
COUNTING PROBLEMS IN APOLLONIAN PACKINGS
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Abstract. An Apollonian circle packing is a classical construction which is made by repeatedly in-

scribing circles into the triangular interstices in a Descartes configuration of four mutually tangent

circles. Remarkably, if the original four circles have integer curvature, all of the circles in the packing
will have integer curvature, making the packings of interest from a number theoretic point of view.

Many of the natural arithmetic problems have required new and sophisticated tools to solve them. The
reason for this difficulty is that the study of Apollonian packings reduces to the study of a subgroup of

GL4(Z) which is thin in a sense that we describe in this article, and arithmetic problems involving thin

groups have only recently become approachable in broad generality. In this article, we report on what
is currently known about Apollonian packings in which all circles have integer curvature and how these

results are obtained. This survey is also meant to illustrate how to treat arithmetic problems related

to other thin groups.

1. Introduction

To begin our story about Apollonian circle packings, we consider four mutually tangent circles, one
of them internally tangent to the other three as in the first picture in Figure 1. The name “Apollonian
packing” as well as the study of these objects stems from the following ancient theorem of Apollonius
of Perga, which Apollonius discovered while searching for a straight edge and compass construction of
mutually tangent circles and lines.

Theorem 1.1 (Apollonius, circa 200 BC). To any three mutually tangent circles or lines there are
precisely two other circles or lines which are tangent to all three.

As far as the first picture in Figure 1 goes, Theorem 1.1 implies that there is a unique circle which can
be inscribed into every interstice between the four mutually tangent circles in the picture – these unique
circles are shown in the second picture in Figure 1. Inscribing these circles produces 12 new interstices,
each of which can again be filled with a unique circle. This process can be continued indefinitely to get
a packing of infinitely many circles which is duly called an Apollonian circle packing (ACP). Given this
procedure of constructing the packing, we say that the original four circles in the first picture of Figure 1
are born in generation 0 of the packing, the new circles in the second picture are born in generation
1, and so on. Note that in Figure 1 we also include a construction of an unbounded Apollonian circle
packing, where two of the four circles we start with are parallel lines (these are circles of infinite radius
which are tangent at infinity).

One can study Apollonian circle packings from many different angles – various properties of the
packings are investigated in a beautiful series of articles by Graham-Lagarias-Mallows-Wilks-Yan (see
[20], [21], [22], [23]). A good introduction to number-theoretic questions related to Apollonian packings
can be found in [38]: these questions will be the main focus of this article. To understand how such
questions arise in the context of this purely geometric construction, consider the curvatures, or reciprocals
of the radii, of the circles in a given ACP. By the following theorem of Descartes, the curvatures of any
four mutually tangent circles (in an ACP in particular) satisfy a certain quadratic equation.
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Figure 1. Packing Circles

Theorem 1.2 (Descartes, 1643). Let a, b, c, and d denote the curvatures of four mutually tangent circles,
where a circle is taken to have negative curvature iff it is internally tangent to the other three. Then

(1.1) Q(a, b, c, d) := 2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = 0.

We will refer to the quadratic form Q in (1.1) as the Descartes quadratic form, and to the curvatures
(a, b, c, d) of any four mutually tangent circles as a Descartes quadruple.

In 1936, the Chemistry Nobel Prize Laureate Frederick Soddy rediscovered Theorem 1.2 and even
expressed it in the form of a poem in [42]. He deduced from it that if any one Descartes quadruple
(a, b, c, d) in a packing is integral – i.e. a, b, c, d ∈ Z – all of the circles in the packing must in fact have
integer curvature. We call such ACP’s in which all circles have integer curvature integer ACP’s. A
few examples of integer Apollonian packings are illustrated in Figure 2 – the first packing is generated
by starting with circles of curvatures −1, 2, 2, 3, the second is generated by starting with circles of
curvatures −11, 21, 24, 28, and the last packing is an unbounded packing generated by starting with
circles of curvature 0, 0, 1, 1 which is the only unbounded integer ACP up to scaling (see [23] for a
proof). There are many more examples of such packings: in fact, there are infinitely many primitive1

integer ACP’s which makes them particularly interesting from a number theoretic point of view.
Indeed, this remarkable integrality feature gives rise to several natural questions about integer ACP’s

– Graham et.al. make some progress towards answering them in [23] and pose striking conjectures many
of which are now theorems or at least better understood (see [4], [5], [6], [10], [15], [16], [17], [18], [26],
[39], etc). In this article we will survey how all these questions are handled and give an overview of what
is currently known. We first recall the notion of a root quadruple of an ACP from [23] in the following
theorem:

1Primitive integer ACP’s are those in which the curvatures in the packing share no common factor greater than 1. It
is natural to study only primitive integer packings, as a non-primitive ACP is simply a scaling by an integer factor of a

primitive one.
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Theorem 1.3 (Graham-Lagarias-Mallows-Wilks-Yan [23]). Define a Descartes quadruple v = (a, b, c, d)t

with a + b + c + d > 0 to be a root quadruple if a ≤ 0 ≤ b ≤ c ≤ d and a + b + c ≥ d. Then every
integer ACP has a unique root quadruple. However, the packing may contain more than one quadruple
of mutually tangent circles which yields the root quadruple.

Essentially, a root quadruple of a packing consists of the curvatures of the four largest circles in the
packing and completely defines the ACP in question: for example, the root quadruple of the packing in
Figure 2 is v = (−1, 2, 2, 3)t. The algorithm in [23] for finding the root quadruple of a packing is derived
from a convenient representation of the curvatures of circles in an ACP as maximum-norms of vectors
in an orbit of a group A ⊂ GL4(Z) called the Apollonian group, which is a subgroup of the orthogonal
group fixing the Descartes form Q. This group will be of great importance throughout this article. We
introduce it in Section 1.1.
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Figure 2. Apollonian packings with root quadruples (-1, 2, 2, 3)t, (-11, 21, 24, 28)t, and (0, 0, 1, 1)t.

One notable property of the Apollonian group which we discuss in more detail in Section 1.1 is that
it is a “thin” group in the following sense.

Definition 1.4. Let Γ be a subgroup of GLn(Z), and let G = Zcl(Γ) be its Zariski closure. We say that
Γ is thin if Γ is of infinite index in G(Z). We say Γ is arithmetic if it is not thin.

This thinness property makes the study of integer ACP’s quite intricate. To give a flavor of why
this is, consider the contrast between thin and arithmetic subgroups Γ of SL2(Z). One basic tool in
problems connected to arithmetic Γ (say, counting primes in orbits of such subgroups) is the theory
of modular forms, or more generally for arithmetic subgroups of GLn(Z) the theory of automorphic
forms and L-functions. Indeed, several long-standing problems in analytic number theory have been
reduced to finding good estimates for Fourier coefficients of automorphic forms. An important aspect
of studying these forms which also plays a role in the thin case is understanding the spectral theory
of the Laplace operator ∆ on L2(Γ\H). For example, it is known that the smallest eigenvalue in the
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spectrum for finite index subgroups of SL2(Z) is λ0 = 0, corresponding to the constant eigenfunction.
In the special case where Γ is a congruence subgroup of SL2(Z), Selberg’s eigenvalue conjecture states
that there are no eigenvalues 0 < λi < 1/4. Selberg himself showed that λ1 ≥ 3/16, and there have been
various subsequent improvements towards 1/4. There are analogs of this conjecture in the context of
more general groups as well.

However, the study of automorphic forms has traditionally focused on forms associated to arithmetic
groups. In the case that Γ is an infinite index subgroup of SL2(Z) which is Zariski dense in SL2 much
less is known: for example, it is no longer true that the smallest eigenvalue is 0 – in fact, the constant
function is no longer square integrable in this situation!

Unlike the theory of arithmetic groups, until recently there have been few techniques to handle thin
groups, however this has changed. Moreover thin groups arise naturally whenever the group is given in
terms of a finite generating set (see [1]). Furthermore, it is known that all but finitely many discrete
groups of motion of hyperbolic n-space generated by reflections in hyperplanes are thin: in fact, all such
groups in dimension n > 300 are thin. These results, as well as other similar results due to Vinberg and
Prokhorov, can be found in Nikulin’s ICM article [34].

To come back to integer ACP’s, the thin group prevalent in this article is the Apollonian group
mentioned above. This example is meant to convince the reader that it is very natural to consider
diophantine problems associated with thin groups as well as to outline the methods one might use to
address them. Specifically, our aim in this article is to shed light on the following arithmetic questions.

Question 1: What can be said about the residues modulo an integer d of the curvatures of circles in a
given ACP?

We discuss this question in Section 2. Graham et.al. were the first to investigate congruence obstruc-
tions in Apollonian packings in [23], where they show that there are always obstructions modulo 12 in
any given ACP, and that there are no congruence obstructions modulo d if the greatest common divisor
(d, 30) = 1. One such result is the following.

Theorem 1.5 (Graham-Lagarias-Mallows-Wilks-Yan [23]). Let P be a primitive integer Apollonian
packing. For any integer m with gcd(m, 30) = 1, every residue class modulo m occurs as the value of a
curvature of some circle in the packing P .

In Section 2 we review the results in [17] which extend Theorem 1.5 and give a complete answer to
Question 1, namely it is shown that the only congruence obstructions for any primitive integer ACP are
modulo 24, and that the 30 in Theorem 1.5 above can be improved to 6. The basic idea is to use the
representation of the packing as an orbit of the Apollonian group A and analyze the mod d structure of
A. It is worth noting that Graham et.al. prove their theorems by considering only unipotent subgroups
of A, while in [17] we exploit the full Apollonian group.

Graham et.al. also conduct various numerical experiments to better understand the set of curvatures
in different integer Apollonian packings. Based on these experiments, they pose a “strong density
conjecture” which predicts that given a primitive packing P , any sufficiently large integer satisfying
some fixed congruence conditions appears as a curvature in P . This conjecture is posed in a more
precise way as a local to global conjecture in [18]. As we discuss in Section 4, this precise local-global
conjecture has stood up to experimental scrutiny and remains wide open. A much more feasible task
is to determine integers which cannot occur as curvatures in a given packing by ruling out congruence
classes modulo various “bad” primes. We make this notion of badness more precise in Section 2 and
explain how such information can suggest local to global conjectures both in the Apollonian case and
beyond in Section 4.

Question 2: How many circles of curvature with few prime factors are there in a given ACP?
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In studying (primitive) integer ACP’s, it is interesting to consider which primes appear as curvatures
of circles in a given packing. We discuss this question in Section 3. In [39] Sarnak shows that there
are infinitely many circles of prime curvature and infinitely many pairs of tangent circles both of prime
curvature in any given packing P . We summarize his results in the following theorem.

Theorem 1.6 (Sarnak [39]). Let P denote the orbit of Descartes quadruples corresponding to a primitive
integer Apollonian circle packing P , and let

(1.2) C = {x ∈ C4 |Q(x) = 0}
denote the cone of solutions to the Descartes equation in (1.1). Fix two integers 1 ≤ i, j ≤ 4 and suppose
that for every x = (x1, x2, x3, x4)t ∈ P we have that xi and xj are odd.

(i) Let π̃P (X) denote the number of primes < X which are curvatures of circles in P . Then

π̃P (X) >
cX

(logX)3/2

for large X, where c is a constant depending on P .
(ii) The set of points {x ∈ P |xi, xj are prime} is Zariski dense in C.

(iii) There exist arbitrarily long chains of tangent circles in P such that every circle in the chain has
prime curvature.

In addition, in [26] Kontorovich-Oh establish upper bounds for the number of circles of prime curvature
less than X in a packing P as well as the number of pairs of circles both of prime curvature less than
X. The notation y � z below is taken to mean that there is some constant c > 0 such that y ≤ cz and
the notation � is interpreted analogously.

Theorem 1.7 (Kontorovich-Oh [26]). Given a primitive integer Apollonian circle packing P, let NP (X)
denote the number of circles of curvature less than X in P , let πP (X) denote the number of circles of
prime curvature less than X in P , and let π2

P (X) denote the number of pairs of tangent circles both of
prime curvature less than X in P . Then there is a constant c depending on P such that

(i) NP (X) ∼ c ·Xδ

(ii) πP (X)� NP (X)
logX

(iii) π2
P (X)� NP (X)

(logX)2

where δ = 1.30568 . . . and the implied constants depend on the packing P .

The constant δ above is in fact the Hausdorff dimension of the residual set of a packing P (see [23]
for a discussion of this), which is the same for every Apollonian circle packing and has been computed
to 5 decimals by McMullen in [32]. We should mention that part (i) of the theorem above applies to
non-integer Apollonian packings as well as integer packings, and that Oh-Shah specify the constant c
in [35], while recent work of Lee-Oh in [28] and independently of Vinogradov in [43] gives a formula
for NP (X) together with an error term. The proof of parts (ii) and (iii) of Theorem 1.7 relies on the
recently developed affine sieve in [7] which we elaborate on in Section 3. Note that the upper bounds
for πP (x) and π2

P (X) above are of the correct order of magnitude.
In [18] the results of [17] are paired with the affine sieve to give a heuristic for precise asymptotics for

πP (X) and π2
P (X). In [16] there is a similar heuristic for asymptotics for πPgen(T ), the number of circles

of prime curvature which are born at generation T , and we discuss both of these heuristics in Section 3.
The rather different question of counting primes which come up as curvatures of circles in a given ACP
(that is, counting circles of prime curvature without multiplicity) has also been considered in [6] and
[4]. In fact, we should mention that an immediate consequence of results in [4] and [10] is that, given
a packing P , the primes which do not come up as curvatures in P make up a zero-density subset of all
primes.
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Another problem we address in Section 3 is that of determining the saturation number r0(f,P), where
P denotes the set of Descartes quadruples x = (x1, x2, x3, x4)t in a packing P and f(x) is an integer
valued polynomial on P. In this notation the saturation number is defined to be the smallest positive
integer r0 such that the set of points

{x ∈ P | f(x) has at most r0 prime factors}
is Zariski dense in the cone C in (1.2). Part (ii) of Theorem 1.6 states that r0 = 2 if f(x) = xixj . In
Section 3 we consider the saturation number in the case of

f(x) = x1x2x3x4/12

which is equivalent to finding Descartes quadruples of circles all of whose curvatures have few prime
factors and show that r0 ≤ 28 in this case (the 12 above has to do with the fact that 12|x1x2x3x4 for
all x ∈ P for any packing P). As we discuss in Section 3, it is conjectured that r0 = 4 in this case.

Question 3: Do the integers which come up as curvatures in a given ACP make up a positive fraction
of N?

In counting the number of integers represented in a given ACP, Graham et.al. appeal to the existence
of unipotent elements in A in [23] to establish the following bounds.

Theorem 1.8 (Graham-Lagarias-Mallows-Wilks-Yan [23]). Let P be an integer Apollonian packing and
let κ(P,X) := |{a ∈ N | a < X, a is a curvature of a circle in P}|. Then

κ(P,X)�
√
X.

Graham et.al. suggest in [23] that the lower bound above can be improved. In fact, they conjecture
that the answer to Question 3 is yes and that much more is true.

We note here that this question is different from the one addressed in part (i) of Theorem 1.7. Te
latter involves counting curvatures appearing in a packing with multiplicity, rather than counting every
integer which comes up exactly once as is done in [5] and summarized in Section 4 of this article.

A more fruitful method for this problem is to consider arithmetic Fuchsian subgroups of the Apollonian
group A. In [39] Sarnak uses these subgroups to prove the following bound towards Graham et.al.’s
positive density conjecture.

Theorem 1.9 (Sarnak [39]). Let κ(P,X) be as above. Then

κ(P,X)� X√
logX

.

Sarnak’s method was further improved to yield a bound of

κ(P,X)� X

(logX)ε

where ε = 0.153 . . . in a preprint [15]. In [5], this Fuchsian subgroup method was enhanced in a number
of ways to settle Question 3 and prove Theorem 4.2 below, that

κ(P,X)� X

where the implied constant depends on the packing P . Recently, a further refinement of this analysis
coupled with new techniques introducing the circle method for thin orbits ([9],[10]) as well as the congru-
ence analysis in [17] has given asymptotics for κ(P,X) as X →∞ (see Theorem 4.3 and the discussion
in Section 4).

All of these questions can be asked in the context of integer orbits of more general subgroups of
GLn(Z), and in many cases these questions can be handled precisely as they are for the Apollonian
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group. However, the Apollonian group is particularly attractive as it is so far the only one we have
seen to arise as naturally as it does. In this sense it is often regarded as the quintessential thin group.
On the other hand, it also appears that the Apollonian group is not a typical thin group in many ways
(for example, it has many unipotent and arithmetic subgroups, it is geometrically finite, its Hausdorff
dimension is > 1, etc) and this is one reason that so much progress has been made in understanding its
arithmetic.

1.1. The Apollonian group. We mentioned above that the arithmetic of the set of curvatures of
circles in a given integer ACP is best studied with the help of the Apollonian group, since any ACP can
be realized as some orbit of this group acting on the root quadruple of the packing. In this section we
explain how this group is derived and what role it plays in our study of Apollonian packings. Recall
from Theorem 1.2 that if a, b, c, and d are curvatures of four mutually tangent circles, then

Q(a, b, c, d) = 2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = 0.

If we fix three of the curvatures (say b, c, d) above, we may solve the above equation for two solutions
a = a+, a− with

(1.3) a+ + a− = 2(b+ c+ d).

Geometrically, this amounts to finding the two circles (see Theorem 1.1) Ca+ and Ca− of curvatures
a+ and a− respectively, which are tangent to all three circles of curvature b, c, and d. Thus if there is
a Descartes quadruple a+, b, c, d in a given ACP, then another Descartes quadruple in the packing is
−a+ + 2b+ 2c+ 2d, b, c, d.

Evidently, it is very natural to consider the curvatures of quadruples of mutually tangent circles
(Descartes quadruples) rather than curvatures of individual circles. In fact, we lose no information about
the set of curvatures of circles in a given packing by studying instead the set of Descartes quadruples
in the packing, since every circle in the packing is a member of a Descartes quadruple. Moreover, the
set of Descartes quadruples encodes geometric information (the tangencies in the packing) which is not
detectable in the set of curvatures of circles alone. Therefore, given an Apollonian packing we associate
to it a set of Descartes quadruples and study this set.

Returning to the process giving (1.3) above, we note that we could just as well have fixed any other
triple from (a, b, c, d) and solved for the fourth. Geometrically, this corresponds to choosing a triangular
interstice and filling it with a circle as in our original construction in Figure 1. Similarly, inscribing
a circle in any triangular interstice corresponds to solving such a quadratic equation. We summarize
this as follows: if vP = (a, b, c, d)t is a Descartes quadruple in a packing P , the collection of Descartes
quadruples in P is precisely the orbit AvP , where A is the group generated by the four matrices

(1.4) S1 =


-1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

 , S2 =


1 0 0 0
2 -1 2 2
0 0 1 0
0 0 0 1

 ,

S3 =

 1 0 0 0
0 1 0 0
2 2 -1 2
0 0 0 1

 , S4 =

 1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 -1

 .

This group A encodes everything about Apollonian packings and is therefore known as the Apollonian
group. In the literature, the vector vP is usually taken to be the root quadruple of the packing P , but
this is not necessary. Note that S2

i = I for 1 ≤ i ≤ 4, and in fact there are no other relations among
the generators of A. Perhaps the best way to see this is by considering the geometric representation of
these generators, which we describe next.



8 ELENA FUCHS

Note that to any triple of mutually tangent circles (C1, C2, C3) there is a unique dual circle or dual line
D123 which passes through the tangency points of the three. Four such dual circles are drawn in dotted
lines for the circle packing in Figure 3. Now, if (C1, C2, C3, C4) are mutually tangent circles in a packing,
the generators S1, S2, S3, S4 of A then transform (C1, C2, C3, C4) via inversions in D234,D134,D124,D123

respectively. In Figure 3, the shaded circle on the inside is the image of the outside circle under inversion
in the smallest of the dual circles, while the other three circles in the quadruple are fixed by this inversion.
In fact, any generator Si acting in this way on a quadruple of mutually tangent circles in the packing
fixes three of the circles and maps the ith circle to the one other circle tangent to the fixed three.

Figure 3. Dual circles in an Apollonian circle packing

Furthermore, since the Descartes form Q has signature (3, 1), and the group A is a subgroup of
OR(3, 1), the isometry group of hyperbolic 3-space

H3 = {(x, y, z) ∈ R3 | z > 0}

where the metric is given by dx2+dy2+dz2

z2 and the boundary of the space is Ĉ = C ∪ ∞. Thus the
Apollonian group A acts on this space in a natural way, and in fact it is a subgroup of the Vinberg group
WQ, the subgroup of OQ(Z) generated by reflections in hyperplanes in H3. To see this, we first embed
an Apollonian packing into C, and note that the geometric action of A on the circles of the packing
as described above extends to an action on C. This action on the plane is then easily extended to an
action on H3: the generators of A act on H3 as reflections through the hemispheres lying above the dual
circles of the packing. A fundamental domain for this action is the intersection of the exteriors of the
hemispheres lying above D234,D134,D124,D123, the dual circles corresponding to the root quadruple of
the packing. This fundamental domain has infinite volume with respect to the hyperbolic volume form
which, as we mentioned before, renders the theory of automorphic forms inapplicable to counting in the
orbit of A.

Now that we have introduced the Apollonian group, we list some notable properties of A and the
bigger group WQ.

1) A is an infinite-index subgroup of the orthogonal group OQ(Z) fixing Q
2) A is Zariski dense in OQ(C)
3) WQ is of finite index in OQ(Z)

Properties 1 and 2 which imply that the Apollonian group is thin are proven in [23], while property 3 is
essentially a theorem in [13] after one passes to the spin double cover of SOQ(R) (we discuss this passage
in the following section).
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The fact that A is Zariski dense in OQ(C) is precisely what makes its integer orbits suitable for the
affine sieve described in [7]. It is also for this reason that, as we will see, its orbits are quite rich in
some sense, even though A is thin in the sense of Definition 1.4. The ability to sieve in ACP’s allows
us to tackle quite a few of the questions outlined above. To illustrate how one does this, we begin the
next section with a short summary of how sieving works in a more classical situation. The ingredients
which go into this classical sieve have natural analogues in the higher dimensional group-orbit setting:
the basic requirements are

(i) A “Chinese Remainder Theorem” for the orbits of the group
(ii) An expansion property for the Cayley graphs associated to finite quotients of the group

We discuss requirement (i) and how to show it is satisfied in the next section. In Section 3 we explain the
role of requirement (ii) in the sieve and discuss how it can be applied together with (i) in two different
sieves in the ACP example: one application is to count points all of whose coordinates have few prime
factors in various orbits of the Apollonian group, and the other is to count circles of prime curvature.
We note that Section 4 concerning the density of integers which appear as curvatures in a given ACP
is of a somewhat different flavor and does not appeal to the affine sieve at all. One reason for this is
that this problem concerns the number of integers < X which occur as curvatures in an ACP without
multiplicity while the affine sieve is a counting tool in the orbit of A and counts with multiplicity. The
results in all of these sections, however, all point to one general rule that the curvatures in an integer
ACP are structured much like all of N even though they come from an orbit of a thin group. Finally,
we say a few words on future directions in the study of general thin groups in Section 5.

Acknowledgements: We thank P. Sarnak for introducing us to ACP’s and for inspiring much of the
work presented here. We thank A. Kontorovich and P. Sarnak for helpful comments on a previous
version of this article. Finally, we thank K. Sanden for providing several of the pictures in this article.

2. Congruence obstructions in Apollonian packings

In this section we consider Question 1 of the introduction regarding congruence obstructions for
integers appearing as curvatures in a given ACP. Studying these congruence obstructions has many
benefits: one concrete benefit is the ability to count primes in Apollonian packings as discussed in
Question 2 of the Introduction. A natural way to do this is by sieving in orbits of the Apollonian group
A. To give an idea of what this entails and how congruence obstructions come in, we review the setup
of a more classical Brun sieve next. For a good brief overview of sieves both in the classical and in the
group orbit setting, see [27].

The Brun sieve:

Let f(x) ∈ Z[x] be a primitive polynomial with integer coefficients and suppose we wish to use a sieve
to count the number of primes (with multiplicity) which can be written as f(b) for some positive integer
b < N . To this end, consider the sequence {an}n≥1 where

an = |{b ∈ N | b < N, f(b) = n}|

and let

X =
∑
n≥1

an.

The basic idea now is reminiscent of the sieve of Eratosthenes: we consider all values of f(b) where
b < N and strike out all multiples of 2 which are greater than 2. We then strike out all multiples of 3 in
a similar way, but in doing so we have now crossed out multiples of 6 twice. Thus to count how many
integers have survived the sieve so far, we subtract from X the number of values of f which are multiples
of 2 or 3, and then add back in the number of values of f which are multiples of 6. We keep subtracting
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off multiples of primes and adding back in what we subtract more than once. One can express this
count in a neat formula in terms of the number of values of f which are multiples of d for various square
free positive integers d (see (2.3)). To this end we introduce a bit of notation. For some parameter z
depending on N – usually a small power of N – let

Pz =
∏

p prime
p<z

p and S(z) =
∑
n>0

(n,Pz)=1

an.

Note that S(z) counts precisely those integers which survive the process above when one strikes out
multiples of primes less than z. Furthermore, if z is large enough, S(z) is a fairly good estimate of how
many primes there are among f(b) where b < N , since it is essentially the number of values of f which
have all prime factors > z. We note here that usually a sieve cannot be used to pick out primes only:
outside of very few examples, the best one can do is to pick up integers with at most two prime factors,
but this tends to be a good estimate for the number of primes alone. So our mission to count prime
values of f can be translated into evaluating the sum S(z) above. Let

Sd =
∑
n>0

d|n

an.

Then we may express S(z) in terms of Sd as follows:

(2.1) S(z) =
∑
d|Pz

Sd · µ(d)

where the Moebius function µ(d) = 1 if d is square free and has an even number of prime factors,
µ(d) = −1 if d is square free and has an odd number of prime factors, and µ(d) = 0 otherwise. Indeed,
(2.1) is just a concise way of describing the inclusion/exclusion strategy above. Our aim is now to
compute the values Sd appearing in the second sum in (2.1). Note that

Sd =
∑

0<b<N

f(b)≡0 (d)

1

and that the condition f(b) ≡ 0 mod d above depends only on the value of b mod d. Therefore we may
write

Sd =
∑

m∈Z/dZ
f(m)≡0 (d)

∑
b<N

b≡m (d)

1.

Finally, this boils down to evaluating

ω(d) = |{m ∈ Z/dZ | f(m) ≡ 0 (mod d)}|.
Specifically, we get that

(2.2) Sd =
ω(d)

d
X +O(1).

Here ω(d) is multiplicative by the Chinese Remainder Theorem (this is crucial in evaluating ω(d) for
arbitrary square free integers d), and the remainder term is small in the sense that even when one sums
Sd · µ(d) over all d as we do in (2.1) we get

(2.3) S(z) =
∑
d|Pz

Sd · µ(d) = X ·
∑
d|Pz

ω(d)

d
+R

where R is small compared to the main term. This gives us an upper bound on the number of primes we
were interested in counting above. The main moral of this story is that we need a Chinese Remainder
Theorem to sieve, and we need to control the remainder term R when we proceed as above with z large.
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Sieving in orbits:

Passing from this classical example to a more general setting, suppose we would like to sieve for
vectors with prime first coordinate in an orbit of a subgroup of GLn(Z). The affine sieve which is
developed in [7] and [36] is a machine which allows us to count such vectors in fairly general situations.
While there are various subtleties in this group orbit counting which are not present in the classical
situation above, the general idea of this affine sieve is very similar. For example, in order to be able to
sieve in an integer orbit Γv ⊂ Zn where Γ ≤ GLn(Z) one needs to know the exact structure of the orbit
modulo square free integers d, just as one needs to understand the values of the polynomial f mod d in
the classical example above. To this end, let Γdv denote the projection of Γv in (Z/dZ)n. If one sieves
for points w with prime first coordinate w1 in Γv, one needs to evaluate the ratio

(2.4) β(d) =
|{w ∈ Γdv | w1 ≡ 0 (mod d)}|

|{w ∈ Γdv}|
for every square free integer d > 1. This ratio is the analogue of ω(d)/d in (2.2) and it plays an identical
role in counting prime points in the group-orbit setting as ω(d)/d plays above. The rest of this section
will be concerned with understanding the analogue of the Chinese remainder theorem in this general
setting to guarantee that the ratios in (2.4) are multiplicative in d. Along the way, we will pave the road
to evaluating these β(d) in the Apollonian case.

A very general result which is a starting point to such Chinese remainder theorems is the strong
approximation Theorem 10.1 of Weisfeiler in [44]. In the simple case of subgroups Γ of SL2(Z) this
theorem says that if Γ is Zariski dense in SL2 then the reduction of Γ modulo primes p is onto SL2(Fp)
for all but finitely many “bad” primes p.

In the context of integer ACP’s, the relevant version of Weisfeiler’s theorem says that if Γ is a subgroup
of SL2(Z[

√
-1]) which is Zariski dense in SL2(C) and such that traces of elements of Γ generate the field

Q(
√

-1), then there is a finite set of prime ideals B in Z[
√

-1] such that Γ projects onto SL2(Z[
√

-1]/p)
for p 6∈ B. We will see how the Apollonian group relates to SL2(C) below. In order to execute the sieve,
however, we need to explicitly determine B. Once we do this, we will be able to evaluate β(p) for p
prime fairly easily. We then want to show that for arbitrary square free d the ratio β(d) is the product
over p|d of β(p)’s where p is prime. All this is done by specifying the orbits of A mod d. To this end we
introduce the following notation where Q denotes the Descartes quadratic form from before. For any
prime p, let

Cp = {v ∈ (Z/pZ)4 | v 6≡ 0 (mod p), Q(v) ≡ 0 (mod p)}.
If p > 2, for any integer r > 1 let

Cpr = {v ∈ (Z/prZ)4 | v 6≡ 0 (mod pr−1), Q(v) ≡ 0 (mod pr)}.
Finally, for any integer r > 1 let

C2r = {v ∈ (Z/2rZ)4 | v 6≡ 0 (2r−1), Q(v) ≡ 0 (2r),∃w ≡ v (2r) s.t. Q(w) ≡ 0 (2r+1)}.
The reason that we define C2r separately is that it is not true in this case that every solution to
Q(v) ≡ 0 (mod 2r) lifts to some solution of the equation modulo 2r+1 – only half of the solutions
modulo 2r lift to solutions modulo 2r+1. With this notation, we have the following description of orbits
of A mod d.

Theorem 2.1 ([17]). Let P be an orbit of A acting on the root quadruple vP of a primitive packing P
and let Pd be the reduction of this orbit modulo an integer d > 1. Let Cpr be defined as above. Write
d = d1d2 with (d2, 6) = 1 and d1 = 2n3m where n,m ≥ 0.

(i) The canonical projection Pd −→ Pd1 × Pd2 is surjective.
(ii) The canonical projection Pd2 −→

∏
pr||d2 Ppr is surjective and Ppr = Cpr .

(iii) The canonical projection Pd1 −→ P2n × P3m is surjective.
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(iv) If n ≥ 4, let π : C2n → C8 be the canonical projection. Then P2n = π−1(P8).
(v) If m ≥ 2, let φ : C3m → C3 be the canonical projection. Then P3m = φ−1(P3).

To paraphrase Theorem 2.1, in order to determine the reduction of any given primitive orbit of A
modulo any positive integer d > 1 one needs only to determine the reduction modulo 24. Once this is
done, the rest of the information about this reduction comes from knowing the solutions to Q(x) ≡ 0
modulo various primes p. We note here that Theorem 2.1 is more than one needs for sieving, as it
specifies the reductions of orbits P of A modulo any integer d as opposed to just square free integers
which is all that the sieve requires. However, including integers which are not square free is natural in
specifying the arithmetic structure of integer ACP’s and is key to the local to global conjecture discussed
in Section 4.

We now give a sketch of the proof of Theorem 2.1 in the case that d above is square free. The
generalization to the case where d is an arbitrary integer requires some extra work which we outline
briefly at the end of this section. In both cases the idea is to specify the structure of the Apollonian
group mod d in order to derive the corresponding structure of the group’s orbits. We note that the
strategy of this proof applies identically to any Zariski dense subgroup of Of (Z) where f is a signature
(3, 1) quadratic form in four variables.

A first observation is that it is difficult to arrive at Theorem 2.1 by working with the Apollonian
group A directly since it is a subgroup of the orthogonal group OQ(Z) where strong approximation does
not hold: the reduction even of OQ(Z) itself (let alone A) modulo p is not onto OQ(Z/pZ) if p ≡ 3 mod
4. It is therefore difficult to say anything about the projection of A in OQ(Z/pZ) by working in the
orthogonal group itself and consequently difficult to quantify the ratios in (2.4) in this way. One can
get around this difficulty by working in the spin double cover of the arithmetic group SOQ where strong
approximation does hold. To pass to the spin double cover, let

Q̃(x1, x2, x3, x4) := x21 − x22 − x23 − x24.

In [17] it is shown that OQ(Z[ 12 ]) ∼= OQ̃(Z[ 12 ]) and that there is an isomorphism

(2.5) A′
s−→A

between A and a subgroup A′ of OQ̃(Z). With this notation, we consider the preimage Γ of A′∩SOQ̃(Z)

under the 2 to 1 spin homomorphism (see [13])

(2.6) ρ : SL2(C)→ SOQ̃(R).

One can show that Γ ⊂ SL2(Z[
√

-1]), the traces of elements of Γ generate Q(
√

-1), and Γ is a Zariski
dense subgroup of SL2(C) where strong approximation holds in the sense of Weisfeiler’s theorem outlined
above. Furthermore, since

s(ρ(Γ)) = A ∩ SOQ(Z),

and since we have explicit formulas for s and ρ, by considering Γ we simultaneously consider the Apol-
lonian group A. Note that this method of pulling back to the spin double cover is a standard technique
for sieving in orbits of subgroups of Of (Z) where f is some quadratic form, as explained in [7].

With this in mind, the first step towards proving Theorem 2.1 is to consider the reduction of Γ modulo
ideals (d) in Z[

√
-1] in order to gain information about reductions of A′ and A. We note, however, that

to analyze A modulo even integers it is not enough to consider the reduction of Γ modulo ideals (d)
where d is even, since the isomorphism in (2.5) is defined over Z[1/2]. This is a technicality that can
easily be dealt with separately, and we will suppress its details here for the sake of exposition (for the
details, see [17]).

To analyze the reductions of Γ, the explicit formula for ρ given in [13] is combined with the fact that
A∩ SOQ(Z) is generated by S1S2, S2S3, and S2S4 to produce exactly the generators and relations of Γ.
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Here the Si’s denote the generators of A as before. We describe this presentation of Γ in the following
lemma.

Lemma 2.2 ([17]). Let Γ be as before. It is generated by ±γ1,±γ2,±γ3, where γi are as below and there
are no relations between γ1, γ2, and γ3.

(2.7) γ1 =

(
2 -i
-i 0

)
, γ2 =

(
-2-2i -4-3i
i 2i

)
, γ3 =

(
1 -4i
0 1

)
.

Given this presentation of Γ, finding the set B of bad primes turns out to be a problem in elementary
group theory: the main tool in accomplishing this is a classification due to L.E. Dickson (Theorem 8.27
in [25]) of subgroups of PSL2 over finite fields. In the case that the finite field is Fp for p prime, it is
shown in [11] that most of the groups in this classification are metabelian, meaning their commutator
subgroups are abelian. In light of this, we state the following version of Dickson’s classification:

Theorem 2.3 (Dickson, 1901). Let p ≥ 5 be prime. A proper subgroup of PSL2(Fp) is either metabelian
or one of A4, S4, or A5.

Using Dickson’s classification, one can show that the reduction mod p of our group Γ must be
SL2(Z[

√
-1]/p) for all but finitely many p as well as specify these finitely many p. The strategy for this

is to determine a girth bound for every Γ/p and then to show that for all but finitely many p ∈ Z[
√

-1]
the proper subgroups in Dickson’s theorem would violate this bound, meaning that Γ/p cannot be a
proper subgroup of SL2. We note here that one reason that it is feasible to carry this out for Γ is that
the classification of subgroups of SL2 over finite fields is particularly simple. In the case of a higher rank
group, the relevant classification would be much more complex, and consequently the corresponding
result on reductions of the group modulo d would be much harder to prove. In the case of Γ, one has
the following.

Proposition 2.4 ([17]). Let Γ be as before, let O = Z[
√

-1], let p denote a prime ideal in O, and let (d)
denote an ideal generated by d ∈ O. Denote by B the set of prime ideals in O containing (6). Let d > 1
be a square free integer such that d = d1c, where c|6 and gcd(d1, 6) = 1. We have that the product of
canonical projections

(2.8) π : Γ −→ Γc ×
∏

p⊃(d1)

SL2(O/p)

where Γc is the image of Γ in SL2(O/(c)), is surjective. In particular the reduction of Γ modulo any
prime p 6∈ B is onto SL2(O/p).

Theorem 2.1 in the case of d square free follows quickly from this proposition. The main ingredient in
the proof is Theorem 2.3 combined with the girth bound mentioned above, as well as an application of
Goursat’s lemma for the multiplicative aspect. Our method of proving Proposition 2.8 is quite general
and gives an effective version of Weisfeiler’s theorem for subgroups of SL2(Z[

√
-1]) given in terms of

generators. In this particular case, one can also give a shorter argument using results of Hall in [24]
since one of Γ’s generators (γ3) is a pseudoreflection. Specifically, Theorem 3.1 in [24] implies that the
only potentially bad primes in this case are 2 and 3. We outline the more general proof which does not
require any extra conditions on the generators next.

We first show that Γ/p surjects onto SL2(O/p) for prime ideals p 6⊃ (6). There are three cases to
consider:

(1) pp = (p) where p ≡ 1 (mod 4); here p splits in O, and the reduction of Γ modulo (p) is mapped
to SL2(Fp)× SL2(Fp);

(2) p = (p) where p ≡ 3 (mod 4); here p does not split in O, and the reduction of Γ modulo (p) is
mapped to SL2(Fp2).



14 ELENA FUCHS

(3) p2 = (2);

We sketch the proof that for p as in Case 1 we have Γ/p = SL2(O/p) for all p. The proof that
Γ/p = SL2(O/p) for all p 6= (3) as in Case 2 is essentially identical, and Case 3 is quickly taken care of
by hand (it is not hard to see that Γ/(2) is not all of SL2(O/(2)) for example).

Let pp = (p) where p denotes a prime congruent to 1 mod 4 as in Case 1. One can check that the

center Z of SL2(Z[
√

-1]) is contained in Γ. Denoting Γ′ = Γ/Z ⊆ PSL2(C), our strategy is now to
determine when the reduction Γ′p of Γ′ modulo p is all of PSL2(Fp)×PSL2(Fp) as this can be shown to
imply that the reduction of Γ mod p is all of SL2(Fp) × SL2(Fp). In fact, it is enough in this case to
check that the projection of Γ′ in the first factor PSL2(Fp) is surjective, as we do next.

By Theorem 2.3, if the image of Γ′p in the first factor is a proper subgroup of PSL2(Fp), it is either
metabelian or is one of the groups A4, S4, or A5. To rule out these proper subgroups, we appeal to a
result of Margulis in [31] on girth bounds which we define next. The method of using this bound to rule
out proper subgroups as candidates for Γ′p is a useful tool which has previously been featured in [11]
and [19], for example. From now on we denote the image of Γ′p in the first factor PSL2(Fp) by Γ′p,1.

For γ ∈ Γ′ let γ denote the image of γ in Γ′p,1 and let

Sp = {γ1, γ -1
1 , γ2, γ

-1
2 , γ3, γ

-1
3 }

where γi are as in (2.7) be a set of generators of Γ′p,1. Consider the Cayley graph C(Γ′p,1, Sp), where
the vertices correspond to elements of Γ′p,1 and two vertices v, w are connected by an edge if and only

if vw−1 ∈ Sp. The girth c(Γ′p,1, Sp) of C(Γ′p,1, Sp) is defined to be the length of the shortest cycle
(v1, v2, . . . , vk) with vk = v1 in C(Γ′p,1, Sp) where vi−1 6= vi+1 for any 1 < i < k. From [31] we have that

(2.9) c(Γ′p,1, Sp) ≥ 2 logα(p/2)− 1

where

α := max
1≤i≤3

(||γi||)

where ||γ|| is positive and

||γ||2 = λmax(γ∗γ).

Here γ∗ is the conjugate transpose of γ, and λmax(γ∗γ) is the largest eigenvalue of γ∗γ. Using this we
compute that in our case

α =

√
19 + 6

√
10 = 6.1623 . . .

Note that an upper bound for the girth of any Cayley graph corresponding to A4, S4, or A5 is 6, since
an element in any of these groups has order ≤ 6. On the other hand, the bound in (2.9) implies that

c(Γ′p,1, Sp) > 6 for p > 1161

and so Γ′p,1 cannot be A4, S4, or A5 if pp = (p) where p > 1161. We then check with the help of a

computer that for pp = (p) where 5 ≤ p < 1161 we have
∣∣Γ′p,1∣∣ > 60, and so Γ′p,1 6= A4, A5, or S4.

It remains to show that Γ′p,1 cannot be metabelian. If it were metabelian, we would have that for any
A,B,C,D ∈ Γ′p,1

(2.10) [[A,B], [C,D]] := (ABA−1B−1)(CDC−1D−1)(BAB−1A−1)(DCD−1C−1) = I.

This would give an upper bound of 16 for c(Γ′p,1, Sp). However, the bound in (2.9) implies that

c(Γ′p,1, Sp) > 16 for p > 2.57 · 107

and so Γ′p,1 cannot be metabelian in this case. We are left with a finite number of cases which are
handled with the help of a computer in [17]. Namely, one can check that taking A = γ1, B = γ2, C = γ3,



COUNTING PROBLEMS IN APOLLONIAN PACKINGS 15

and D = γ1γ2γ3 where γi are as in (2.7) one has

(2.11) [[A,B], [C,D]] 6= I

in PSL2(Fp) for 5 ≤ p < 2.57 · 107, and thus Γ′p,1 is not metabelian in these cases. Combined with the
fact that Γ′p,1 is not A4, S4, or A5 we have that Γ′p,1 = PSL2(Fp) for all p as in Case 1. Since no proper
subgroup of SL2(Fp) maps onto PSL2(Fp) (see [41] for a proof), this implies that the projection of Γp

is surjective in the first factor of SL2(Fp) × SL2(Fp) as well. Again, in this case this implies that Γp is
indeed the full SL2(Fp)× SL2(Fp).

After handling Case 2 using very similar arguments as in Case 1 for p > 3, we can identify p = 2, 3
as the bad primes as far as reduction of Γ mod (p) goes. It remains to show the surjectivity of the map
π in Proposition 2.4, and this is done in [17] using Goursat’s lemma together with an analysis of the
composition factors of Γ/(d).

It is then not difficult to derive the part of Theorem 2.1 concerning square free integers d > 1 which
is the necessary ingredient for sieving in orbits of the Apollonian group A as we do in Section 3.

Theorem 2.1, however, gives much more than the bare minimum required for sieving: it specifies in
particular the structure of A modulo any integer which paints a clearer picture of which integers appear
in any given ACP, as we discuss in Section 4. Thus in order to finish the proof of Theorem 2.1, one needs
to determine the reduction of Γ modulo an arbitrary ideal (d). The ingredients in doing this are similar
to the ingredients in determining the reduction modulo square free ideals. First, just as we determined
the reductions Γ/(p) above, we must determine the reductions Γ/(pk) for arbitrary integers k > 1. The
basic idea is to look at the sequence of canonical projections

(2.12) Γ/(p)←− Γ/(p2)←− Γ/(p3) . . .

for every prime p and to determine at which level in the sequence the kernels of the projections above
begin to coincide with those in the sequence

(2.13) SL2(O/(p)) π1←− SL2(O/(p2))
π2←− SL2(O/(p3)) . . . .

It is known that the kernels must coincide from some finite power of p onwards by Weisfeiler’s theorem.
The crucial observation is that as soon as the kernels do coincide (say, starting at Γ/(pk)) and given
m ≥ k, one can simply lift from Γ/(pm) to Γ/(pm+1) in the natural way that one lifts in the second
sequence above. In other words, an element γ ∈ Γ/(pm) has precisely the elements

{γ′ ∈ SL2(O/(pm+1)) |πm(γ′) = γ}

lying above it.
If p is “good,” meaning p - 6, the reduction of Γ modulo (p) is onto SL2(O/(p)), and the two sequences

in (2.12) and (2.13) are identical by a slight generalization of Serre’s Lemma 3 on page IV-23 in [41].
Namely, it can be shown that if q 6= (1 + i), (3) is a prime ideal in O and Oq denotes the completion of
O at q, then a closed subgroup G of SL2(Oq) whose projection into SL2(Oq/q) is surjective is precisely
SL2(Oq).

On the other hand, in the case where p = 2 or 3 we have seen that Γ/(p) is not all of SL2(O/(p)) and
so the sequences above are not identical for such primes. However, the kernels of the maps do begin to
coincide quite quickly – starting at π3 for p = 2 and at π1 for p = 3 – and combining this with an analog
of Serre’s lemma gives a complete description of Γ modulo powers of “bad” ideals. Combining this with
Goursat’s lemma to show that the reduction mod (d) is in some sense multiplicative gives the desired
description of Γ/(d) for arbitrary ideals (d). For more details of this proof, see [17]. Again, this strategy
applies similarly to Zariski dense subgroups of Of (Z) where f is of signature (3, 1).
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3. Prime number theorems and sieving

In this section we survey how a sieve can be used to count circles of prime curvature as well as
Descartes quadruples of circles all of whose curvatures have few prime factors in Apollonian packings.
As we mentioned in the introduction, there are two main ingredients in such a sieve, the first of which
is a Chinese remainder theorem which we discussed in Section 2 (see Theorem 2.1). To elaborate on the
second ingredient regarding the expansion property in the context of Apollonian packings, consider the
following problem. Let P be a bounded Apollonian circle packing, and suppose we want to count the
number of circles of prime curvature in P which are born at a fixed generation T . With this in mind,
let an be the number of circles of curvature n in P born at generation T and denote the sequence of
such an’s by A := {an}n>0. Note that there is a finite number of circles of curvature n in any bounded
packing P since all circles in the packing are contained in a circle of fixed radius r and thus an ≤ r2n2.
Let

X :=
∑
n>0

an.

Analogously to the classical sieve described at the beginning of Section 2, let

Pz :=
∏

p prime

p≤z

p and S(A, Pz) :=
∑

(n,Pz)=1

an

where z depends on T . Our goal is to estimate S(A, Pz) which can be viewed as an approximation to the
total number of circles of prime curvature at generation T if the dependence of z on T is chosen carefully.
As in the classical example at the beginning of Section 2 we will compute S(A, Pz) by estimating the
sum in (3.1) for square free integers d > 1. To evaluate these sums, we note that there is a multiplicative
density function 0 ≤ β(d) ≤ 1 such that

(3.1)
∑

n≡0 (d)

an = β(d)X +R(A, d)

where the remainder term R(A, d) is on average small comparing to X. Theorem 2.1 gives us a good
understanding of β(d). However to control the size of the remainders R(A, d) one needs to check whether
the Apollonian group A satisfies certain combinatorial properties which we discuss next.

3.1. The affine sieve and the importance of expanders. The requirement that R(A, d) be small on
average turns out to be quite subtle when sieving over an orbit of a group G ⊂ GLn(Z) (the Apollonian
group in our case) rather than over the integers. Specifically, to carry out a sieve over Z one considers
integers belonging to a large interval which occur in some arithmetic progression with difference d. Over
the integers, the size of the boundary of such an interval is trivially small compared to the size of the
whole interval, and the same holds for arithmetic progressions within this interval. In the setting of
groups, however, this is generally not true. Namely, consider all points in an orbit of an arbitrary
discrete group acting on Zn which lie in a large ball B(x, r) of radius r centered at x which is the
analogue of an interval in Z. Naively, one might propose sifting out all points on the boundaries of balls
B(x, r′) centered at x, whose radii r′ ≤ r are in an arithmetic progression of difference d. However, in
this setting the points on the boundary may in fact be most of the points in B. In order to ensure this
does not happen (equivalently, to make sure that the remainder R(A, d) is small), it is necessary for
G to satisfy some combinatorial properties. To this end for p prime let Gp denote the reduction of G

modulo p and let Sp = {α1, α
−1
1 , . . . , αk, α

−1
k } be the generators of G mod p. We associate to every such

reduction Gp the Cayley graph

Gp := Cay(Gp, Sp)

where the vertices correspond to elements of Gp, and two vertices x and y are connected by an edge
if and only if xy−1 ∈ Sp. If G is free on 2k generators (one can always replace G with a suitable free



COUNTING PROBLEMS IN APOLLONIAN PACKINGS 17

subgroup of G as far as the affine sieve goes) we associate with Gp a 2k-regular graph. If G is the
Apollonian group the corresponding graph is 4-regular. This association is crucial in controlling the
remainder term in (3.1) in the orbit setting – namely, under certain conditions on the Cayley graphs Gp
one can show that the remainders are small as desired.

Specifically, for any graph G with a finite number of vertices |G| we can define a |G| × |G| adjacency
matrix M(G) whose rows and columns are indexed by vertices vi of G, such that

Mij =

{
1 iff vi and vj are adjacent
0 otherwise

In the context of a free group on 2k generators, the adjacency matrix M(Gn,2k) is an n× n symmetric
matrix with n eigenvalues between −2k and 2k:

2k = λ0 ≥ λ1 ≥ ... ≥ λn−1 ≥ −2k,

where λ0 > λ1 if the graph is connected, which we assume for our applications. With this in mind,
we would like the set of graphs {Gp | p prime} to satisfy the following expander property (see [7] for a
detailed discussion).

Definition 3.1. Let {Gi}i≥1 be an infinite family of connected, 2k-regular finite graphs with ni = |Gi| →
∞ as i→∞, and let M(Gi) be the adjacency matrix of Gi. Let {λ0(i), λ2(i), . . . , λni−1(i)} be the set of
eigenvalues of M(Gi) and denote by λ(M(Gi)) an eigenvalue of M(Gi) such that

|λ(M(Gi))| = max({|λj(i)|, where |λj(i)| 6= 2k}).
We say that the graphs Gi form a family of expanders if and only if

(3.2) lim sup
j→∞

|λ(M(Gj))| < 2k.

The spectral gap implied in (3.2) is a measure of the “expansion” in an expander family {Gi}. It
is precisely this expander property which guarantees that the remainder R(A, d) in the sieve is small,
and it turns out that the affine sieve can be carried out precisely for orbits of groups which satisfy this
property. The following theorem implies that the Apollonian group A is in fact such a group. We should
mention that the spectral gap has proven to be useful beyond the sieve as well: for example, it is a key
ingredient in the work of Bourgain-Kontorovich in [10] which we discuss in Section 4.

Theorem 3.2 (Bourgain-Gamburd-Sarnak [7]). Let G be a subgroup of G̃ = SL2(Z[
√

-1]) such that G

is Zariski dense in Zcl(G̃), and such that the traces of elements of G generate the field Q(
√

-1). Then as

(d) varies over square free ideals in Z[
√

-1], the Cayley graphs (G/(d), S), where S is a fixed symmetric
generating set of G, is a family of expanders.

This theorem applies to the analysis of curvatures of circles in Apollonian packings since the preimage
of A in the spin-double cover of the orthogonal group SOQ satisfies the conditions on G above. Thus
the Cayley graphs arising from reduction mod d in the case of ACP’s satisfy the expander property, and
we can use the affine sieve to count prime curvatures in a packing P . In [7], the authors discuss how
such a sieve can be applied to “prime point” counting in the orbit of a subgroup of SL2(Z) – we explore
this question in the context of curvatures of circles in Apollonian packings in Section 3.2.

A similar question which has many variants over the integers concerns the infinitude of points in the
orbit whose coordinates have few prime factors. For example, given an integer-valued polynomial f(x)
over Z, one might ask whether there are infinitely many primes which can be expressed as f(a) for some
a ∈ Z. This question extends to the affine setting as follows.

Consider a discrete group G generated by linear transformations which take Zn to Zn, and let O be
the orbit of G acting on b ∈ Zn. Let f ∈ Q[x1, ..., xn] be a polynomial which takes integer values on O.
Let

Or,f := {x ∈ O| f(x) has at most r prime factors}
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which we refer to as the set of r-almost prime points in O. We ask whether there is an r ∈ Z such
that there are “many” points x ∈ O for which f(x) has at most r prime factors. In particular, we are
interested in finding an r such that the set Or,f is Zariski dense in the Zariski closure Zcl(O) of O. Note
that if Or,f is dense in Zcl(O) for some r ∈ Z, then Or′,f is dense in Zcl(O) for r′ ≥ r as well. If such an
r exists and is finite, we call the minimal r for which Or,f is dense in O the saturation number of O, f),
denoted by r0(O, f), and say that the pair (O, f) saturates.

This question is most interesting if there are no local obstructions for the pair (O, f). For example, if
there is an integer q ≥ 2 such that (f(x), q) > 1 for all x ∈ O we have that f(x) is divisible by some factor
of q for every x ∈ O. Thus r0 will be larger than what one might expect from the arithmetic properties
of O alone, which is ultimately what interests us. For this reason, we demand that the pair (O, f) be
primitive, meaning that for every q ≥ 2 we have at least one point x ∈ O for which (f(x), q) = 1. We
state the result for saturation of the orbit in the primitive case here:

Theorem 3.3 (Bourgain-Gamburd-Sarnak [7]). Let G be as in Theorem 3.2, and let O be an orbit of
G acting on a vector b ∈ Zn as before. Let f be as above, and suppose (O, f) is primitive. Then the
pair (O, f) saturates, and the saturation number r0(O, f) can be explicitly given in terms of the spectral
gap in the expander family.

In particular, Theorem 3.3 combined with Theorem 3.2 implies that the saturation number r0 exists
and is finite in the setting of orbits P of A, and in [16] we show that r0(P, f) ≤ 28 if f is defined as

f(x1, x2, x3, x4) = x1x2x3x4/12.

In this case if P is an orbit associated to a primitive packing, the pair (P, f) is indeed primitive – this
can be derived from Theorem 2.1. However, the methods to obtain this upper bound do not rely on the
affine sieve, since there is not enough information about the Apollonian group to obtain good bounds in
this way. To see why this is, note that the affine sieve gives an upper bound for r0 in terms of a lower
bound for the spectral gap in (3.2) associated to the Cayley graphs of finite quotients of A: the larger
the spectral gap, the smaller r0. Lower bounds for this spectral gap can be extracted from the analysis
in [37], where the authors give necessary and sufficient conditions for a family of such graphs associated
to more general groups to be an expander family – in fact, the authors show that their methods are
technically effective. However, the lower bounds for the spectral gap that one can extract from their
proof would yield upper bounds for r0 which are several orders of magnitude larger than what one can
obtain using simpler methods such as those outlined below. It is conceivable that in the near future a
good lower bound for the spectral gap in the Apollonian case will become available, in which case the
above bound could probably be significantly improved.

One other possible method to get a lower bound for the spectral gap in (3.2) is to relate the com-
binatorial spectral gap coming from the adjacency matrices described above to the spectral gap of the
Laplacians of Ad\H3 where Ad are “congruence subgroups” of A: a lower bound for the gaps between
the first and second eigenvalues of these Laplacians would imply a lower bound for the combinatorial
spectral gap and vice versa. However, since the fundamental domains of these quotients have infinite
volume, usual integration techniques to determine the spectra of the Laplacians do not apply. In fact,
the only eigenvalue known in this case is the first eigenvalue λ0 = δ(2 − δ), where δ is the Hausdorff
dimension of the limit set of a packing. Beyond this, the existence of a combinatorial spectral gap guar-
antees some spectral gap in this setting but says nothing about how large it is. In fact, it is currently
difficult to approximate this spectral gap even numerically, so one is perhaps better off approaching the
problem from the combinatorial side.

On the other hand, A has many subgroups generated by unipotent elements which can be exploited
to obtain a bound on r0 using a classical sieve over Z rather than the affine sieve, and this does not
require the spectral theory discussed here. We state the theorem for the orbit P = A(−1, 2, 2, 3)t and
give a brief overview of its proof next.
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Theorem 3.4 ([16]). Let A be the Apollonian group and let P = A(−1, 2, 2, 3)t. For x = (x1, x2, x3, x4)t ∈
P let f(x) = x1x2x3x4/12, and let P28 denote those points x ∈ P for which f(x) has at most 28 prime
factors. Then P28 is Zariski dense in Zcl(P).

The number 28 in Theorem 3.4 has no particular significance: it is the best one can do with the
method outlined below. In fact, one expects that, given a primitive Apollonian orbit P, the set of points
x ∈ P for which f(x) is 4-almost prime should already be Zariski dense in Zcl(P). Since 4 is the smallest
number of prime factors possible (see [16]), one basically expects the best case scenario to be true.

The theorem above is proven by considering the groups Uij generated by SiSj , where i 6= j and Si
denotes a generator of A, noting that the product of any two of the group generators is a unipotent
element. For example,

(S1S2)k =


2k + 1 −2k 2k(2k + 1) 2k(2k + 1)
2k 1− 2k 2k(2k − 1) 2k(2k − 1)
0 0 1 0
0 0 0 1


where the top two rows are switched if k is even (note that since we are ultimately interested in taking
the products of coordinates of vectors in the orbit, this switch is of no consequence to us). Let P(i, j)
denote the orbit of Uij acting on (−1, 2, 2, 3)t. It can be shown that the union of these P(i, j) is Zariski
dense in Zcl(P), and so to prove Theorem 3.4 it is enough to prove its analog for the orbits P(i, j).
This is done by counting for various r the number of r-almost prime points in a ball in P(i, j) where
1 ≤ i 6= j ≤ 4. Such a counting problem is reminiscent of the classical sieve example at the beginning of
Section 2. For example, we have that

P(1, 2) = (20s2 + 4s− 1, 20s2 − 16s+ 2, 2, 3)

where the parameter s ranges over nonnegative integers. Thus the values of f(x) on this orbit are
precisely the values of the polynomial

p(s) = 200s4 − 120s3 − 22s2 + 12s− 1

for nonnegative s ∈ Z. Counting the number of r-almost prime points for the orbit P(1, 2) thus reduces
to counting the number of r-almost prime values of p(s). The number of r-almost prime points in other
orbits P(i, j) similarly reduces to counting r-almost prime values of polynomials over Z. This is done
via a classical sieve, and the lower bound in all cases is large enough to show Zariski density if r ≥ 28.

3.2. Prime number theorems. As we pointed out before, the above method of counting r0-almost
prime points is not actually an application of the affine sieve: the affine sieve tells us that the saturation
number r0 exists but we need extra information to determine what it is with any accuracy. We now
demonstrate how one can use the affine sieve in order to produce prime number conjectures of two
different flavors in the context of ACP’s. The one main assumption made in arriving at these conjectures
is that the Moebius function µ is random in a suitable sense. If this assumption were true then these
conjectures would in fact be theorems.

One such conjecture concerns counting circles of prime curvature less than X in a given primitive
packing. Specifically, combining the sieve constructed in [7] with the analysis in [17] which we summa-
rized in Section 2, one obtains precise heuristics for πP (X). These heuristics are computed and checked
in [18]: according to the data presented there, they are most likely correct. The strategy is to consider

(3.3) ψP (X) =
∑

a(C)≤X
a(C) prime

log
(
a(C)

)
where C denotes a circle in the packing P and a(C) denotes its curvature. See [18] for an explanation
of how πP (X) can be derived from ψP (X). The heuristic obtained in [18] for ψP (X) is as follows.
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Conjecture 3.5 (F-Sanden [18]). Recall that NP (X) is the number of circles in a packing P of curvature
less than X, and let ψP (X) be as in (3.3). Then as X →∞,

ψP (X) ∼ L(2, χ4) ·NP (X)

where L(2, χ4) = 0.9159 . . . is the value of the Dirichlet L-series at 2 with character χ4(p) = 1 for
p ≡ 1 (4) and χ4(p) = −1 for p ≡ 3 (4).

This implies, in particular, that

πP (X) ∼ L(2, χ4) ·NP (X)

logX
.

These asymptotics are reminiscent of the classical prime number theorem, which states that the weighted
count ψ(x) ∼ x and that π(x) ∼ x/ log x.

We now outline how one obtains the heuristics in Conjecture 3.5. To count circles of prime curva-
ture, we observe that to every circle C in a given packing one can associate a unique vector x in the
corresponding orbit in the following manner. Suppose P has root quadruple v of curvatures of circles
C1, C2, C3, and C4. We will associate v with each of these circles Ci. For any other circle C in the
packing there is exactly one element γ of the Apollonian group which transforms the circles C1, C2, C3,
and C4 to a quadruple of circles containing C, of which C has the largest curvature. In terms of the
orbit, this means that C corresponds to one vector x = γv ∈ Av in which the maximal coordinate is
the curvature of C. Denote by ||x|| the maximal coordinate of x. Given the observation above, counting
circles of prime curvature amounts to counting x ∈ Av for which ||x|| is prime. As we mentioned above,
it is convenient to count primes in the orbit of A with a logarithmic weight. To this end, let

Λ(n) =

{
log p if n = pl for some l > 0
0 otherwise

Equivalently

(3.4) Λ(n) = −
∑
d|n

µ(d) log d

where µ(d) is the Moebius function. Note that if d is not square free we have µ(d) = 0, so in the following
we assume d is square free. It is shown in [18] that

(3.5) ψP (X) =
∑
x∈Av

||x||≤X

Λ(||x||) + O(X) = −
∑
d>1

∑
x∈Av

||x||≤X
||x||≡0 (d)

µ(d) log d+ O(X).

Now, sieve theory can only help us to evaluate the right hand side of (3.5) if we sum over d < D where D
is a small power of NP (X), the number of circles of curvature less than X in the packing. We therefore
split the sum in (3.5) as follows:

(3.6) ψP (x) = −

(∑
d≤D

µ(d) log d
∑
x∈Av

||x||≤X
||x||≡0 (d)

1

)
−

(∑
d>D

µ(d) log d
∑
x∈Av

||x||≤X
||x||≡0 (d)

1

)
+ O(X)

Assuming that µ(d) above becomes random as d grows, the sum over d > D in (3.6) is negligible, and so
we ignore it (if we could prove the validity of this step, the conjecture above would be a theorem). The
task is now to evaluate the first sum, and it is here that we rely heavily on the affine sieve developed
in [7]. Specifically, the analysis in [7] guarantees that there is a function β : Z>0 → [0, 1] such that
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β(pq) = β(p)β(q) for primes p 6= q, and such that for every square free d < D we have∑
x∈Av

||x||≤X
||x||≡0 (d)

1 = β(d) ·NP (X) + r(d)

where the remainder r(d) is small on average in the sense that∑
d≤D

r(d) = O(NP (X)1−ε0)

for some ε0 > 0. Thus, since we have assumed that we can ignore the second sum in (3.6), this evaluation
of the remainder term allows us to rewrite (3.6) as

(3.7) −

∑
d≤D

β(d)µ(d) log d

NP (X) + O(NP (X)1−ε)

for some 0 < ε < 1. To compute this expression, note that

(3.8)
∑
d≤D

β(d)µ(d) log d =
∑
d>0

β(d)µ(d) log d−
∑
d>D

β(d)µ(d) log d.

Assuming once again that the sum over d > D is insignificant due to the conjectured randomness of the
Moebius function, we have that the sum over d ≤ D in (3.8) can be approximated by the sum over all
d. To evaluate this sum we must have a precise formula for β(d) in the Apollonian situation, which is
obtained in [18] using the results outlined in Section 2 of this article. First of all, letting Od denote the
orbit Av reduced modulo d (this is finite), we define βi for 1 ≤ i ≤ 4 as follows:

(3.9) βi(d) =
#{x = (x1, x2, x3, x4)t ∈ Od |xi = 0}

#{x ∈ Od}

We have that βi(pq) = βi(p)βi(q) for primes p 6= q from the analysis in Section 2, and so to determine
βi(d) for square free d we must simply determine it for primes p. It turns out that βi(p) is independent
of i for all primes p > 2, and indeed our function β(d) will simply be βi(d) for any 1 ≤ i ≤ 4 if d is odd.
For d even, β is only a bit more complicated, but we suppress this technical detail here (essentially, the
issue is that the orbit Av is even at two coordinates and odd at the other two). More specifically, if
p 6= 2 we have β(p) = βi(p) for 1 ≤ i ≤ 4 and

(3.10) β(p) =


1
p+1 for p ≡ 1 mod 4

p+1
p2+1 for p ≡ 3 mod 4

With this precise form of β, computing the sum over positive integers d from (3.8) is a problem in
elementary number theory as soon as one understands β for even d, and we refer the reader to [18] for
this computation which yields

−
∑
d>0

β(d)µ(d) log d = L(2, χ4)

Combined with (3.5) and the discussion above, this yields the heuristic in Conjecture 3.5 as desired.
Figure 4 indicates that the heuristic in Conjecture 3.5 is quite accurate. It depicts the straight line
y = L(2, χ4), as well as the graph of ψP (X)/NP (X) for 0 ≤ X ≤ 107 where P is the packing generated
by (−1, 2, 2, 3), which clearly tends towards the straight line as X grows. Similar numerical tests have
been carried out in [18] for other packings, and the heuristic appears accurate in all such tests.
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Figure 4. Prime Number Heuristic for the packing P generated by (−1, 2, 2, 3)

The argument above can also be carried out for counting circles of prime curvature which are created at
generation T , rather than according to their size. Although this seems to be a different proposition at first
glance, in some sense it is quite similar, since the curvatures of circles produced at generation T do tend
to be larger than those produced at previous generations. This idea can be made rigorous by considering
the Lyapunov exponent in the case of a random walk on the generators Si of the Apollonian group, which
gives a relationship between the curvatures of most circles born at generation T to the generation T
itself: basically, it is known that for most circles C born at a large generation T in an Apollonian packing,
the curvature a(C) is of size eγT for some exponent γ. This exponent is approximated experimentally
as γ ≈ 0.9149 in [16], where prime number conjectures in the case of counting circles of prime curvature
born at generation T are then derived using sieve methods similar to those outlined above.

To summarize, the inputs into these prime number conjectures are

(i) The existence of a spectral gap
(ii) An explicit formula for the function β(d)

(iii) The determination of the Lyapunov exponent for random walks on the generators of the group

In many diophantine problems concerning integer orbits of a subgroup of GLn(Z) where these three
inputs are attainable one can proceed as above to determine a heuristic prime number conjecture.

4. Density of curvatures and the local to global conjecture

So far we have seen that the integers that occur as curvatures in any given ACP behave very similarly
to all of N in general – there are very few local obstructions which we have defined completely in Section 2,
there are infinitely many prime numbers in any packing, and the conjectured prime number theorem in
the case of ACP’s described in Section 3 mimics the classical prime number theorem over the integers.
In fact, it is predicted that the integers which come up as curvatures in a given primitive Apollonian
packing are precisely all those which are not ruled out by the congruence obstructions specified in
Section 2 outside finitely many exceptions. This very strong local to global conjecture which we state
below holds up under experimental scrutiny but remains open.
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Conjecture 4.1 (F-Sanden [18], Graham-Lagarias-Mallows-Wilks-Yan [23]). Let P be an integer ACP
and let P24 be the set of residue classes mod 24 of curvatures in P . Then there exists XP ∈ Z such that
any integer x > XP whose residue mod 24 lies in P24 is in fact a curvature of a circle in P .

Note that the “24” in this conjecture comes precisely from the statement of Theorem 2.1, which
roughly states that to determine the reduction of an ACP mod d it is essentially enough to know its
reduction modulo 24. The conjecture is saying that for any packing P , all large enough integers which
satisfy some easily computable congruence conditions mod 24 are in fact curvatures in P . Furthermore,
these integers are precisely the set of curvatures larger than XP in P . At least at first glance, it is
remarkable that an infinite index subgroup of OQ(Z) should possess such a rich property. However,
several experiments outlined in [18] indicate that the conjecture is true. For example, if P is taken to
be the packing generated by (−1, 2, 2, 3), it is shown that P24 = {2, 3, 6, 11, 14, 15, 18, 23} and that all
integers 106 < x < 5 · 108 such that x ∈ P24 modulo 24 appear as curvatures in P .

An immediate consequence of Conjecture 4.1 is the positive density conjecture of Graham et.al. in
[23] that the curvatures in a given packing have positive density in N which was first proven in [5]. In
this section we outline the proof of this positive density conjecture and survey what is currently known
about this density and about the local to global conjecture above.

The natural way to approach Graham et.al.’s positive density statement is to count integers which
come up as curvatures in an ACP. This is no longer a problem suitable for the affine sieve (sieves do not
count points in a ball, rather they sift out points in a ball which in some sense have many prime factors).
In fact, the problem of counting how many integers less than X (without multiplicity) one picks up in
the curvatures of an ACP is a very different question from counting circles of curvature less than X in
an ACP which is what we have done so far. It is unclear how to derive the former from the latter.

However, although the problem we now discuss is of a different flavor from what we have seen earlier,
the methods do resemble somewhat the strategy used to bound the saturation number r0 in Section 3:
the basic idea will be to exploit the fact that while the Apollonian group A is thin it does have various
nice subgroups which are easier to work with.
To set up notation, for any primitive packing P we let

κ(P,X) := #{a ∈ N | a ≤ X, a is a curvature of a circle in P}.

Conjecture 4.1 would imply that the limit below exists and is positive:

lim
X→∞

κ(P,X)

X
> 0.

In fact, Conjecture 4.1 combined with the analysis in [17] predicts (see [18]) the exact limit

(4.1) lim
X→∞

κ(P,X)

X
=

1

4
or

1

3
,

depending on the packing P . Both the positive density conjecture and the existence of the limit (with
correct constants) is now known. We state the former below and review its proof next.

Theorem 4.2 (Bourgain-F [5]). For an integer Apollonian circle packing P , let κ(P,X) denote the
number of distinct integers up to X occurring as curvatures in the packing. Then for X large we have

κ(P,X)� X

where the implied constant depends on the packing P .

This theorem is proven by counting curvatures in different “subpackings” of an ACP which we sketch
next. Since counting integers in the full Apollonian group’s orbit is quite difficult given the thinness
of the group, we consider instead of the full group A some special subgroups of A. In doing so we are
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confronted with a much easier counting problem. Namely, let Ai be the group generated by all but the
ith generators of A:

(4.2) Ai := 〈{S1, S2, S3, S4} − {Si}〉 .

Geometrically, such a group fixes one circle in the packing (the ith circle in the root quadruple) and
produces circles which are tangent to the fixed one. This is readily seen by observing that the generator
Si is the only generator which acts on the ith coordinate of a vector in R4. In [39], Sarnak showed that
one can realize these subgroups as subgroups of SO(2, 1) acting on H, and that the fundamental domain
of this new action is in fact finite. Furthermore, he showed that the integers occurring in the orbits of
these groups acting on Descartes quadruples contain the set of integers represented by a certain binary
quadratic form whose coefficients are expressed in terms of the root quadruple of the packing (and this
is a set in which we know how to count).

This can be seen by first noting that Ai is isomorphic to a subgroup of GL3(Z) (in particular Ai acts
only on three of the four coordinates of the root quadruple vP ). Specifically, a variable change sends
the group Ai to a subgroup A′i of OR(2, 1). Next, one notes that the preimage of A′i ∩ SO(2, 1) under
the spin homomorphism ρ : SL2(R) → SO(2, 1) is the principal congruence 2-subgroup Λ2 of SL2(Z).
Combined with the map ρ, this gives a very nice expression for the orbits of A′i. From this expression
it is not hard to derive the relationship between the integers appearing in the orbit AivP and integers
represented by a binary quadratic form as described above. We illustrate this process in the following
diagram.

A
� � thin // OR(3, 1)

Ai
?�

OO

variableschange

��

A′i
� � arithmetic // OR(2, 1)

Λ2

ρ

OO

� � arithmetic // SL2(R)

ρ

OO

We refer the reader to [39] and section 2 of [5] for the details of this manipulation which leads to the
following result if i = 1 (there are analogous results for every 1 ≤ i ≤ 4). Let vP = (a0, b, c, d)t is the
root quadruple of a bounded packing P , and Ca0 a circle of curvature a0 in the root quadruple. For
X ∈ N, let

P1 = {n ∈ N | n ≤ X, n = |xj | for some 1 ≤ j ≤ 4, for some x = (x1, x2, x3, x4)t ∈ A1vP }

and let

fa0(x, y) = Ax2 + 2Bxy + Cy2,

where

A = b+ a0, B =
a0 + b+ d− c

2
, C = d+ a0

The process described in the diagram above then yields that P1 contains the set

(4.3) A(a0) = {a ∈ N | a ≤ X, a = fa0(x, y)− a0 for some x, y ∈ Z, gcd(x, y) = 1}.
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So, since the orbit A1vP above is contained in the full orbit AvP , a lower bound on the number of
integers less than X represented by the shifted quadratic form fa0 − a0 will also serve as a lower bound
for κ(P,X). Getting a lower bound on the number of integers represented by a binary quadratic form
is quite classical. For example, in his 1912 thesis [2] Bernays showed that for a positive definite binary
quadratic form f over Z of discriminant −D, the number B(X) of integers less than X represented by
f is

(4.4) B(X) =
c ·X√
logX

+O

(
X

logX

)
where c is a positive constant such that

πc2 =
∏

q≡3 (4)

q-D

(
1− 1

q2

)−1∏
p|D

(
1− 1

p

) ∞∑
n=1

(
−D
n

)
n−1

It is not hard to see that the form fa0 is indeed positive definite, so the expression in (4.4) combined
with the fact that A(a0) ⊂ P1 implies that

(4.5) κ(P,X)� X√
logX

.

This lower bound was first proven by Sarnak in [39]. Shortly thereafter, the idea of counting in suborbits
of AvP was refined to yield a slightly better bound in [15] and subsequently to prove Theorem 4.2 in
[5]. Recently, this idea was taken a step further to get a precise formula for κ(P,X) in [10].

The idea in both of these refinements is as follows: counting in the orbit of one group Ai reflects
only those circles which are tangent to a fixed circle in P , and one wants to count some of the missed
circles to improve the bound in (4.5). This is done as follows. To obtain the lower bound in (4.5), we
fixed a circle of curvature a0 and associated curvatures of circles tangent to it with the set of integers
represented by fa0(x, y) − a0. We denoted the set of these integers that are less than X by A(a0) in
(4.3).

Now, to every integer a ∈ A(a0) one can associate a circle Ca of curvature a tangent to Ca0 in the
packing P . One can again relate the integers less than X occurring as curvatures of circles tangent to
Ca to integers represented by a shifted binary form and thus get a lower bound on the number of such
integers. Specifically, for every a ∈ A(a0) there is a binary quadratic form fa such that the set

{α ∈ N | α ≤ X,α is the curvature of a circle tangent to Ca in P}

contains the set

{α ∈ N | α ≤ X, α = fa(x, y)− a for some x, y ∈ Z, gcd(x, y) = 1}.

We now wish to count the integers represented by the new shifted forms fa(x, y)−a for a ∈ A(a0). This
strategy is depicted in Figure 5: in the picture on the left we fix the lightly shaded circle, and count
some of the darkly shaded circles as in the argument leading to (4.5). On the right in Figure 5, we
fix one by one some of the circles we counted in the left picture, and count the dark circles tangent to
those, taking care not to count any of the shaded circles more than once. This is the natural next step
to improving the bound in (4.5).
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Figure 5. A pictorial representation of the proof of Theorem 4.2.

One might worry that perhaps the sets of integers coming from circles tangent to each of the ones we
fix (the clusters of dark circles in the second picture above) are not significantly different, in which case
we are wasting our time trying to meticulously count the cardinality of the union of these sets. However,
this is not the case. To see why, we introduce a bit of notation. For each a ∈ A(a0), let

S̃a = {n ∈ N |n ≤ X,n = fa(x, y) for some relatively prime integers x, y}.

One can show that the discriminant of each fa is simply −4a2, which in fact implies that S̃a is a subset
of the integers which can be written as a sum of two squares. Thus the union⋃

a∈A(a0)

S̃a

is not very big, and the sets S̃a do not differ much from one another. However, if one considers instead
(as we do) the union of sets Sa of integers less than X represented by the shifted form fa − a:

Sa = {n ∈ N |n ≤ X,n = fa(x, y)− a for some relatively prime integers x, y}

one gains a substantial amount of new integers, since this shift by a makes the sets Sa quite different
from one another. In fact, Theorem 4.2 is proven in [5] by showing that∣∣∣ ⋃

a∈A(a0)

Sa

∣∣∣� X.

We now mention some of the obstacles in showing this and give an idea of how to overcome them.
One important consideration in evaluating the size of these sets Sa, i.e. in counting integers repre-

sented by the forms fa, is that the discriminants and thus the coefficients of fa can be very large with
respect to X. In this case many of the represented integers may be > X. In particular, the count in (4.4)
is not uniform in D, so one cannot rely on this bound alone to determine |Sa| if a is large. Therefore
one must understand how exactly |Sa| depends on the size of a. This question has been addressed by
Blomer-Granville in [3], where the authors give lower and/or upper bounds for the number of integers
≤ X represented by a positive definite binary quadratic form which depend almost solely on the size of
the form’s discriminant as compared to X. In their notation, let Uf (X) be the number of integers less
than X represented by f and let D < 0 denote the discriminant of f . Blomer-Granville show

• If −D ∈ [0, (logX)log 2], then Uf (X)�ε
X

(logX)1/2+ε

• If −D ∈ [(logX)log 2, (logX)2 log 2] there are no good known lower bounds on Uf (X)

• If −D ∈ [(logX)2 log 2, X], then Uf (X)� X√
−D
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For our purposes, this translates into the following information about the sets Sa, since fa has
discriminant −4a2:

• If 2a ∈ [0, (logX)(log 2)/2], then |Sa| �ε
X

(logX)1/2+ε

• If 2a ∈ [(logX)(log 2)/2, (logX)log 2] there are no good known lower bounds on |Sa|
• If 2a ∈ [(logX)log 2,

√
X], then |Sa| � X

2a

Since we are interested in lower bounds, only the first and third range above are useful to us in proving
Theorem 4.2. In [15], we consider only the first range and show that

(4.6) κ(P,X) >
∣∣∣ ⋃

a∈A(a0)

a<(logX)(log 2)/2

Sa

∣∣∣� X

(logX)0.153
.

This is the best bound which can be obtained by working in the first range and of course it does not
give a positive fraction of all integers.

On the other hand, one can apply the method used to obtain the bound in (4.6) in the third range
above to get a better bound and to prove Theorem 4.2. However, in the third range one encounters a
new obstacle which has to be handled by considering only a very small subset of all possible Sa where
a is in the third range I = [(logX)log 2/2,

√
X/2]. To see why this is necessary, note that the most

intuitive way to obtain a lower bound on

(4.7) Ω :=
∣∣∣ ⋃
a∈A(a0)∩I

Sa

∣∣∣
is as follows:

(4.8) Ω ≥
∑

a∈A(a0)∩I

|Sa| −
∑

a6=a′∈A(a0)∩I

|Sa ∩ Sa′ |.

Specifically, one needs to obtain a lower bound on the first sum above, and an upper bound on the
second sum. However, the upper bound which we can hope to obtain on the second sum will be larger
than the lower bound we can hope to obtain for the first sum, and so we do not learn anything of
interest about Ω by doing just this. Instead, we consider a small subset S(X) of A0 ∩ I and compute
the relevant bounds on the two sums in (4.8) taken over S(X). This subset needs to be chosen carefully:
on the one hand, it needs to be large enough so that the lower bound on

∑
|Sa| is a positive fraction

of X. At the same time it needs to be small enough so that the upper bound on
∑
|Sa ∩ Sa′ | is small.

Additionally, for the purpose of determining these bounds, one wants that as X grows the integers in
S(X) are equidistributed modulo any prime q.

Since the construction of such a subset is crucial to the proof of Theorem 4.2, we recall it below (for
details, see [5]). We first consider the subinterval [(logX)2, (logX)3] of the third range I and break it
into dyadic ranges as in Figure 6.

(log X)2! ! ! ! ! ! ! ! ! ! ! !    (log X)3

                 2k   2k+1     2k+2!             2k+3!                                         2k+4              .   .   .   .   .!  2n

! ! ! ! !
Figure 6. Constructing a subset S ⊂ A(a0) ∩ I.

For k satisfying (logX)2 < 2k < (logX)3/2 denote by S(k) the following subset of [2k, 2k+1]:

(4.9) S(k) = A(a0) ∩ [2k, 2k + η
2k√
k

]
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where 0 < η < 1 is a parameter independent of k that we are free to choose and which will play an
important role momentarily: we will see that the bounds on the two sums in (4.8) will depend in a
crucial way on η, and it is this parameter which will allow us to ensure that the difference between the
two sums is a positive fraction of X. We explain in what sense S(k) is chosen “optimally” to produce a
positive fraction of integers shortly. Namely, we take S to be the union of all of these sets S(k):

(4.10) S =
⋃

S(k)

where k ranges over all positive integers satisfying (logX)2 < 2k < (logX)3/2 as before. This subset of
A(a0)∩ I is optimal in the sense that if it were any smaller we would not get the desired lower bound in
(4.11) below. Furthermore, the set S does satisfy the equidistribution modulo primes property mentioned
above (see [5]). We now return to bounding Ω as in (4.8). Using the results of Blomer-Granville in [3]
we are able to show that

(4.11)
∑
a∈S

|Sa| � ηX

where the implied constant depends only on a0. It remains to obtain a good upper bound on the second
sum in (4.8). To do this, we must first get an upper bound for Sa ∩ Sa′ where a 6= a′ ∈ S. In [5] this is
done rather crudely by counting points (x, y, x′y′) in a closed region5 on the quadric

(4.12) fa(x, y)− fa′(x′, y′) = a− a′

for each a 6= a′ ∈ S. This is crude because it counts every integer in the intersection Sa ∩ Sa′ with
multiplicity (the more representations of the integer by fa and fa′ there are, the higher the multiplicity),
while in fact every integer in Sa∩Sa′ comes up only once. Nevertheless, the upper bound we obtain with
this method is good enough to prove Theorem 4.2. Specifically this crude count produces the following
upper bound:

(4.13)
∑

a 6=a′∈S

|Sa ∩ Sa′ | ≤ cη2X

where c > 0 is a constant depending only on a0. This bound is obtained by using the circle method
as refined in [33] to compute the representation numbers of a − a′ by the quaternary quadratic forms
fa(x, y)− fa′(x′, y′).

Combining (4.11) and (4.13) we have that

κ(P,X) ≥
∑

a∈A(a0)∩I

|Sa| −
∑

a6=a′∈A(a0)∩I

|Sa ∩ Sa′ | � (η − cη2)X.

Since we are free to choose 0 < η < 1, we can in particular choose η such that cη2 < η, and so we have
that

κ(P,X)� X

as desired. So by repeating Sarnak’s method in the third range of Blomer-Granville and introducing
this parameter η we are able to control the sums in (4.8) and prove that the positive integers appearing
as curvatures in any integer ACP make up a positive fraction of N.

As we mentioned before, there is now a stronger positive density theorem which we state below.

Theorem 4.3 (Bourgain-Kontorovich [10]). Let P be an integer ACP and let σ = σ(P ) be the number
of residue classes mod 24 of curvatures in P . Then there exists some absolute constant ε > 0 such that
as X →∞

κP (X) =
σ

24
·X + O(X1−ε).

5The region in these points are counted is determined by the condition that fa(x, y) ≤ X
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The proof of this theorem builds upon the methods of [5] in that the authors consider an infinite family
of binary quadratic forms and count integers represented by this family. The family they choose is a
larger one than the one used in [5] and their method of counting represented integers is more intricate,
utilizing a version of the Hardy-Littlewood circle method similar to the one introduced in [9], where
the authors count integers represented in orbits of thin subgroups of SL2(Z). This counting method
relies heavily on the existence of the combinatorial spectral gap for the Apollonian group as discussed
in Section 3 together with methods from [8] to relate the combinatorial spectral gap to the Laplacian
spectral gap. It also utilizes results of Vinogradov in [43] on bisector counting in hyperbolic 3-folds as
well as on the congruence analysis in [17]. This method is quite general and can be applied to counting
integers in orbits of various other thin subgroups of Of (Z) where f is signature (3, 1). One should note,
however, that it is unlikely that the counting methods outlined here would lead to a proof of the local to
global conjecture, which would likely require a deeper understanding of the Apollonian group’s orbits.

5. The quest to better understand thin groups

Having perhaps convinced the reader that thin groups are interesting objects to study from an arith-
metic point of view, we end this article with a few words about the contrast between thin and arithmetic
groups as well as what remains to be done to put our knowledge of thin groups on the same footing
as our knowledge of arithmetic groups. For more information, see [40] for a beautiful account of thin
groups and related problems.

Throughout this article we have dealt at length with various arithmetic problems connected to orbits
of the Apollonian group, and the methods we described can be applied to other thin subgroups of
GLn(Z). As we saw in Section 3, a powerful tool in such problems is the affine sieve, which applies
to thin and arithmetic groups alike as long as the connected component of the Zariski closure of the
group is perfect. This is proven in [36] and [37]. Since this condition has little to do with whether the
group is thin or not, one might ask why we should focus on thin groups in particular. To address this,
we note that a key input into the affine sieve is showing that the group involved satisfies the expander
property discussed in Section 3.1. It is in the case of thin groups that this input has only recently
become available, and it is also in this case that a lot of work remains to be done. Indeed, showing that
an arithmetic group satisfies the expander property, and even determining the corresponding spectral
gap is much more classical. For example, consider for n > 2 a finite index subgroup Γ of SLn(Z) which is
Zariski dense in SLn and suppose we want to show that the Cayley graphs associated to finite quotients
of Γ form an expander family. We can argue as follows: for n > 2 the group SLn(Z) as well as all of its
finite index subgroups have Kazhdan property T (see [29] for a definition). Furthermore, the fact that
they have property T implies that they possess the desired expander property – this observation is an
old result due to Margulis in [30], and is the idea behind the first explicit construction of expanders, also
in [30]. Yet for the general thin group, property T will not help. Similarly, while one can usually get
reasonable bounds on the spectral gap connected to an arithmetic group (e.g. Selberg’s 3/16 theorem
implies a gap of 3/16 for congruence subgroups of SL2(Z) and this in turn gives a combinatorial spectral
gap in this context), as we mentioned at the end of Section 3.1 there is not currently a way to give good
bounds for the spectral gap in the case of a thin group. Thus a natural next step in understanding the
arithmetic of orbits of thin groups is to attempt to improve these bounds. In particular, this would
make the affine sieve a much more precise tool for counting in such orbits.

We should also mention that thin groups come up very naturally in arithmetic problems which are
quite different from the counting problems we outline in this article. For example, Ellenberg-Hall-
Kowalski have recently obtained results in [14] about rational p-torsion points for abelian varieties over
Q by considering the monodromy groups (thin monodromy groups in particular) connected to these
varieties. Like the fundamental theorem of the affine sieve, their results rely heavily on expander graphs
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– they need that the Cayley graphs coming from the finite quotients of the monodromy group involved
form an expander family.

In both the problem of counting primes in orbits of groups and in the problems considered in [14] it
is natural to ask how one can tell whether a group is thin. This question in general is not easy, mostly
because there is currently no easily verifiable characteristic of a group which would imply it is thin: as
we have seen throughout this article, in some sense thin groups are just as “rich” as arithmetic groups
so it is hard to tell the two apart. A different question of a similar flavor is, how generic are thin groups?
For example, given a meaningful definition of “generic”, is the generic group to which one can apply
the affine sieve thin? Is the generic monodromy group in applications in [14] thin? A positive answer to
these questions will give all the more reason to study these groups in more detail.
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