Cyclic Groups

September 17, 2010

Theorem 1 Let G be an infinite cyclic group.

- 1. G is isomorphic to \mathbf{Z} , and in fact there are two such isomorphisms.
- Every subgroup of G is cyclic. Furthermore, for every positive integer n, nZ is the unique subgroup of Z of index n.
- 3. If n_1 and n_2 are positive integers, then $\langle n_1 \rangle + \langle n_2 \rangle = \langle gcd(n_1, n_2) \rangle$ and $\langle n_1 \rangle \cap \langle n_2 \rangle = \langle lcm(n_1, n_2) \rangle$.

Proof: We omit the proof of (1). Using it, we reduce (2) to the case when $G = \mathbf{Z}$. Let H be a subgroup of \mathbf{Z} . If $H = \{0\}$ there is nothing to prove. Otherwise $H \cap \mathbf{Z}^+$ is nonempty and has a smallest element n. Then if $m \in H$, we can write m = nq + r with $q \in \mathbf{Z}$ and $0 \leq r < n$. Since $n, m \in H$, it follows that $r \in H$, and hence r = 0. Thus $H = \langle n \rangle$. It is clear that $\langle n \rangle$ has index n, since each coset has a unique representative i with $0 \leq i < n$. On the other hand, if H is any subgroup of index n, then as we have seen it is cyclic, say generated by n' > 0. But then the index of H is n', so in fact n' = n.

For (3), we use the fact that the subgroup $H := \langle n_1 \rangle + \langle n_2 \rangle$ is cyclic. Let *n* be its positive generator. Since n_1 and n_2 belong to *H*, *n* divides n_1 and n_2 . On the other hand, since $n \in H$, it follows that there exist integers *x* and *y* such that $n = xn_1 + yn_2$. Then any common divisor of n_1 and n_2 is also a divisor of *n* so *n* is the greatest common divisor. We omit the proof for intersections.

Theorem 2 Let G be a cyclic group of order n.

1. Every subgroup of G is cyclic.

- 2. For every divisor d of n, G has a unique subgroup H_d of order d, and $H_d = \{g \in G : g^d = e\}.$
- 3. For every $d \in \mathbf{Z}$, $H_d = H_{d'}$, where $d' := \gcd(d, n)$.
- 4. G has $\phi(n)$ generators, where $\phi(n)$ is the cardinality of the set of i with $1 \leq i < n$ which are relatively prime to n.
- 5. Auut(G) has order $\phi(n)$.

Proof: A choice of a generator for G determines a surjective homomorphism $\pi: \mathbb{Z} \to G$. Let K be its kernel, so that $G \cong \mathbb{Z}/K$. Then the index of K is the order of G, which must be n. If H is a subgroup of G, then $\pi^{-1}(H)$ is a subgroup of \mathbf{Z} containing K, and in particular is cyclic. It follows that H is cyclic. In fact π^{-1} defines an index-preserving bijection between the subgroups of G and the subgroups of Z containing K. It follows that G has a unique subgroup of index m for every m dividing n, and hence also a unique subgroup of order d for every d dividing n. In particular, for such a d, let $H_d := \{g \in G : g^d = e\}$. Then H_d is a subgroup of G (since G is commutative), and in particular is cyclic, hence generated by an element of maximal order and hence has at most d elements. On the other hand, it contains $\pi(n/d)$, which is an element of of order d, and, it follows that H_d is the unique subgroup of order d. Now let G be any group of order n and let d and d' be as in (3). Write d = d'c and n = d'm. Let us note that $g^{d'} = e$ iff $g^d = e$. Indeed, if $g^{d'} = e$, then also $g^d = g^{d'c} = e$. Moreover, there exist integers x, y such that d' = xd + yn. Then $g^{d'} = g^{xd}g^{yn} = d^{xd}$ so if $g^d = e$, it follows also that $g^{d'} = e$. This proves (3). In particular, the homomorphism $\phi_d: g \mapsto g^d$ is bijective iff it is injective iff gcd(n,d) = 1. Furthermore, ϕ_d is bijective iff it is an isomorphism iff it takes generators to generators, so if qis a generator, g^d is another generator iff gcd(d, n) = 1. This shows that the numbe of generators is $\phi(d)$, as well as the number of automorphisms, since every automorphism is of this form.

For any group G, let $m_G(d)$ be the number of elements of G of (exact) order d. Then

$$|G| = \sum_{d} m_G(d).$$

Corollary 1 If n is a positive integer,

$$n = \sum_{d|n} \phi(m).$$

Proof: Let G be any cyclic group of order n Then $m_G(d)$ is zero if d does not divide n and otherwise is the number of generators of the group H_d defined above. Since H_d is cyclic of order d, H_d has $\phi(d)$ generators. Thus $m_G(d) = \phi(d)$, and the corollary follows from the formula above.

Theorem 3 Let G be a finite group. Then the following conditions are equivalent:

- 1. G is cyclic.
- 2. For each $d \in \mathbb{Z}^+$, the number of $g \in G$ such that $g^d = e$ is less than or equal to d.
- 3. For each $d \in \mathbf{Z}^+$, G has at most one subgroup of order d.
- 4. For each $d \in \mathbf{Z}^+$, G has at most $\phi(d)$ elements of order d.

Note: In statements (2)-(4), one may restrict to those d which divide n.

Proof: The implication of (2) by (1) follows from Theorem 2.

Suppose that (2) holds and $d \in \mathbb{Z}^+$. Let H be a subgroup of G of order d. Then $g^d = e$ for every $g \in H$. According to (2), there are at most d such elements. But then $H = \{g \in G : g^d = e\}$, and hence H is unique.

Suppose (3) holds. If there are no elements of order d, then there is nothing to check. If g is an element of order d, then $\langle g \rangle$ is a subgroup of order d, and by (3), it is the unique such subgroup. Hence if g' is any element of order $d, g' \in \langle g \rangle$. Since $\langle g \rangle$ contains exactly $\phi(d)$ elements of order d, we see that G has exactly $\phi(d)$ elements of order d.

Suppose that (4) holds. For each divisor d of the order of G, let m(d) denote the number of elements of G of order d. If G is a group of order n and satisfies (3) we find that

$$n = \sum_{d|n} m(d) \le \sum_{d|n} \phi(d) = n$$

Since each $0 \le m(d) \le \phi(d)$ for each d, we see that the equality $\sum_{d|n} m(d) = \sum_{d|n} \phi(d)$ implies that each $m(d) = \phi(d)$ for every d. In particular $m(n) = \phi(n) \ne 0$. This means that G has at least one element of order n, and hence is cyclic.

Corollary 2 Every finite subgroup of a field is cyclic.

Proof: We use the fact that a polynomial of degree d has at most d roots to conclude that any such group has at most d elements of order d.