of index m for every m dividing n, and hence also
a unique subgroup of order d for every d dividing n. In particular, for such
ad, let Hj:={g € G:g?=e}. Then Hyis a subgroup of G (since G is
commutative), and in particular is cyclic, hence generated by an element of
maximal order and hence has at most d elements. On the other hand, it
contains 7(n/d), which is an element of of order d, and, it follows that Hy is
the unique subgroup of order d. Now let G be any group of order n and let
d and d’ be as in (3). Write d = d’c and n = d’m. Let us note that g% = e
iff g = e. Indeed, if gd/ = e, then also ¢¢ = gd/C = e. Moreover, there exist
integers x, y such that d = xd+yn. Then gd/ = g%dgvn = d*d 50 if g% = e, it
follows also that g% = e. This proves (3). In particular, the homomorphism
bq: g — g% is bijective iff it is injective iff ged(n,d) = 1. Furthermore, ¢q is
bijective iff it is an isomorphism iff it takes generators to generators, so if g
is a generator, g¢ is another generator iff gcd(d,n) = 1. This shows that the
numbe of generators is ¢(d), as well as the number of automorphisms, since
every automorphism is of this form. O

For any group G, let mg(d) be the number of elements of G of (exact)
order d. Then

Gl = mg(d).
d

Corollary 1 If n is a positive integer,

n= Zgb(m)
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Proof: Let G be any cyclic group of order n Then mg(d) is zero if d does
not divide n and otherwise is the number of generators of the group Hy
defined above. Since Hy is cyclic of order d, H; has ¢(d) generators. Thus
ma(d) = ¢(d), and the corollary follows from the formula above. O

Theorem 3 Let G be a finite group. Then the following conditions are
equivalent:

1. G is cyclic.

2. For each d € Z, the number of g € G such that g¢ = e is less than
or equal to d.

3. For each d € Z", G has at most one subgroup of order d.

4. For each d € Z", G has at most ¢(d) elements of order d.
Note: In statements (2)-(4), one may restrict to those d which divide n.

Proof: The implication of (2) by (1) follows from Theorem 2.

Suppose that (2) holds and d € Z™. Let H be a subgroup of G of order
d. Then g% = e for every g € H. According to (2), there are at most d such
elements. But then H = {g € G : ¢’ = ¢}, and hence H is unique.

Suppose (3) holds. If there are no elements of order d, then there is
nothing to check. If g is an element of order d, then (g) is a subgroup of
order d, and by (3), it is the unique such subgroup. Hence if ¢’ is any element
of order d, ¢’ € (g). Since (g) contains exactly ¢(d) elements of order d, we
see that G has exactly ¢(d) elements of order d.

Suppose that (4) holds. For each divisor d of the order of G, let m(d)
denote the number of elements of G of order d. If G is a group of order n
and satisfies (3) we find that

n=>) m(d) <y éd)=n
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Since each 0 < m(d) < ¢(d) for each d, we see that the equality >, m(d) =
> djn #(d) implies that each m(d) = ¢(d) for every d. In particular m(n) =
@(n) # 0. This means that G has at least one element of order n, and hence
is cyclic. O

Corollary 2 Fwvery finite subgroup of a field is cyclic.

Proof: We use the fact that a polynomial of degree d has at most d roots
to conclude that any such group has at most d elements of order d. O



