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ABSTRACT. Given a negative D > −(logX)log2−δ , we give a new upper bound on the number of square free
integers� X which are represented by some but not all forms of the genus of a primitive positive definite binary
quadratic form of discriminant D. We also give an analogous upper bound for square free integers of the form
q+a� X where q is prime and a ∈ Z is fixed. Combined with the 1/2-dimensional sieve of Iwaniec, this yields
a lower bound on the number of such integers q+a� X represented by a binary quadratic form of discriminant
D, where D is allowed to grow with X as above. An immediate consequence of this, coming from recent work
of the authors in [3], is a lower bound on the number of primes which come up as curvatures in a given primitive
integer Apollonian circle packing.

1. INTRODUCTION

Let f (x,y) = ax2 + bxy+ cy2 ∈ Z[x,y] be a primitive positive-definite binary quadratic form of negative
discriminant D = b2−4ac. For X → ∞, we denote by U f (X) the number of positive integers at most X that
are representable by f . The problem of understanding the behavior of U f (X) when D is not fixed, i.e. |D|
may grow with X , has been addressed in several recent papers, in particular in [1] and [2]. What is shown in
these papers, on a crude level, is that there are basically three ranges of the discriminant for which one should
consider U f (X) separately (we restrict ourselves to discriminants satisfying log |D| ≤ O(log logX)).

(i) |D| � (logX)(log2)−ε . Then U f (X)�ε ′ X(logX)−
1
2−ε ′

(ii) |D| � (logX)2(log2)+ε . Then U f (X)� X√
D

(iii) The intermediate range.

As Blomer and Granville explain in [2], this transitional behavior is due to the interplay between the size
h of the class group C and the typical number of prime factors of an integer n∼ X . A precise elaboration of
the underlying heuristics was kindly communicated by V. Blomer to the authors and is reproduced next. The
number of integers n < X with k prime factors p split in the quadratic number field (i.e. (D

p ) = 1) is of the
order

(1)
X

logX
1
2k

(log logX)k−1

(k−1)!
.

Note that summation of (1) over k gives X√
logX , which corresponds to the number of integers at most X

represented by some form of discriminant D.

Moreover, applying Stirling’s formula, we see that the main contribution comes from integers with k ∼
1
2 log logX prime factors.

Next, ignoring ambiguous classes, these k primes yield 2k classes (with possible repetition) in C that
represent the given integer n. Hence, roughly speaking, one would expect that typically n is represented by
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each class of its genus provided 2k� h, which amounts to

(2) h < (logX)
log2

2 −ε

corresponding to alternative (i) since h = D1/2+o(1).

On the other hand, if D is sufficiently large, the 2k classes will be typically distinct. Assuming some mild
form of equidistribution in the class group when varying n, we expect for the number of integers n < X with
k prime factors represented by a given class to be of order

(3)
2k

h
· (1) =

X
h logX

(log logX)k−1

(k−1)!

with total contribution O
(

X
h

)
, attained when k ∼ 1

2 log logX (given the precision of the discussion, there is

no difference between h and
√

D). This argument corresponds to alternative (ii) above.

In this paper, we consider only the lower range (i). Our aim is to substantiate further the heuristic dis-
cussed above according to which, typically, all classes of the genus of n� X , n representable by a form of
discriminant D, do actually represent n.

More precisely, we prove the following (as consequence of Theorem 2 in [2]).

Theorem 1.1. Let D be a negative discriminant satisfying

(4) |D|< (logX)log2−δ

for some fixed δ > 0. Then there is δ ′ = δ ′(δ )> 0 such that

#{n� X; n square free, representable by some form of discriminant D but not by all forms of the genus}

(5) <
X

(logX)
1
2+δ ′

.

Note that though [1], [2] establish upper and lower bounds for U f (X) in range (i) – in fact in a more precise
form, cf. Theorem 5 in [2] – their results do not directly pertain to the phenomenon expressed in Theorem 1.1.
As pointed out in [2], it was shown on the other hand by Bernays that almost all integers represented by some
form in a given genus can be represented by all forms in the genus, but assuming the much stronger restriction

(6) D� (log logX)
1
2−ε .

A result in the same spirit was also obtained by Golubeva [6]. Note, however, that even these results of
Bernays and Golubeva do not shed light on the situation of shifted primes (with a fixed shift) represented by
binary forms, since such integers are themselves a zero-density subset of Z. See Theorem 1.2 for a result in
this direction that our methods can prove.

The proof of Theorem 1.1 rests on a general result from arithmetic combinatorics (Theorem 2.1 in Sec-
tion 2) that we describe next. Assume G a finite abelian group (G =C 2 in our application), |G|= h′, in which
the group operation will be denoted additively. Given a subset A⊂ G, we introduce the set

(7) s(A) =
{

∑xi;{xi} are distinct elements of A
}
.

The issue is then to understand what it means for A that s(A) 6= G, which is the undesirable outcome for our
purposes. It turns out that there are basically two possibilities. In the first, A is contained, up to a bounded
number of elements, in a proper subgroup H of G of bounded index [G:H]. In our application to the class
group in Section 2, we give an upper bound on the number of possibilities for such A.
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The second scenario is as follows. There are k elements x1, . . . ,xk ∈ A with

(8) k < (1+ ε)
log |G|
log2

and a subset Ωx1,...,xk ⊂ G (determined by x1, . . . ,xk), such that A⊂Ωx1,...,xk and

(9) |Ωx1,...,xk |< ε|G|

(we are assuming here that |G| is large). Note that this second scenario occurs in some sense very rarely.
Specifically, denote by K the upper bound on k in (8), and let |A| ∼ m, where in our application m ∼ K ·
(1+α) for a small fixed α > 0, and m corresponds to the typical number of prime factors of an integer < X
represented by the genus of f . There are

(h′
m

)
possible choices for such A, and of these at most

(h′
K

)
·
(

εh′
m−K

)
sets A which fall into the second scenario. For small ε , the latter is much smaller than

(h′
m

)
, and in this sense

this undesirable scenario is relatively rare.

To prove Theorem 2.1, one applies the greedy algorithm. Thus given x1, . . . ,xk ∈ A, we select xk+1 ∈ A as
to maximize the size of s(x1, . . . ,xk+1). If we do not reach s(x1, . . . ,xk) = G with k satisfying (8), then

(10) A⊂ {x1, . . . ,xk}∪Ω

where the elements x ∈Ω⊂ G have the property that

(11) |s(x1, . . . ,xk,x)| ≈ |s(x1, . . . ,xk)|.

where ≈ will be made precise in Section 2. Essentially, adding an element of Ω to {x1, . . . ,xk} will not
increase the latter’s sum set by much. Assuming Ω fails (9), the first alternative is shown to occur. The
argument involves combinatorial results, such as a version of the Balog-Szemeredi-Gowers theorem and also
Kneser’s theorem. The reader is referred to the book [T-V] for background material on the matter.

Once Theorem 2.1 is established, deriving Theorem 1.1 is essentially routine. We make use, of course, of
Landau’s result [11] (established in [1] with uniformity in the discriminant), on the distribution of the primes
represented by a given class C ∈ C – namely, for PC the set of primes represented by a class C,

(12) |{p ∈PC; p≤ ξ}|= 1
ε(C)h

∫
ξ

1

dt
log t

+C(ξ e−c
√

logξ )

for ξ → ∞, with ε(C) = 2 if C is ambiguous and ε(C) = 1 otherwise.

The nontrivial upper bound (5) is then obtained by excluding certain additional prime divisors, i.e. satis-
fying

(D
p

)
6=−1 where

( ·
·
)

denotes the Legendre symbol, using standard upper bound sieving.

The same approach permits to obtain a similar result considering now shifted primes, i.e. integers n of the
form n = a+q with a fixed and q a prime number. Thus

Theorem 1.2. Under the assumption (4), fixing a ∈ Z, we have

|{q+a� X; q prime, q+a square free representable by some form of discriminant D but not by all forms of
the genus} |

(13) <
X

(logX)
3
2+δ ′

.

On the technical side, only crude sieving bounds are needed for our purpose and they can be obtained
by the simple inclusion-exclusion principle without the need of Brun’s theory. The arguments covering the
specific problem at hand are included in the paper (see Lemmas 3.4 and 3.6), which turned out to be more
convenient than searching for a reference. Note that the proof of Lemma 3.6 involves sieving in the ideals
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and the required remainder estimates are provided by Landau’s extension of the Polya-Vinogradov inequality
for Hecke characters [11].

It is worth noting that the motivation behind Theorem 1.2 lies in a result due to H. Iwaniec [8] on the
number of shifted primes that are representable by the genus of a quadratic form. This in turn is applicable to
counting primes which appear as curvatures in a primitive integer Apollonian circle packing using a method
similar to that in [3], where the authors prove that the integers appearing as curvatures in a primitive integer
Apollonian packing make up a positive fraction of Z.

Specifically, let P be a primitive integer Apollonian packing, and let a 6= 0 denote a curvature of a circle
in P. From [3], we have that the set Sa of integers less than X represented by certain shifted binary quadratic
forms fa(x,y)−a, where the discriminant D( fa) =−4a2, is contained in the set of curvatures of circles in P.
Let Pa ⊂ Sa denote the set of primes in Sa. We may then compute a lower bound for the number of primes
less than X appearing as curvatures in P by bounding∣∣⋃

a
Pa
∣∣

where the a’s range over a set of our choice. The aim is to use the 1
2 -dimensional sieve of Iwaniec to first

determine the cardinality of Pa. In [8], Iwaniec proves upper and lower bounds for the number of primes
less than N represented by φ(x,y)+A, where φ(x,y) is a positive definite binary quadratic form and A is an
integer. He shows

X
(logX)3/2 � S(X ,φ ,a)� X

(logX)3/2

where S(X ,φ ,a) denotes the number of primes less than X represented by φ(x,y)+A. Here the discriminant
of φ is fixed, and the bounds above are obtained by considering the count over all forms in the genus of φ :
namely, for fixed discriminant, bounds for S(X ,φ ,a) are easily derived from bounds for

S1(X ,φ ,a) = ∑
p≤X

(x,y)=1, f∈Rφ

p= f (x,y)+a

1

where Rφ denotes the genus of φ . In order to apply this to finding bounds for |Pa| where a is allowed to grow
with X , we must understand both how S1(X ,φ ,a) depends on the discriminant of φ , and how S relates to S1

in the case that D is not fixed. The latter is explained by Theorem 1.2 for D satisfying (4), while the former
is done via a careful analysis of the dependence on the discriminant in [8] for D < logX . This is discussed
briefly in the Appendix. Note that in the application to Apollonian packings, the discriminant of φ is always
of the form −4a2, but our results apply to a more general discriminant.

Indeed, an appropriate uniform version of Theorem 1 in [8] combined with Theorem 1.2 above implies the
following

Corollary 1.3. Let D < 0 satisfy (4) and f be a primitive positive definite binary form of discriminant D.
Then

(14) |{q+a� X ;q prime, q+a representable by f}| � X

(logX)
3
2+ε

(we assume here a ∈ Z fixed for simplicity).

Acknowledgements: The authors are grateful to V. Blomer for several private communications, to B. Green
for helpful suggestions on a previous version of this paper, and to the referees for a thorough reading of the
paper and for their numerous useful comments.
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2. A RESULT IN COMBINATORIAL GROUP THEORY

The aim of this section is to prove Theorem 2.1 below. We will then apply this theorem to the class group
in the next section.

For a small constant ε > 0 and an absolute constant C, define ε1,κ,κ1 as follows1:

κ1 = ε
2

κ = 2−
100
ε

ε1 = ε
−C·2

100
ε
.(15)

Theorem 2.1. Let G be a finite abelian group with |G|= h′ and let A⊂ G. Denote by

(16) s(A) =
{

∑xi; {xi} distinct elements of A
}

the set of sums of distinct elements of A, and let ε,ε1,κ, and κ1 be as in (15). There are the following
alternatives.

I. s(A) = G
II. There is a proper subgroup H of G (see Lemma 2.2), such that

[G : H]<
2
ε

and |A\H|< c(ε).

III. There are k elements x1, . . . ,xk ∈ A and a subset Ωx1,...,xk ⊂G depending only on x1, . . . ,xk, such that

(17) k < (1+ ε)
logh′

log2
+ c log logh′+ c(ε)

(18) |Ωx1,...,xk | ≤ εh′+ k

and

(19) A⊂Ωx1,...,xk .

Again, we note that scenario (III) makes up for a very small portion of possible A: if K is the upper bound
on k in (17) and |A| ∼ m, there are

(h′
m

)
total choices for A, and of these at most

(h′
K

)
·
(

εh′
m−K

)
sets A are as in

(III), which is small compared to the total number of possibilities for A if ε is small.

(1) To prove Theorem 2.1, we start with the following algorithm. Take x1 ∈ A. Assuming we have
obtained x1, . . . ,x j, we take x j+1 as to maximize

s(x1, . . . ,x j+1).

Note that one has

|s(x1, . . . ,x j,x)| = |s(x1, . . . ,x j)∪
(
s(x1, . . . ,x j)+ x

)
|

= 2
∣∣s(x1, . . . ,x j)

∣∣− ∣∣s(x1, . . . ,x j)∩
(
s(x1, . . . ,x j)+ x

)∣∣.
Denoting by δ j =

|s(x1,...,x j)|
h′ the density of s(x1, . . . ,x j) in G, we therefore have

(20) Ex[|s(x1, . . . ,x j,x)|] = 2δ jh′−δ
2
j h′ = δ j(2−δ j)h′.

1this particular choice of ε1,κ,κ1 will become clear from the necessary constraints (55), (59), (60), (61), (67).
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On the other hand, for all x we have

(21) |s(x1, . . . ,x j,x)| ≤ (2δ j)h′.

Fix ε > 0. For δ j <
1
2 , we define

Ω0 = {x ∈ G; |s(x1, . . . ,x j,x)|< (2− ε)δ jh′}.

Then, from the definition of Ω0 and (21) we have

Ex[|s(x1, . . . ,x j,x)|]≤ (2δ jh′)
(

1− |Ω0|
h′

)
+(2− ε)δ jh′

|Ω0|
h′

Together with (20) this implies

(22) |Ω0|<
δ j

ε
h′.

Note that it follows from (22) that one of the following, (A) or (B), holds.

(A) There exist x1, . . . ,xk ∈ A s.t.

(23) |s(x1, . . . ,xk)|> ε
2h′

with

(24) k <
logh′

log2− ε

2

(B) There exist elements x1, . . . ,xk ∈ A and a set Ωx1,...,xk ⊂ G satisfying

(25) A⊂ {x1, . . . ,xk}∪Ωx1,...,xk

(26) k <
logh′

log2− ε

2

(27) |Ωx1,...,xk |< εh′.

(2) Suppose the set A satisfies alternative (A) above, and so we obtain A1 ⊂ A such that

(28) δh′ = |s(A1)|> ε
2h′

Furthermore, suppose δ < 1/2. Fix ε1 > 0 satisfying (15) and define

(29) Ω1 = {x ∈ G; |s(A1∪{x})|< (1− ε1)|s(A1)|+ ε1h′}.

Denote by Ωc
1 the complement of Ω1. If (A\A1)∩Ωc

1 6= /0, we add an element from (A\A1)∩Ωc
1 to A1 and

increase the density from δ in (28) to (1− ε1)δ + ε1.

Assume this process of adding elements from Ωc
1 can be iterated r times. We then obtain a set A′1 such that

s(A′1) has density at least δ ′ satisfying

1−δ
′ = (1− ε1)

r(1−δ )

and thus |s(A′1)|> (1− ε2)h′ for

(30) r�
log 1

ε

ε1
.
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We now have δ ′ > 1− ε2 > 1/2. We now define a set Ω2 for {x1, . . . ,x j} ⊂ A in the case δ j > 1/2, where δ j

is as before.

(31) Ω2 = {x ∈ G; |s(x1, . . . ,x j,x)|<
(
1− (1−δ j)

3/2)h′}.
Similarly to the bound on Ω0 in (22), we get

(32) |Ω2|< (1−δ j)
1/2h′.

This set plays a similar role in adding elements to A′1 as Ω1 did in adding elements to A1. Consider the set Ω2

with {x1, . . . ,x j}= A′1 and δ j = δ ′. Note in particular that δ ′ > 1/2 implies that s(A) is not a proper subgroup
of G. If we replicate the process of adding elements to A′1 from Ωc

2∩A\A′1 as above, we thus obtain a subset
A′′1 ⊂ A so that s(A′′1) = G and

(33) |A′′1 | ≤
logh′

(log2)− ε
+ c

log 1
ε

ε1
+ log logh′

unless we are in alternative (B) with (26) replaced by (33). It remains to analyze the case when the iteration
on the set A1 fails.

If |Ω1|< εh′, we are again in the situation (B) with (26) replaced by

(34)
logh′

log2− ε
+ c

log 1
ε

ε1
.

Note that so far the all the alternatives we have analyzed for s(A) are that s(A) = G or that A fits into
situation (B) with (26) replaced by (33).

Assume next that Ω1 defined in (29) satisfies

(35) |Ω1|> εh′.

Denoting B = s(A′1), we have by (28) and definition of Ω1 that

(36) |B|> ε
2h′

Note that, by inclusion-exclusion, for every x ∈Ω1 we have

|s(A′1∪{x})|= |(B+ x)∪B|= |B+ x|+ |B|− |B∩ (B+ x)|= 2 · |B|− |B∩ (B+ x)|

From the definition of Ω1, we have that |s(A′1∪{x})|< (1− ε1 + ε1ε−2) · |B|, and so

(37) |B∩ (B+ x)|> (1− ε1ε
−2)|B| for x ∈Ω1.

Hence

(38) 1B ∗1−B > (1− ε1ε
−2)|B| on Ω1

Summing both sides of (38) over x ∈Ω1, we obtain in particular that

(39) |B|> (1− ε1ε
−2)|Ω1|.

(3) Assume (36)-(39). Thus

(40) 〈1B,1B ∗1Ω1〉= 〈1B ∗1−B,1Ω1〉 ≥ (1− ε1ε
−2)|B| |Ω1|

and, noting that ‖1B‖2 · ‖1B ∗1Ω1‖2 > 〈1B,1B ∗1Ω1〉, we have

‖1B ∗1Ω1‖2 ≥ (1− ε1ε
−2)|B|

1
2 |Ω1|.
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Squaring and using the fact that Ω1 is symmetric, we therefore get

〈1B ∗1Ω1 ∗1Ω1 ,1B〉 = 〈1B ∗1Ω1 ,1B ∗1Ω1〉

= ‖1B ∗1Ω1‖2

≥ (1− ε1ε
−2)2|B| · |Ω1|2

and so we again get
‖1B ∗1Ω1 ∗1Ω1‖2 ≥ (1− ε1ε

−2)2|B|
1
2 |Ω1|2

If we continue squaring, we get that for any given r (= power of 2)

(41) ‖1B ∗1(r)
Ω1
‖2 ≥ (1− ε1ε

−2)r|B|
1
2 |Ω1|r.

(where 1(r)
Ω1

denotes the r-fold convolution).

To show that the one other possibility is that A is contained, up to a bounded number of elements, in a
proper subgroup H of G of bounded index [G:H] as in (II) of Theorem 2.1, we rely on the following lemma,
which is originally due to Fournier [4].

Lemma 2.2. Let µ be a probability measure on a discrete additive group G. Assume that for small κ as in
(15) we have

(42) ‖µ ∗µ‖2 > (1−κ)‖µ‖2.

Then there is a subgroup H of G s.t.

(43)
1
2
‖µ‖−2

2 < |H|< 2‖µ‖−2
2

and for some z ∈ G

(44)
∥∥∥µ− 1H−z

|H|

∥∥∥
1
< cκ

1/12.

Proof. For y ∈ G, let µy denote the push forward of µ when translating by y – i.e. µy(x) = µ(x− y). From
(42) we have

∑
x∈G

∣∣∣∑
y∈G

µ(x− y)µ(y)
∣∣∣2 > (1−κ)2‖µ‖2

2

and

∑
y1,y2∈G

〈µy1 ,µy2〉µ(y1)µ(y2)> (1−κ)2‖µ‖2
2

implying

∑
y1,y2∈G

‖µy1 −µy2‖
2
2 µ(y1)µ(y2) < 2

(
1− (1−κ)2)‖µ‖2

2

< 4κ‖µ‖2
2.

Hence there is y0 ∈ G such that

∑
y∈G
‖µy−µy0‖

2
2 µ(y)< 4κ‖µ‖2

2

and by translation of µ we may assume y0 = 0, meaning

∑
y∈G
‖µy−µ‖2

2 µ(y)< 4κ‖µ‖2
2.

Denote
U = {y ∈ G;‖µ−µy‖2 < κ

1/3‖µ‖2}.
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From the preceding
µ(G\U)< 4κ

1/3.

Since
1
|U | ∑y∈U

‖µ−µy‖2 < 4κ
1/3‖µ‖2

it follows by convexity that ∥∥∥µ−µ ∗ 1U

|U |

∥∥∥
2
< 4κ

1/3‖µ‖2

and in particular

‖µ‖2 ≤
1
|U |1/2 +4κ

1/3‖µ‖2

(45) ‖µ‖2 <
1+4κ1/3

|U |1/2 .

Next, write

∥∥∥µ− 1U

|U |

∥∥∥2

2
= ‖µ‖2

2 +
1
|U |
−2

µ(U)

|U |

≤ 2+10κ1/3−2(1−4κ1/3)

|U |

<
18κ1/3

|U |
.

Hence

(46)
∥∥∥µ− 1U

|U |

∥∥∥
2
<

5κ1/6

|U |1/2

and also ∥∥∥µ− 1U

|U |

∥∥∥
1
≤ µ(Uc)+ ∑

x∈U

∣∣∣µ(x)− 1
|U |

∣∣∣
≤ 4κ

1/3 + |U |1/2
∥∥∥µ− 1U

|U |

∥∥∥
2

< 6κ
1/6.(47)

From (42), (46), and (47), we have∥∥∥ 1U

|U |
∗ 1U

|U |

∥∥∥
2
> (1−20κ

1/6)
1
|U |1/2

hence
E+(U,U) := ‖1U ∗1U‖2

2 > (1−40κ
1/6).|U |3

where E+ refers to the additive energy.2

We apply now some results from arithmetic combinatorics.

First, by (2.5.4), p.82 from [12] (B-S-G in near-extreme case), there are subsets U ′,U ′′ ⊂U such that

(48) |U ′|, |U ′′|> (1−10κ
1/12)|U |

2It has been pointed out to us by Ben Green that, in fact, from this bound on E+ the desired result in (44) of Lemma 2.2 follows from
Fournier’s paper [4], as described in Theorems 1.3.3 and 1.4.6 of notes of Green - Wigderson [7]. We include a different argument based
on Kneser’s theorem here.
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and
|U ′−U ′′|< (1+20κ

1/12)|U |.

Thus from Ruzsa’s triangle inequality, also

(49) |U ′−U ′| ≤ |U
′−U ′′|2

|U ′′|
< (1+80κ

1/12)|U |

Next, we apply Kneser’s theorem (see [12], Theorem 5.5, p. 200). For T ⊂ G, denote

Sym1(T ) = {x ∈ G;T + x = T}

the symmetry group of T .

Then by Kneser’s theorem, see [T-V]

|T −T | ≥ 2|T |− |Sym1(T −T )|

and application with T =U ′ gives

(50) |Sym1(U
′−U ′)|> (1−80κ

1/12)|U ′|.

Denote H = Sym1(U
′−U ′). Note that H ⊂U ′−U ′ since 0 ∈U ′−U ′ and thus

|H| · |U ′| ≤ ∑
z∈U ′−U ′−U ′

|H ∩ (U ′+ z)|

≤ |U ′−U ′−U ′||max
z
|H ∩ (U ′+ z)|

< (1+300κ
1/12)|U ′|max

z
|H ∩ (U ′+ z)|

from (49) and Plunnecke inequalities. Therefore, there is some z ∈ G s.t.

|(H− z)∩U ′|> (1+300κ
1/12)−1|H|

and in view of (50)
|U ′ M (H− z)|< 1000κ

1
12 |U |

and

(51) |U M (H− z)|< 1000κ
1
12 |U |.

From (47), (51) we have

(52)
∥∥∥µ− 1H−z

|H|

∥∥∥
1
<Cκ

1
12 .

Furthermore, note that by (45), (48), and (50), we have

|H|> (1−80κ
1/12) · (1−10κ

1/12) · (1+4κ
1/3) · ‖µ‖−2

2 >
1
2
‖µ‖−2

2

as desired. From (46), (51), we obtain (43) proving Lemma 2.2. �

We now show that the one other alternative for s(A) is alternative (II). Returning to (35) and (41), we have
that ∥∥∥( 1Ω1

|Ω1|

)(r)∥∥∥
2

decreases in r and is between 1√
h
′ and 1√

εh′
. Hence there is some r with

(53) logr <
c
κ

log
1
ε
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such that µ = (
1Ω1
|Ω1|

)(r) satisfies (42) of Lemma 2.2.

From (41), (44), we conclude that∥∥∥1B ∗
1H

|H|

∥∥∥
2
≥

(
(1− ε1ε

−2)r− cκ
1/12)|B|1/2

> (1− cκ
1/12)|B|1/2(54)

provided

(55) ε1 < ε
−cκ−1

which we have from the definition of ε1 in (15). Also, from (43) and the preceding

(56) |H|> 1
2
|Ω1|>

ε

2
h′.

Let {Hα} be the set of cosets of H ⊂ G. Then

‖1B ∗1H‖2
2 = ∑

α

‖1(B∩Hα ) ∗1H‖2
2.

Let κ1 > 0 be as defined in (15), and define

I0 = {α ∈ G; |B∩Hα |> (1−κ1)|H|}

Let I1 be the complement of I0.

One has
‖1(B∩Hα ) ∗1H‖2

2 = E+(H,B∩Hα)≤ |B∩Hα |2 · |H|

and hence, by (54)

(1− cκ
1/12)|B| · |H|2 ≤ |H| ∑

α∈G
|B∩Hα |2

≤ |H|
(

∑
α∈I0

|H| |B∩Hα |+(1−κ1) ∑
α∈I1

|H| |B∩Hα |
)

≤ |H|2(|B|−κ1 ∑
α∈I1

|B∩Hα |).

Denote by

(57) B0 =
⋃

α∈I0

(
B∩Hα) and B1 =

⋃
α∈I1

(
B∩Hα)

Hence B = B0∪B1 with

(58) |B1|= ∑
α∈I1

|B∩Hα |< cκ
1/12

κ
−1
1 |B|.

From (15), we have

(59) κ < c ·κ12
1

with c as in (58), so that in particular I0 6= /0.

Let y ∈ A\A′1. Then y ∈Ω1 and by (37)

|B∩ (B+ y)|> (1− ε1ε
−2)|B|.

Let ϕ : G→ G/H = I0∪ I1.
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If α ∈ I0, then

|
(
(B∩Hα)+ y

)
∩B| ≥ |(B+ y)∩B|− ∑

α ′ 6=α

|B∩Hα ′ |

> (1− ε1ε
−2)|B|− |B|+ |B∩Hα |

> (1−κ1)|H|− ε1ε
−2|B|

> (1−κ1−2ε1ε
−3)|H|.

where the last inequality follows from (56). Thus certainly

|Hα+ϕ(y)∩B|> (1−κ1−2ε1ε
−3)|H|.

From (58), if β ∈ I1

|Hβ ∩B|< cκ
1/12

κ
−1
1 h < cκ

1/12
κ
−1
1 ε

−1|H|.

where the last inequality follows again from (56). From (15, we have

(60) ε1 < 10−3
ε

3

and

(61) κ � c ·κ24
1 ε

12

Note that the restriction in (61) replaces the earlier one in (59).

It follows that |Hβ ∩B|< κ1|H| for β 6∈ I0 while certainly

|Hα+ϕ(y)∩B|> 1
2
|H|.

Hence α +ϕ(y) ∈ I0 and we proved that

I0 +ϕ(y) = I0 in G/H for all y ∈ A\A′1.

Thus

(62) ϕ(A\A′1)⊂ Sym1(I0) in G/H.

We now distinguish between two cases: I0 = G/H and I0 6= G/H.

• If I0 = G/H, then |B| = |s(A′1)| > (1−κ1)h′. We may then construct A′′1 as in §2 and conclude (B)
with k < (33), |Ω1|<

√
κ1h′.

• Assume next I0 6= G/H. Note that this implies Sym1(I0) 6= G/H and H ′ = ϕ−1
(
Sym1(I0)

)
⊃ H is a

proper subgroup of G. Hence
ε

2
h′ < |H ′| ≤ h′

2
.

By (62),
A\A′1 ⊂ H ′.

Since I0 is a union of cosets of Sym1(I0) in G/H, we have I′0 = ϕ−1(I0) is a union of cosets H ′τ of H ′, each
satisfying

|B∩H ′τ |> (1−κ1)|H ′| for τ ∈ I′0

by definition of I0, where I0 =
⋃

τ∈I′0
Sym1(I0)τ .

Thus we may identify H and H ′ and write

A\A′1 ⊂ H
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with

(63)
ε

2
h′ < |H|< h′

2
.

The set s(A′1) = B0∪B1 where B0 and B1 are as in (57) with B replaced by s(A′1), and we have

• |s(A′1)∩Hα |> (1−κ1)|H| for α ∈ I0(64)

• |B1|< cκ
1/24h′(65)

• I0 6= /0, I0 6= G/H.(66)

Next, take a set z1, . . . ,zr ∈ A′1,withr < 2
ε

of representatives for ϕ(A′1) and denote by A2 = A′1\{z1, . . . ,zr}.
Then

s(A2)⊂ s(A′1) and |s(A2)| ≥ 2−r|s(A′1)|.

Thus there is some α ∈ G/H such that

|s(A2)∩Hα |>
ε

2
|s(A2)|> ε ·2−r−1|s(A′1)|> ε ·2−r−2h′.

Hence, for each z ∈ s(z1, . . . ,zr)

|s(A′1)∩Hα+ϕ(z)| ≥ |
(
s(A2)+ z

)
∩Hα+ϕ(z)|> ε ·2−r−2h′.

We claim that α +ϕ(z) = β ∈ I0. Otherwise, β ∈ I1 and s(A′1)∩Hβ ⊂ B1, implying by (65) that

|s(A′1)∩Hβ |< cκ
1/24h′

and this is impossible, provided

(67) κ < 2−
100
ε

which we have by (15). Hence

I0 ⊃ α +ϕ
(
s(z1, . . .zr)

)
= α +ϕ

(
s(A′1)

)
and since I0 ⊂ ϕ

(
s(A′1)

)
, by (64), it follows that I0 = ϕ

(
s(A′1)

)
and therefore by (66)

(68) ϕ
(
s(A′1)

)
6= G/H.

Next partition
I0 = ϕ

(
s(A′1)

)
= J∪ J′

with
J =

{
α ∈ G/H, |A′1∩Hα |>

10
ε

}
and J′ = I0\J.

Thus

(69)
∣∣∣ ⋃

α∈J′
(A′1∩Hα)|<

20
ε2 .

Take elements
Z =

{
zα,t ;α ∈ J, t ≤ 10

ε

}
∪{zα ;α ∈ J′}

with ϕ(zα,t) = α .

Then
s(A′1)⊃ s(Z )

and
ϕ
(
s(A′1)

)
⊃
{

∑
α∈J

uα α;0≤ uα ≤
10
ε

}
+ J′ = 〈J〉+ J′
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where 〈J〉 is the group generated by J ⊂ G/H. Thus |〈J〉| ≤ |ϕ
(
s(A′1)

)
|.

From (68), 〈J〉 6= G/H and H ′ = ϕ−1(〈J〉) is a proper subgroup of G.

Hence, by (69)

(70) |A′1\H ′|< c(ε)

and since A\A′1 ⊂ H,
|A\H ′|< c(ε)

with H ′ a proper subgroup of G, [G : H ′]≤ 2
ε

as in alternative (II) of Theorem 2.1. We have now shown that
s(A) must fit into one of the alternatives given in Theorem 2.1. �

Remark: Assume G = ∏p Gp with Gp = ∏
k
i=1Zpαi , where k = k(p) depends on p. The number of maximal

subgroups of Gp is known to be pk−1
p−1 (see [13]). Let σ(G,c) denote the number of maximal subgroups H of

G such that [G : H]< c. Then we have

(71) σ(G,c)≤ ∑
p<c

pk−1
p−1

However, without further information on the p-group structure of G, we may only claim a bound |G| − 1,
obtained from the case G = (Z/2Z)k. Therefore without the information on the p-group structure of G, it is
hard to put a meaningful bound the number of subgroups of G satisfying alternative (II) of Theorem 2.1.

3. APPLICATION TO THE CLASS GROUP

In this section, we apply Theorem 2.1 to the class group C of classes of primitive positive-definite binary
quadratic forms of “large" discriminant D< 0. Our first application concerns representation of any integers by
a given binary form, and our second application is restricted to shifted primes (with a fixed shift) represented
by a given binary form, which we recall is of interest, for example, in the context of counting primes in
integer Apollonian packings.

3.1. Integers represented by a form. Let n ∈ Z+ be square free; n = ∏ p j with (p j,D) = 1 and XD(p j) 6=
−1. Let C j,C−1

j be the classes that represent p j. Then n is representable by all classes in the formal expansion

∏{C j,C−1
j } (see [1], Cor. 2.3).

Let G = C 2. Thus h′ = |G| = h/g with h the class number and g = |C /C 2| the number of genera. Let
A = {C2

j } ⊂ G. We have

(72) ∏{C j;C−1
j }=

(
∏C−1

j

)
s(A)

with s(A) defined as in (16).3

Fix ε > 0 a small parameter and apply Theorem 2.1 to A⊂ G.

If s(A) = G as in (I) of Theorem 2.1, then

∏{C j,C−1
j }=

(
∏C−1

j

)
C 2.

Since C /C 2 is the group G of the genera, it follows that in this case n is representable by any form of the
genus if it’s representable by some form. Our aim is to show that the alternatives (II) and (III) of Theorem 2.1

3For a more detailed discussion of the relationship between the class group and integers represented by binary quadratic forms, see
Section 2 of [2].
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do not account for many sets A = {C2
j }, and in doing so to give lower bounds on the number of integers n

which are representable by any form of the genus once they are representable by some form.

We start by making a few comments that will greatly simplify the calculations later on.

Lemma 3.1. (i) Let 0 < τ < 1
100 , and let ω(n) denote the number of distinct prime factors of n. The

number of square free integers n < X with primes in P(C ) and such that

(73) |ω(n)− 1
2

loglogX |> τ log logX

is at most

(74)
X

(logX)
1+τ2

2

(ii) Denote by p1 > p2 > .. . the prime factors of n < X, where n is square free. Let 0 < γ < 1
100 . The

number of square free n < X with primes in P(C ) and such that ω(n)≤ γ or

(75)
n

p1 · · · pr
< Xθ with θ = min(c−r,γ4)

is at most

(76) γ · X√
logX

Proof. (i) Recalling (1) from Section 1, we obtain the estimate

X
logX

· ∑
|k− 1

2 log logX |>τ log logX

1
2k ·

(log logX)k−1

(k−1)

� X
logX

·

{(
e

1−2τ

)( 1
2−τ) log logX

+

(
e

1+2τ

)( 1
2+τ) log logX

}

� X
logX

· (logX)
1−τ2

2

as desired.
(ii) Write Y = Xθ . We may assume p1 > · · ·> pr > Y

1
r , at the cost of replacing Y by Y 2. Note also that

p1 >
(X

Y

)1/r
> X1/2r. Estimate the number of square free n < X as in (ii) of the Lemma by

∑
y<Y

y representable

∑
p2 ···pr< X

Y
p1>···>pr>Y 1/r

1

� ∑
y<Y

y representable

∑
Y 1/r<p2,...,pr<X

X
y · p2 · · · pr

· 1
log(X1/2r)

� 2r ·X
logX

· (logY )1/2 · 1
(r−1)

·
(

log
logX

log(Y 1/r

)r−1

� X
logX

·
√

θ · r ·
(

e · log(rθ−1)

r−1

)r−1

< γ · X√
logX

as desired where θ satisfies (75) with an appropriate constant c.

�
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In view of Lemma 3.1 we see that, given a small ν > 0, all square free integers n < X with primes in
P(C ) satisfy

(77) |ω(n)− 1
2

loglogX |< ν · log logX

and for any given constant r

(78) n = p1 · · · pr · y ⇒ y > exp(logX)1−ν

outside an exceptional set of size at most

(79)
X

(logX)
1+ν2

2

Denote by ♦ the conditions (77) and (78) with ν > 0 some fixed small constant.

Assume now that A satisfies the conditions of alternative (II) of Theorem 2.1. Denote by

(80) η : C → C 2

the map obtained by squaring and let C ′ = η−1(H). Since C ′ is a proper subgroup of C , we have

ε

2
h < |C ′| ≤ h

2
where h = |C | is the class number.

We may assume C ′ is a maximal subgroup of C , and the number of such subgroups is at most h as pointed
out in the remark at the end of Section 2.

Note that there is a set of indices J such that |J | < C(ε) and for j 6∈J we have C2
j ∈ H, hence

C j,C−1
j ∈ C ′. Denote PC the primes represented by the class C. Thus PC = PC−1 .

It follows from the discussion at the beginning of this section that n
(

∏ j∈J p j
)−1 has all its prime factors

in the set
P(C ′) =

⋃
C∈C ′

PC.

We recall the following distributional theorem.

Lemma 3.2 (Landau; [1], Lemma 5.1). Assume D < (logξ )A, A fixed.

Then

(81) |{p ∈PC; p≤ ξ}|= πC(ξ ) =
1

ε(C)h

∫
ξ

1

dt
log t

+O(ξ e−c
√

logξ )

with ε(C) = 2 if C is ambiguous4 and ε(C) = 1 otherwise.

Recall also that the number of ambiguous classes equals

γam = #(C /C 2) = number of genera� 2ω(D).

4having order at most 2
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Hence from (81) we have

πC ′(ξ ) = |{p ∈P(C ′); p≤ ξ}|

≤ ∑
C ambiguous

πC(ξ ) +
1
2
·∑

C∈C ′
not ambiguous

πC(ξ )

= (γam + |C ′|) 1
2h

∫
ξ

2

dt
log t

+O(ξ e−c
√

logξ h)

and since |C ′| ≤ h
2 and h < D

1
2+ε < (logξ )A we have

(82) πC ′(ξ )<
(1

4
+

1
h1−ε

)∫ ξ

2

dt
log t

.

Thus, in summary, the number of integers n≤ X obtained in alternative (II) of Theorem 2.1 and satisfying
♦ is at most

(83) ∑
r≤Cε ;p1...pr<X

C ′<C
2≤[C ;C ′]≤ 2

ε

#
{

m≤ X
p1 . . . pr

;m · p1 · · · pr square free with primes in P(C ′), satisfying ♦
}

with P(C ′) satisfying (82) and {p1, . . . , pr} unordered and distinct, such that XD(p j) 6=−1.

To bound (83), the number of integers obtained in alternative (II), we proceed as follows. Fix p1 > · · ·> pr

with r <Cε , and let Y = X
p1···pr

. Note that this satisfies logY > (logX)1−ν by (78).

Write the prime factorization of m as m = q1 · · ·qr1 with q1 > · · · > qr1 where |r1 − 1
2 log logX | < ν ·

log logX +Cε by (77). Thus, fixing r1 = ( 1
2 +σ) · log logX with |σ |< 2ν , we obtain the following bound on

the contribution to #{ } in (83).

∑
q2>···>qr1 in P(C )

q2···qr1<Y 1−1/r1

Y
q2 · · ·qr1

·
(

log
Y

q2 · · ·qr1

)−1

< r1 ·
Y

logY
· 1
(r1−1)

·

 ∑
p∈P(C ′)

p<X

1
p


r1−1

(84)

By (82) and partial summation,

(85) ∑
p∈P(C ′)

1
p
=
(1

4
+o(1)

)
log logX

and therefore

(84) < r1
Y

logY

(
1+o(1)

)r1
( e

4( 1
2 +σ)

)( 1
2+σ) log logX

< r′
(
1+o(1)

)r′
(logX)(

1
2+σ)(1−log2−log(1+2σ))−1+ν X

p1 · · · pr
(86)

where r′ = r1 + r. Summing over r1, p1 > · · · > pr, and r < Cε and bounding the number of maximal sub-
groups C ′ of C trivially by h < (logX)

log2
2 −δ as before gives the following estimate on (83):

(83)< X · (logX)
log2

2 −δ+ε(log logX)C(ε)(logX)−
1
2−

log2
2 +20ν

<
X

(logX)
1
2+

δ
2

(87)
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for an appropriate choice of ν = ν(δ ).

Next, consider the contribution from alternative (III) of Theorem 2.1. This contribution is clearly bounded
by

(88) ∑
k as in (17)

∑
p1>···>pk

XD(p j)6=−1
p1...pk<X

∣∣∣{m <
X

p1 . . . pk
;m square free with primes in P

(
η
−1(Ωp1,...,pk)

) }∣∣∣
where η is as in (80) and the set Ωp1,...,pk ⊂ C 2 satisfies by (18)

|Ωp1...pk |< 2ε|C 2|

and hence Ω̃p1...pk = η−1(Ωp1,...,pk) satisfies

(89) |Ω̃p1...pk |< 2εh.

Let Y = X
p1...pk

and let r = r′− k the number of prime factors of m. Again from (81), we obtain

(90) ∑
p∈P(Ω̃p1 ...pk )

1
p
< 2ε log logX .

The arguments leading up to (84) give then

|{m < Y ;m square free with prime factors in P(Ω̃p1...pk)}| �
Y

logY
· r
(r−1)!

(
∑

p∈P(Ω̃p1 ...pk )
p<X

1
p

)r−1
<

(90)

Y
logY

(logX)2ε .(91)

We distinguish between the following two cases in bounding (88).

Case 1. p1 . . . pk <
√

X .
By (91), the innermost sum in (88) is bounded by

(92)
X

(logX)1−2ε ∑
X>p1>···>pk
χD(p j)6=−1

1
p1 . . . pk

<
X

(logX)1−3ε

( e
2 log logX

k

)k

Case 2. p1 · · · pk ≥
√

X .
Since p1 > X

1
2k , we obtain

X(logX)2ε · ∑
X>p1>···pk

χD(p j)6=−1,p1>X
1
2k

1
p1 · · · pk

1
log X

p1...pk

<

X(logX)2ε · ∑
X>p2>···>pk
χD(p j)6=−1

1
p2 · · · pk

∑

X
1
2k <p1<

X
p2−pk

1
p1

1
log X

p1 p2···pk

(93)

Since for any Z we have

∑

X
1
2k <p<Z

1
p

1
log Z

p

� (log logX)2

logX

this gives

(94) (93)<
X

(logX)1−3ε

( e
2 log logX

k−1

)k−1
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similarly to (92).

In evaluating (92), (94), the size of h is essential. Write

h = (logX)ρ ,ρ <
log2

2
−δ

and, from (17), k < (1+2ε) logh
log2 < σ log logX with σ = (1+2ε)ρ

log2 < 1
2 −

δ

2 . Then

(92), (94) <
X

(logX)1−3ε
(logX)

1
2 (1−δ )(1−log(1−δ ))

<
X

(logX)
1
2+

δ2
4 =−3ε

<
X

(logX)
1
2+

1
5 δ 2

(95)

Recall that |D| 12−ε � h� |D| 12+ε and the number of genera is bounded by 2ω(D)� |D|ε . In view of (87),
(95) and the comments made in the beginning of this section, we proved

Theorem 3.3. Let κ > 0 be a fixed constant and D < 0 a negative discriminant satisfying

(96) |D|< (logX)(1−κ) log2.

Let C be the class group. Then for X large enough

#{n� X ;n square free, representable by some form but not by all forms of the genus}

< X
(logX)1/2+κ ′

for some κ ′ = κ ′(κ)> 0.

3.2. Representation of shifted primes. Next, we establish a version of Theorem 3.3 for shifted primes.

More precisely we get a bound on

#{q� X prime; q+a square free and representable by some form but not

all of the forms of the genus}(97)

We use a similar strategy based on the combinatorial Theorem 2.1.

Lemma 3.4. Let Y ∈ Z be a large integer and for each prime ` < Y let R` ⊂ Z/`Z be given where |R`| ∈
{0,1,2}. Then

(98) #{n < Y ;π`(n) 6∈ R` for each `}< (log logY )3
∏
`

(
1− |R`|

`

)
Y +

Y
(logY )10

where π`(n) denotes the residue class of n mod `.

Proof. Denote Y = {n ∈ Z+;n < Y}. and for ` prime, let

Y` = {n ∈ Y ;π`(n) ∈ R`}

Furthermore, for a square free integer m, write

Ym =
⋂
`|m

Y`.
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We use the bound

(99)
∣∣∣⋂

`

(Y \Y`)| ≤ |
⋂
`<Y0

(Y \Y`)|

with Y0 < Y to be specified in (102).

From the inclusion-exclusion principle

(100) (99)≤ Y − ∑
`<Y0

|Y`|+ ∑
`1<`2<Y0

|Y`1`2 | . . .+ ∑
`1<···<`r<Y0

|Y`1...`r |

with an even positive integer r ∈ Z+ to be specified in (102).

Clearly

(101) |Ym|=
(
∏
`|m

|R`|
`

)
Y +O

(
∏
`|m
|R`|
)
.

From (100) and (101) we have that

(99)
Y

≤ 1− ∑
`<Y0

|R`|
`

+ · · ·+ ∑
`1<···<`r<Y0

(
|R`1 |
`1
· · · |R`r |

`r

)
+

1
Y

(
∑
`<Y0

|R`|+ . . .+ ∑
`1<···<`r<Y0

(|R`1 | · · · |R`r |)
)

≤ ∏
`<Y0

(
1− |R`|

`

)
+ ∑

r1>r

(
1

r1!

(
∑
`<Y0

|R`|
`

)r1
+

2r+1

Y

(
Y0 + r

r

))

< exp
(

3 ·∑
Y0<`<Y
` prime

1
`

)
.∏
`<Y

(
1− |R`|

`

)
+ ∑

r1>r

(2e log logY
r1

)r1
+(3Y0)

rY−1

Take

(102) r = 102 log logY and Y0 = Y 10−3(log logY )−1

to obtain the desired bound in (98). �

Similarly to Lemma 3.1, we show below that we may assume q+a satisfies ♦, excluding a set of size at
most

(103)
X

(logX)
3
2+ν ′

Lemma 3.5. (i) Let ν > 0 be small. The number of square free integers n of the form n = q+a,q < X
prime, with primes in P(C ) and such that

(104) |ω(n)− 1
2

loglogX |> ν log logX

is at most

(105)
X

(logX)3/2+ν ′

for some ν ′ > 0.
(ii) Denote p1 > p2 > · · · the prime factors of n < X, n square free. The number of n = q+a, q prime,

with primes in P(C ) and such that either ω(n)≤ r (r a constant) or

(106)
X

p1 . . . pr
< exp(logX)1−ν
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is at most

(107)
X

(logX)3/2+ν ′

for some ν ′ > 0.

Proof. (i) Writing n = q+a = p1 . . . pk, pi ∈P(C ) and fixing k, we obtain the following bound on the
number of square free integers as in (i) of Lemma 3.5:

(108) ∑
p2>···>pr in P(C )

p2···pr<X1− 1
r

∣∣∣{p <
X

p1 · · · pr
; p · p2 · · · pr−a is prime

}∣∣∣.
We can assume r� log logX . Let Y = X

p2...pr
. By Lemma 3.4,

|{p < Y ; pp2 . . . pr−a is prime}| � (log logX)3 · Y
(logY )2

� (log logX)5 · Y
(logX)2 .(109)

Substituting (109) in (108) gives

X · (log logX)5(logX)−2 · ∑
X>p2>···>pr

p2,··· ,pr in P(C )

1
p2 . . . pr

< X · (log logX)5 · (logX)−2 ·
( log logX

2

)r−1
· 1
(r−1)!

(110)

the contribution of (110) for r satisfying (104) is at most (105) as desired.
(ii) Letting Y = exp(logX)1−ν , we obtain

∑
y<Y

y with primes in P(C )

∑
p1···pr<

X
y

p1>···>pr>Y 1/r

p1···pr ·y+a prime

1

� ∑
y<Y

y repr.

∑
Y 1/r<p2,...,pr<X

∣∣∣{p <
X

y · p2 · · · pr
; p · p2 · · · pry+a prime

}∥∥∥
� ∑

y<Y
y repr.

∑
Y 1/r<p2,...,pr<X

(log logX)5(logX)−2 X
y · p2 · · · pr

� (log logX)5(logX)−2(logY )
1
2 X
(

log
r logX
logY

)r−1 1
(r−1)!

� (log logX)r+5 X

(logX)
3
2+

ν
3

<
X

(logX)
3
2+

ν
3

(111)

and hence we get (107) as desired.

�

Returning to Theorem 2.1 and alternative (II), we have

(112) X � n = q+a = p1 . . . prm
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where n is square free and m has its prime factors in P(C ′).

Proceeding as in the proof of Theorem 1.1, estimate the contribution to (II) by

(113) ∑
r≤Cε ;X>p1>···>pr

C ′<C

∣∣∣{m <
X

p1 . . . pr
;m as above and p1 · · · , pr ·m satisfying ♦

}∣∣∣
Let Y = X

p1...pr
and write m = q1 . . .qr1 , with q1 > · · · > qr1 the prime factorization of m, where |r1 −

1
2 log logX |< ν log logX by assumption ♦.

Thus, after fixing r1 we have that

(114) |{· · ·}| in (113)≤ ∑
q2>···>qr1 in P(C ′)

q2...qr1<Y
1− 1

r1

(∗)

where

(∗) =
∣∣∣{p <

Y
q2 . . .qr1

; p1 · · · pr ·q2 · · ·qr1 · p−a prime
}∣∣∣

Lemma 3.4
� (log logX)3 Y

q2 · · ·qr1

(
log

T
q2 · · ·qr1

)−2

� (log logX)5 1
(logX)2(1−ν)

· Y
q2 · · ·qr1

(115)

since logY > (logX)1−ν and Y
q2···qr1

> Y
1
r1 .

Thus

(114)� Y
log logX)5

(logX)2(1−ν) ∑
X>q2>···>qr1 in P(C ′)

1
q2 · · ·qr1

� Y
(log logX)5

(logX)2(1−ν)
· 1
(r1−1)!

(
∑

p∈P(C ′)
r<X

)r1−1
(116)

Writing r1 = ( 1
2 +σ) log logX where |σ |< ν ,

(117) (116)� log logX)5

(logX)2(1−ν)
(logX)(

1
2+σ)(1−log2−log(1+2σ))+ε X

p1 · · · pr
.

Summing over r1; p1 > · · ·> pr,r <Cε ; and the maximal subgroups C ′ of C gives

(113) < h
X

(logX)2−2ν
(logX)

1
2−

log2
2 +O(σ).

Assuming h < (logX)
log2

2 −δ , we obtain

(118) (113) <
X

(logX)
3
2+δ−2ν−0(σ)

<
X

(logX)
3
2+

δ
2

for an appropriate choice of ν .

Next, we analyze the contribution of alternative (III) from Theorem 2.1 in the case of shifted primes.

This contribution is again bounded by (88), with the additional specification that n= q+a (q prime). Write
again

X � n = q+a = p1 · · · pk−1 pk ·m with p1 < · · ·< pk,



ON REPRESENTATION OF INTEGERS BY BINARY QUADRATIC FORMS 23

and recall that Ωp1...pk depends only on the classes C1, . . . ,Ck ∈ C determined by p1, . . . , pk. We again have
the following two cases.

Case 1: Assume first that p1 . . . pk <
√

X and estimate

(119) ∑
k as in (17)

∑
pk>···>p1

χD(p j)6=−1
p1···pk<

√
X

∣∣∣{m <
X

p1 . . . pk
;

p1 . . . pkm−a prime
m square free with factors in P(Ω̃p1...pk)

}∣∣∣.
where Ω̃p1...pk = η−1(Ωp1,...,pk). Let Y = X

p1···pk
and let m = q1 · · ·qr1 be the prime factorization

of m, where q1 > · · · > qr1 and r′ = k+ r1 satisfies |r′− 1
2 log logX | < ν log logX . Thus certainly

r1 < log logX . Fix r1 and note that |{· · ·}| in (119) is

(120) ≤ ∑
q2>···>qr1 in P(Ω̃)

q2···qr1<Y
1− 1

r1

(∗∗)

where

(∗∗) =
∣∣∣{p <

Y
q2 · · ·qr1

; p1 · · · pk−1 ·q2 · · ·qr1 · p−a prime
}∣∣∣

� (log logX)5 Y
(logY )2

1
q2 · · ·qr1

.(121)

Since

∑
p∈P(Ω̃)

1
p
< 2ε log logX

this gives

(120)� (log logX)5 1
(r1−1)!

(2ε log logX)r1−1 Y
(logY )2

< (logX)3ε Y
(logX)2(122)

since Y >
√

X . Hence (119) is bounded by

(123)
X

(logX)2−3ε ∑
X>p1>···>p2
χD(p j)6=−1

1
p1 · · · pk

<
X

(logX)2−3ε

( e
2 log logX

k

)k
.

In view of (17) and the assumption on h < (logX)
log2

2 −δ , we conclude similarly as in the proof of
Theorem 3.3 that

(124) (123) <
X

(logX)
3
2+

1
5 δ 2

.

Case 2: Assume p1 · · · pk ≥
√

X . In particular, since p1 < p2 < · · · < pk, we have that pk > X
1
2k . The

argument given above for p1 · · · pk <
√

X may not be conclusive anymore and so we adopt a variant
of the previous approach.

Proceed as follows.
Fix p1, . . . , pk−1. Then specify the class {C,C−1} of (pk) so that we may specify Ω̃ = Ω̃p1,...,pk .

Take m with prime factors in P(Ω̃). We are concerned with primes p = pk <
X

p1...pk−1m satisfying
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the conditions

• p represented by C(125)

•π`(p) 6= π`(a)/π`(p1 . . . pk−1m) if (`, p1 . . . pk−1m) = 1, ` <
√

X .(126)

and note that the contribution from (III) is then bounded above by

(127) ∑
p1<...<pk−1
XD(p j)6=−1

∑
C∈C

∑
m sq-free with primes in P(Ω̃)

m< X
1− 1

2k
p1 ···pk−1

#
{

p� X
p1 · · · pk−1 ·m

; p satisfying (125), (126)
}

We estimate the number of primes p = pk <
X

p1···pk−1·m satisfying (125) and (126) in the following lemma,
which we prove later.

Lemma 3.6. Let Y < X. Then

(128) |{p < Y, p satisfies (125), (126)}| � (log logX)5

h1−ε
· Y
(logY )2 .

From Lemma 3.6, we have

#
{

p� X
p1 · · · pk−1 ·m

; p satisfying (125), (126)
}
� k2(log logX)5X

(logX)2 p1 · · · pk−1 ·mh1−ε

� (log logX)7X
(logX)2 p1 · · · pk−1 ·mh1−ε

.(129)

Next, by (90),

(130) ∑
m< X

p1 ...pk−1
with primes in P(Ω̃)

1
m
� (logX)3ε .

Coming back to (127), after summation over C ∈ C this gives again

hε X
(logX)2−4ε ∑

p1<...<pk−1<X
XD(p j)6=−1

( 1
p1 · · · pk−1

)

<
X

(logX)2−5ε

( e
2 log logX

k−1

)k−1

<
X

(logX)3/2+δ 2/5

by the bound on k in (17), as well as the assumption on h.

Hence from the preceding, we can conclude

Theorem 3.7. Let κ > 0 be a fixed constant and D < 0 such that

(131) |D|< (logX)(1−κ) log2.

Let C be the class group corresponding to D. Then, for X large enough and any fixed positive integer
a = o(X), we have that

#{q+a� X; q prime, q+a square free and representable by some form but not by all forms of the genus}

< X
(logX)3/2+κ ′(132)

for some κ ′ = κ ′(κ)> 0.
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Proof of Lemma 3.6.

In order to estimate the size of the set

(133) {p < Y, p satisfies (125), (126)}

we factor in prime ideals and consider the larger set

(134) {α ∈ I;α ∈C,N(α)< Y and π`

(
N(α)

)
6∈ R` for ` < Y0}

where I denotes the integral ideals in OK ,K = Q(
√

D),D = D0 f 2 with D0 < 0 square free, N(α) stands for
the norm of α and ` runs over primes,

(135)

{
R` = {0,ξ`},ξ` = π`(a)/π`(p1 · · · pk−1 ·m) if (`, p1 · · · pk−1 ·m) = 1
R` = {0} otherwise.

In fact, we restrict ourselves in (134) to primes ` < Y such that

(136) (`,α · p1 · · · pk−1 ·m) = 1.

Define
Y = {α ∈ I;α ∈C,N(α)< Y}

and
Y` = {α ∈ Y ;π`

(
N(α)

)
∈ R`}

for ` prime,
Yn =

⋂
`|n

Y`

for n square free.

Proceeding as in the proof of Lemma 3.4, estimate∣∣∣ ⋂
`<Y0

` satisfies (136)

(Y \Y`)
∣∣∣≤

|Y |− ∑
`<Y0

` satisfies (136)

|Y`|+ ∑
`1<`2<Y0

|Y`1`2 |− · · ·+ ∑
`1<···<`r<Y0

|Y`1···`r |(137)

with r ∼ log logY a suitably chosen positive integer.

We evaluate |Yn| using Hecke characters.

The condition that α ∈C is equivalent to

1
h ∑

λ∈Ĉ

λ (C)λ (α) = 1

where λ runs over the class group characters Ĉ .

Denote by X` the principal character of Q(mod `).

If ` satisfies (136), the requirement π`

(
N(α)

)
∈ R` may be expressed as

(138) 1−X`

(
N(α)

)
+

1
`−1 ∑

X (mod `)

X (ξ`)X
(
N(α)

)
= 1.

Thus

(139) |Yn|= ∑
N(α)<Y

[1
h ∑

λ∈Ĉ
λ (C)λ (α)

]
∏
`|n

(138).
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We will use the following classical extension of the Polya-Vinogradov inequality for finite order Hecke
characters.

Proposition 3.8. (i) Let X be a non-principal finite order Hecke character (mod f ) of K. Then

(140)
∣∣∣ ∑

N(α)<x
X (α)

∣∣∣<C
(
|D|N( f )

)1/3
[log |D|N( f )]2 x1/3

(ii)

(141) ∑
N(α)<x

1 = c1x+O
(
|D|1/3(log |D|)2)x1/3

where
c1 = ∏

p| f

(
1− 1

p

)
L(1,XD).

This statement follows from [L], (1), (2) p. 479; for (142), see [1], (2.5).

Analyzing (138) and (139), we have that

(142) |Yn|=
1
h ∑

N(α)≤Y
∏
`|n

(
1− `−2

`−1
X`

(
N(α)

))
+O(Tn)

where Tn is a bound on sums

(143) ∑
N(α)<Y

X (α) with X (α) = λ (α)X ′(N(α)
)

where λ ∈ Ĉ ,X ′ is a (mod n1)-Dirichlet character with n1|n and either λ or X ′ non-principal. By (140),
we have

(144) Tn <C|D| ·nY 1/3 <C|D|Y r
0 Y 1/3

so the collected contribution of Tn in (137) is at most

(145) C|D|Y 2r
0 Y 1/3 < Y 1/2

imposing the condition

(146) |D|Y r
0 < Y

1
20 .

Analyzing further (142) using (141), we obtain
(147)

|Yn|=
c1

h
·Y ∏

`|n
XD(`)=1

[
1− `−2

`−1

(
1− 1

`

)2]
· ∏

`|n
XD(`)=0

[
1− `−2

`−1

(
1− 1

`

)]
· ∏

`|n
XD(`)=−1

[
1− `−2

`−1

(
1− 1

`2

)]
+O(Y 1/2)
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Substituting (147) in (137) gives

c1

h
Y ∏

`<Y0
` satisfies (136)

XD(`)=1

(
1− 3

`
+

2
`2

)
. ∏

`<Y0
` satisfies (136)

XD(`)=0

(
1− 2

`

)
. ∏

`<Y0
` satisfies (136)

XD(`)=−1

(
1− 1

`
− 2

`2

)
+

O
(

Y
1
r!

(
∑
`<Y0
` prime

3
`

)r
+Y 1/2Y r

0

)

� |D|ε

h
Y
(log logX)3

(logY0)2 +O
(

Y
(3loglogY0

r

)r
+Y 1/2Y r

0

)
.(148)

Taking r = 102 log logY and Y0 =Y 10−4(log logY )−1
, we have that (146) holds and we obtain (127). This proves

Lemma 3.6. �

Theorem 3.7 may be combined with Iwaniec’s result [8] on representing shifted primes by the genus of a
binary quadratic form (see the Appendix for a brief quantitative review of that argument, when the quadratic
form Ax2 +Bxy+Cy2 = f (x,y) is not fixed). Thus, fixing a 6= 0, and assuming D = B2−4AC not a perfect
square, it follows from [8] that

#{q+a� X ;q prime and q+a square free and representable by the genus of f}

� X
(logX)3/2+ε

(149)

and this statement is certainly uniform assuming |A|, |B|, |C|< logX

Corollary 3.9. Let f be as above with discriminant D < 0, and assume for some κ > 0

|D|< (logX)(1−κ) log2

with X sufficiently large. Then

#{q+a� X ;q prime, such that q+a is representable by f }

� X
(logX)3/2+ε

.

4. APPENDIX

In this section we give a flavor of the ingredients of the half-dimensional sieve, and how these ingredients
extend to the version of Iwaniec’s theorem which gives Corollary 3.9 in the Introduction. Let φ(x,y) be a
primitive positive definite binary quadratic form of discriminant −D where D < logX , and let

S1(X ,φ ,a) = ∑
p≤X ,p 6 |D

p= f (x,y)+a
(x,y)=1, f∈Rφ

1

where Rφ denotes the genus of φ . Then Theorem 1 of [8] gives us the following lower bounds for S1.

Theorem 4.1. For a ∈ Z and φ a primitive positive definite binary quadratic form of discriminant−D where
D≤ logX, let S1(X ,φ ,a) be as above. Then for ε > 0 we have

S1(X ,φ ,a)�ε

X ·D−ε

(logX)3/2

where the implied constant does not depend on D.
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The following two lemmas are essentially Theorems 2 and 3 from [8] in the case D < logX , where the
integer m represented by Rφ is assumed to be square free and (m,D)≤ 2.

Lemma 4.2 (Iwaniec). Let −D < 0 be the discriminant of f (x,y) = Ax2 +2Bxy+Cy2, and write

−D =−2θ2 · pθp1
1 · · · p

θpr
r , Dp = p−θp ·D,

where θp ≥ 1 for 1 ≤ i ≤ r, and θ2 ≥ 0. Write m = δn = 2ε2n where m is a positive square free integer (so
0≤ ε2 ≤ 1) such that (n,2D) = 1. Then m is represented by the genus of f iff the conditions on m in Table 1
are satisfied 5.

With the notation above, for p 6= 2, let

L ′
p(n) =

{
l | 0 < l < p,

(
l
p

)
=

(
A ·2ε2

p

)}
,

L ′′
p (n) =

{
l | 0 < l < p,

(
l
p

)
=

(
−A ·2ε2 · k(−Dp)

p

)}

5Table 1 also specifies a quantity κ and τ for each described case. These do not have to do with whether m is represented or not, but will
be used later.
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TABLE 1. Representation of 2ε2n by f

Description of θp K τ Conditions on n Conditions on D

θpi ≥ 1, pi 6= 2 pi−1
2 pi

(
n
pi

)
=
(

A·2ε2
pi

)
none (1)

p|m, θp = 0 1 1 none
(
−D

p

)
= 1 (2)

ε2 = 0, θ2 = 0 1 1 none D≡−1 (4) (3)

ε2 = 0, θ2 = 2 1 or 2 4 n≡ A (4) or n≡−AD2 (4) D2 ≡−1 (4) or D2 ≡ 1 (4) (4)

ε2 = 0, θ2 = 3 2 8 n≡ A (8) or n≡ A(1−2D2) (8) none (5)

ε2 = 0, θ2 = 4 1 4 n≡ A (4) none (6)

ε2 = 0, θ2 ≥ 5 1 8 n≡ A (8) none (7)

ε2 = 1, θ2 = 0 1 1 none D≡−1 (8) (8)

ε2 = 1, θ2 = 2 1 4 n≡ A 1−D2
2 (4) D2 ≡−1 (4) (9)

ε2 = 1, θ2 = 3 2 8 n≡−AD2 (8) or n≡ A(2−D2) (8) none (10)

where k(−Dp) denotes the square free kernel of −Dp. Note that each of L ′
p and L ′′

p always contains (p−
1)/2 elements. Define L2(n) as follows:

L2(n) =



{l | 0 < l < 4, l ≡ A (4) or l ≡−AD2 (4)} if ε2 = 0, θ2 = 2
{l | 0 < l < 8, l ≡ A (8) or l ≡ A(1−2D2) (8)} if ε2 = 0, θ2 = 3
{l | 0 < l < 4, l ≡ A (4)} if ε2 = 0, θ2 = 4
{l | 0 < l < 8, l ≡ A (8)} if ε2 = 0,θ2 ≥ 5
{l | 0 < l < 8, l ≡−AD2 (8) or l ≡ A(2−D2) (8)} if ε2 = 1,θ2 = 3
{l | 0 < l < 4, l ≡−A D2−1

2 (4)} if ε2 = 1,θ2 = 2, D2 ≡−1 (4)
{0} if ε2 ≥ θ2.

Note that L2(n) contains κ elements, where κ is as in Table 1. With this notation, we have

Lemma 4.3 (Iwaniec). Let D, θp, m, n, and δ be as in Lemma 0.2, and let τ2 be the corresponding value of
τ in the case p = 2 in Table 1. Define Q = τ2 ·∏pi|D2

pi, and let

P =

{
p
∣∣∣ (k(−D)

p

)
= 1
}

where k(−D) is the square free kernel of −D. Then m = 2ε2n is represented by the genus of φ iff m satisfies
the conditions in Table 1, all the prime factors of n belong to P, and

n≡ L (Q)

where L > 0 is an integer satisfying the conditions

• 0 < L < Q,
• L≡ l (τ2) for some l ∈L2(n),
• for each pi|D2 there exists l ∈L ′

pi
(n) such that L≡ l (pi).
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Furthermore, if L denotes the set of L satisfying these conditions,
(

k(−D)
L

)
= 1 for each L ∈L .

Let P = {primes p 6 |D s.t.
(

k(−D)
p

)
= −1}, let E = Qδ , and let φE(N) = φ(N ·E)/φ(E). For D fixed, it is

crucial to the 1
2 -dimensional sieve that the condition

(150)

∣∣∣∣∣∣∣ ∑
p≤z

p∈P

log p
φE(p)

− 1
2

logz

∣∣∣∣∣∣∣< c

is satisfied for some constant c for all z > 1. In our case of D ≤ logX , this holds in the following form for
some constant C1 not depending on D:

(151)

∣∣∣∣∣∣∣ ∑
p≤z

p∈P

log p
φE(p)

− 1
2

logz

∣∣∣∣∣∣∣�ε C1Dε

for any z≥ 1. This can be seen from the proof of Theorem 3.2.1 of [5] and the fact that

∑(
k(−D)

p

)
=1,p≤z

log p
p

=
logz

2
+Dε ·O(1)

where the implied constant depends only on ε . As in [8], let

C0 := lim
z→∞

∏
p<z

p∈P

(
1− 1

φE(p)

)√
logz

for which Iwaniec shows in [8]

Lemma 4.4 (Iwaniec). Let C0 be as above. We have

C0 = e−γ/2
∏
p 6 |a

p∈P

(
1− 1

(p−1)2

)
· ∏

p|Da

(
1− 1

p

)−1/2

· ∏
p6 |Da

(
1− 1

p

)−(−k(D)
p

)
/2

Finally, we recall the following theorem:

Lemma 4.5 (Bombieri, Vinogradov). Let π(x,k, l) denote the number of primes less than x which are l
modulo k. There exists an absolute constant U such that

∑
k<

√
x

(lnx)U

max
l

(l,k)=1

∣∣∣∣π(x,k, l)− Lix
φ(k)

∣∣∣∣� x
(logx)20 .

We are now ready to introduce the notation relevant to our problem and recall the lemmas resulting from
the 1

2 -dimensional sieve. For L and δ as above, and 1 < s≤ 4
3 ,

• D1 = 2 or 1 = greatest divisor of 2D prime to Q ·a
• M = {m ∈ N | m = p−a

δ
, p≤ X , p≡ δL+a (Qδ ), (m,D1) = 1}

• Md = {m ∈M | m≡ 0 (d)}
• Y = φ(E) · |M|= Li(X)

• Rd(M) = |Md |− Y
φ(dE)

• y =
√

X
QδD(logX)U

• A(M,y1/s) = #{m ∈M s.t. m 6≡ 0 (p), y1/s > p ∈P}
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By Lemma 4.3, the following is precisely what is needed to evaluate S1:

∑
|a|< f (x,y)+a=p≤X

(x,y)=1, f∈Rφ

1 = ∑
d

∑
L∈L

∑
X≥p≡δL+a (Qδ )
q|((p−a)/δ )⇒q∈P

((p−a)/δ ,2D)=1,p>|a|

1

= ∑
δ

2|aδ

∑
L∈L

(δL+a,Qδ )=1

∑
m∈M

q|m⇒q∈P

1+R(152)

where R ≤ 2|D|. It is the innermost sum in (152) that we evaluate with the help of the sieve. Note that if
(d,QA) = 1, there exists an integer d′ such that d′Q+L≡ 0 (d) and

Md = {m | m =
p+a

δ
, p≤ X p≡ A+δ L+Qδ d′ (Qδ d)}.

From [8] we then have

(153)
∣∣∣∣|Md |−

LiX
φ(Qδd)

∣∣∣∣≤ 2 max
l

(l,Qδ d)=1

∣∣∣∣π(X ,Qδ d, l)− LiX
φ(Qδ d)

∣∣∣∣
With the notation above, the expression in (151) combined with the 1

2 -dimensional sieve gives the follow-
ing in our case:

Theorem 4.6.

A(M,y1/s) �ε

√
eγ

π
· C0Y

φ(E)
√

log3y
·

(∫ s

1

dt√
t(t−1)

− (logX)ε

(log3y)1/10

)
− ∑

d<y
p|d⇒p∈P

|Rd(M)|

≥
C0 ·

√
2 eγ

π

φ(Qδ )
· X
(logX)3/2 ·

(∫ s

1

dt√
t(t−1)

+(logX)ε ·o(1)

)
+O(X log−20 X).

The estimation of the remainder term comes from Lemma 4.5 and (153). Also, for sufficiently large X
(such that (X1/2(logX)−15−U )1/s > X1/3) and 1 < s < 4

3 we have

A(M,y1/s) = ∑
m∈M

q|m⇒q∈P

1+ ∑
p1 p2m∈M
q|m⇒q∈P

y1/s≤p1,p2∈P

1.

We have a lower bound for A(M,y1/s), and we would like a lower bound for the first sum in the equation
above. To this end, Iwaniec shows:

Lemma 4.7 (Iwaniec). Let |Qδ | � (logX)15 and s > 1. Then

∑
p1 p2m∈M
q|m⇒q∈P

y1/s≤p1,p2∈P

1 <
4eγ/2C0

√
s−1√

πφ(Qδ )
√

s
log(2s−1)

4s2X
(logX)3/2 (1+o(1))

Together with Theorem 4.6, for 1 < s < 4
3 and Qδ � logX , this gives us

∑
m∈M

q|m⇒q∈P

1�
√

2eγ

π
· C0

φ(Qδ )
· X
(logX)3/2 ·

(∫ s

1

dt√
t(t−1)

−8s2

√
2

s−1
s

log(2s−1)+o(1)

)
+O(X log−20 X),

where the implied constants do not depend on D.
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We now compute a lower bound for the expression in (A.5) as in [8]. Since D1 in our case is 1 or 2, the
expression ΩD in (4.8) of [8] becomes

(154) ΩD = c · ∑
δ

2|Dδ

∑
L∈L

(δL+a,Qδ )=1

1
φ(Qδ )

where c is a constant not depending on D (coming from the products over p|D1 in (4.8) of [8]) and δ = 1 or 2
as in Table 1. Note that the innermost sum of the expression in (4.8) is�ε D−ε for ε > 0. This follows from
|L |= ∏p|D2

(p−1)/2�ε ′ D1−ε ′ . Define

Ω̃D = ∑
δ

|Qδ |≤log15 X
2|Dδ

∑
L∈L

(δL+a,Qδ )=1

1
φ(Qδ )

and note that, since δ ≤ 2 and D≤ logX in our case,

|Ωa− Ω̃a| ≤ ∑
δ

Qδ>log15 X
p|δ⇒p|D

Q
φ(Qδ )

< |8D| · ∑
Qδ>log15 X

1√
Qδ
√

φ(Q)

<
|8D|

log7.5 X

≤ 1
log6 X

Combined with Theorem 1 of [8], this gives us the following bounds for S1(φ ,X ,a) where D ≤ logX and
δ = 1 or 2:

S1 ≥ θ

√
2eγ

π
C0 · Ω̃a

X
(logX)3/2 (1+o(1))+O(X log−20 X)

= θΨDΩD
X

(logX)3/2 (1+o(1))+O(X log−6 X)

where the implied constants do not depend on D,

θ = sup
1<s<4/3

(∫ s

1

dt√
t(t−1)

−8s2

√
2(s−1)

s
log(2s−1)

)
,

C0 = ΨD =

√
2
π

∏
p|2Da

(
1− 1

p

)−1/2

∏
p 6 |2Da(

k(−D)
p

)
=−1

(
1− 1

(p−1)2

)
∏

p 6 |2Da

(
1− 1

p

)− 1
2

(
k(−D)

p

)
�ε D−ε

and ΩD �ε D−ε as well for ε > 0. This gives us the desired generalization of Iwaniec’s theorem to Theo-
rem 4.1.
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