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ABSTRACT. Let W C P! x P' x P! be a surface given by the
vanishing of a (2, 2, 2)-form. These surfaces admit three involutions
coming from the three projections W — P! x P!, so we call them
tri-involutive K3 (TIK3) surfaces. By analogy with the classical
Markoff equation, we say that W is of Markoff type (MK3) if it
is symmetric in its three coordinates and invariant under double
sign changes. An MK3 surface admits a group of automorphisms G
generated by the three involutions, coordinate permutations, and
sign changes. In this paper we study the G-orbit structure of points
on TIK3 and MK3 surfaces. Over finite fields, we study fibral
connectivity and the existence of large orbits, analogous to work
of Bourgain, Gamburd, Sarnak and others for the classical Markoff
equation. For a particular l-parameter family of MK3 surfaces
Wi, we compute the full G-orbit structure of Wy, (F,,) for all primes
p <79, and we use this data as a guide to find many finite G-orbits
in Wy (C), including a family of orbits of size 288 parameterized
by a curve of genus 9.
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1. INTRODUCTION

The classical Markoff equation is the affine surface
M 2?4+ y? 4 22 = 3wy (1)

It admits three involutions coming from the three projections M — A2,
and these three involutions, together with double sign changes and
coordinate permutations, generate the automorphism group Gy =
Aut(M) of M. A classical theorem of Markoff [22] says that the set
of integer solutions M(Z) consists of two orbits, one “small” Ga-orbit
containing the single point (0,0, 0), and one “large” G-orbit contain-
ing (1,1,1).

The orbit structure of M(F,) under the action of G has been
studied by a number of authors, including Baragar [1] and Bourgain—
Gambard—Sarnak [3]. The latter prove that for most primes p, there
is only one large orbit in M(IF,). The proof is an ingenious algorithm
that jumps between differently oriented fibers, using the Hasse—Weil
estimate to say that if a point on a “vertical” fiber has a large enough
orbit, then one of the “horizontal” orbits consists of an entire “hor-
izontal” fiber. The proof implicitly relies on the fact that each fiber
of M is a torus and that the fibral automorphisms are toral translations
(i.e., G,,-translations), which in [¢] are called rotations. See Section 2
for more details.

The first goal of this paper is to study similar questions on an anal-
ogous family of projective surfaces that admit three involutions. We
define the family of tri-involutive K3 (TIK3) surfaces to be the hyper-
surfaces

W cC P xP!' x P! (2)
given by the vanishing of a (2,2,2)-form. These surfaces have three
involutions oy, 05, 05 coming from the three projections W — P! x P!,
The study of the geometry and arithmetic of these surfaces is of course
not new; see Section 5 for a brief history. In this paper we study
the fibral structure of W(F,) for the three projections and the orbit
structure of W(F,) under the action of Aut(W). For example, we
prove the following fibral linking result, which is a TTK3 analogue of [3,
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Proposition 6] for the Markoff equation. See Theorem 6.5 for further
details and a proof.

Theorem 1.1. Assume that p > 100, and let W/F, be a TIK3 surface.
Let Fy and Fy be fibers of W(F,) — (PY)2(F,) for any two of the
projections. Then there is a fiber F3 for one of the projections satisfying

flﬂf:;#@ and ./T.Qﬂfg%(b.

Our second goal is inspired by the classification of finite orbits on
Markoff-type surfaces over C. For example, the papers [11, 17, 21]
contain a detailed description of the (a, b, ¢, d) € C for which the surface

Maped: 22+ + 22 +ar+ by +cz+ dryz = 0.

has one or more finite orbits. The existence of such orbits turns out
to be related to algebraic solutions to Painlevé differential equations.
It is likewise true [10] that a (non-degenerate) TIK3 surface W(C) has
only finitely many finite orbits, but the methods used to classify the
orbits for Markoff-type equations do not seem easily applicable to the
TIK3 situation.

Generically, the automorphism group of W is generated by the three
automorphisms. Since the Markoff equation (1) admits additional au-
tomorphisms, we consider an analogous family of TIK3 surfaces, which
we call Markoff-type K3 (MK3) surfaces. These are the TIK3 sur-
faces (2) that are invariant under coordinate permutations and dou-
ble sign changes. See Proposition 7.5 for a description of the full 4-
dimensional family of MK3 surfaces.

A typical example, which we use as a prototype, is the following one-
parameter family of MK3-surfaces W;. For non-zero k, we define W,
to be the projective closure in (P!)3 of the affine surface

Wy s 2 +y° + 22 + 2%y?2* + kayz = 0. (3)

In order to understand the orbit structure in Wy(F,), we computed
all orbits for p < 79 and all k € F; see Tables 5-8 in Section 11. We
use these computations for two purposes.

First, by studying small orbit sizes that appear in Wy (F,) for many
different p and k, we find patterns which we use to construct finite orbits
in Wi (C). A full description of our findings is contained in Section 10;
see especially Table 3. We illustrate by stating a few results, including
some fairly large finite orbits that occur in 1-parameter families:

Proposition 1.2. Let W, be the projective closure in (PY)3 of the affine
surface (3).
e W _4(Q) contains an orbit of size 4 and W4(Q) contains an orbit
of size 12.
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Wi (Q(4)) contains an orbit of size 48 for every k € Q(i).

e There is a field K/Q of degree 8 and an element k € K so
that Wy (K) has an orbit of size 144.

e There is a field K/Q of degree 8 and an element k € K so
that Wy (K) has an orbit of size 160.

o There is a k(t) € Q(t) so that Wiw) (Q(t)) has an orbit of
size 24.

e There is a k(t) € Q(i,t) so that Wi (Q(i,t)) has an orbit of
size 96.

e There is an irreducible curve C/Q of genus 9 and an element k €

Q(C) in the function field of C so that Wy, (Q(C)) has an orbit

of size 288.

In the spirit of the many uniform boundedness theorems and con-
jectures in arithmetic geometry and arithmetic dynamics, we pose the
following question:

Question 1.3. Does there exist a constant N so that
#{P € W;(C) : the orbit of P is finite} < N for all k € C*?

More generally, does there exist a constant N so that for every non-
degenerate' TIK3 surface W we have

#{P € W(C) : the (01, 09, 03)-0rbit of P is finite} < N?

See Question 10.1 for a further discussion of uniform boundedness of
finite orbits.

Second, we investigate large orbits in Wi (F,) to see if the methods
employed in [8] for the Markoff equation are potentially applicable to
the MK3 setting. The fiber-to-fiber jumping strategy employed by [3]
uses the fact, which they prove, that if a vertical fibral orbit is suffi-
ciently large, then at least one of the points in that vertical orbit has
a horizontal orbit that consists of the entire horizontal fiber. (See Sec-
tion 4 and Remark 4.4 for further details.) We are interested in the
question of whether such a fiber-to-fiber jumping strategy will work
on the MK3-surface Wy (F,). In Section 12 we show that the sur-
face Wi (Fs3) has a connected component of size 3456, but that the
fiber-to-fiber jumping strategy cannot be used to prove that this com-
ponent is connected. This suggests that additional ideas may be needed
to prove the existence of a large orbit in Wi (IF,).

ISee Definition 3.1, but briefly, non-degeneracy means that the three involutions
are well-defined.
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2. A BRIEF SURVEY OF RELATED WORK ON THE MARKOFF
EQUATION

Definition 2.1. Let a € K* and k € K. The associated Markoff
equation is
My 2°+y* + 2° = aryz + k. (4)

Theorem 2.2. (a) (Markoff [22])
Mso(Z) = {(0,0,0)} UG- (1,1,1).

(b) More generally, for all a,k € Z with a # 0, there is a finite set of
points Py, ..., P, € Myx(Z) such that

Mup(Z) = JG - P.
=1

Conjecture 2.3. (Baragar |1, Section V.3|, Bourgain—-Gambard—Sarnak
(7, 8]) For all primes p > 5 we have

M o(F,) = {(0,0,0)} U (G- (1,1,1)).

Bourgain-Gambard—Sarnak have a number of deep results related to
Conjecture 2.3, including the following:

Theorem 2.4. (a) [8, Theorem 1]
#M;o([Fp) N (G- (1,1,1)) =p", asp— oo

(b) [8, Theorem 2] Conjecture 2.3 holds for all but possibly X°Y) primes
p<X, as X = 0.

Other recent notable results include the following:
e Konyagin-Makarychev—Shparlinski-Vyugin [20] improves The-
orem 2.4:

M (B,) ~ (- (11,1)) < exp ((logp)/*+00)

e Given a pseudo-Anosov element g € Out(F5), g induces a per-
mutation g, on M, ;(F,) for each prime p. Cerbu-Gunther—
Magee—Peilen [12] prove that asymptotically, the action of g,

on M (F,) has an orbit of size at least }Zg(']f\)‘ + Oy4(1), where

A is the eigenvalue of largest modulus of g when viewed as an
element of GLo(Z).
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e M. de Courcy-Ireland and S. Lee [15] verify strong approxima-
tion for the Markoff surface for all primes p < 3000. Addi-
tionally, they completely characterize the orbit structure of the
degenerate Cayley cubic, M1 4(F,), providing both the number
of orbits as well as their sizes, given in terms of divisors of p?—1.

e M. de Courcy-Ireland and M. Magee [16] demonstrate that the
eigenvalues of the family of Markoff graphs modulo p converge
to the Kesten-McCay measure, which is a heuristic indicator
that Markoff graphs are suitably “random”. This also provides
a (very) weak bound on the spectral gap of such graphs.

e M. de Courcy-Ireland [11] shows that if p = 1 (mod 4) or if
p = 1,2 or 4 (mod 7), then the Markoff graph mod p is not
planar.

e A. Gamburd , M. Magee and R. Ronan [I8] prove that the
counting function for the number of integer solutions on z? +
<o+ 22 =awxy - x, + k, excluding potential exceptional sets,
is asymptotic to a constant multiple of (log R)”.

3. Tri-INnvoLUTIVE K3 (TIK3) SURFACES
Definition 3.1. A Tri-Involutive K3 (TIK3) Surface is a surface?
W={F=0}CP' xP'x P!
defined by a (2,2, 2)-form

F(XhXQ;)/h)/Q;Zl?ZQ) GK[XDXQ;}/I:YQ;ZDZQ]' (5)
For distinct 4,5 € {1,2,3}, we denote the various projections of W
onto one or two copies of P! by

7 W — P! and WijZW—>]P)1><]P)1.

We say that the TIK3 is non-degenerate if it satisfies the following two
conditions:

(i) The projection maps 719, 713, T3 are finite.”

(ii)) The generic fibers of the projection maps 7y, s, 3 are smooth
curves, in which case the smooth fibers are necessarily curves of
genus 1, since they are (2,2) curves in P* x P,

To ease notation, we write P = A' U {co}, and we let

F(z,y,2z) = F(x,1;y,1; 2,1).

2We note that our terminology is something of a misnomer, since we do not insist
that our surfaces be smooth.

3We note that m 2, 713, 723 are finite if and only if their fibers are O-dimensional,
in which case they are maps of degree 2.
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Then W is the closure in (P!)? of the affine surface, which by abuse of
notation we also denote by W,

W: F(z,y,z) =0.

Definition 3.2. We denote the fibers of 7, m,m : W — P! over
points g, v, 20 € P! by, respectively,

W = 77 (), WD = 5" (o), W) = 5 (z0).

xo 20

For P = (zp,yp, zp) € W, we let
WO WO, W — W, W =W

Tp? yp? Zp
Definition 3.3. Let WV be a non-degenerate TIK3. For distinct i, 5, k €
{1,2,3}, we write
o W —W (6)
for the involution that swaps the sheets of 7;;, i.e., o € Aut(W) is the
unique non-identity automorphism satisfying

Tij © O = Tj.

The automorphism group of a TIK3 surface VW contains the non-
commuting involutions oy, 09,03, and depending on the symmetries
of W’s defining polynomial F, the automorphism group may con-
tain additional automorphisms. Typical examples include symmetry
in x,y, z that allows permutation of the coordinates, and power sym-
metry that allows the signs of two of x, y, z to be reversed. For example,
the Markoff equation (1) permits these extra automorphisms; and in
Section 7 we consider analogous TTK3 surfaces. In any case, we will be
interested in subgroups of the automorphism group that move points
around individual fibers.

Definition 3.4. Let G C Aut(W) be a group of automorphisms of W.
We define the associated fibral automorphism groups by
GV ={peg: W) =W for all z € P'},
G¥={peg: go(WéQ)) = W;Q) for all y € P'},

GV ={pecG:pW?) =W forall » € P'}.

For example, if {i, 7, k} = {1,2,3}, then 0,0, € G® since o; and o;
map the k-fiber to itself.

Definition 3.5. Let G C Aut(W) be a group of automorphisms of W,
and let Py = (9, Y0, 20) € W(K). The G-orbit of P is

Q-P:{cp(P):gOEQ}.
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The fibral G-orbits of P are
gk . p— {go(P) tp € Q(k)} for k =1,2,3.

4. A STRATEGY FOR PROVING THAT W(F,) HAS A LARGE
G-CONNECTED COMPONENT

In this section we consider a TIK3-surface W defined over a finite
field F,, and a group of automorphisms G C Aut(W).

Definition 4.1. Let t € P!(F,), and let i € {1,2,3}. We say that the
fiber W (F,) is G-fiber connected if G acts transitively on w (F,).
Following terminology from [7], we define the G-cage of W(F,) to be
the set

Cageg (W(Fq))

_at least one of Wg)(IFq), Wl(f) (]Fq),}

=< PeW{,):
{ () and WI(D?’) (F,) is G-fiber connected

We denote the set of G-connected fibers by

i€ {1,2,3}, t € PY(F,), }

. _ (4)
ConnFibg (W(Fq>) - {Wt () : Wt(z) (F,) is G-fiber connected

With this notation, an alternative description of the cage is as the
union of the points in the fibers in ConnFibg (W(F,)).

In [7], to prove that the Markoff graph M3 o(F,) is connected, they
first show that the associated cage is connected. This is done via a
process that jumps from one connected fiber to another using a version
of the following property:

Definition 4.2. We say that W(F,) has the fiber-jumping property if
for all fibers F; and F; of W(F,) there exists a G-connected fiber F3 €
ConnFib(W(F,)) satisfying

flﬂfg#m and fgﬁfg#@.

As described in [7], the fiber-jumping property implies that the cage
is connected. For the convenience of the reader, we recall the short
proof.

Proposition 4.3. Suppose that W(F,) has the fiber-jumping property.
Then for all P,Q € Cageg (W(Fq)) there exists an automorphism v € G
such that v(Q) = P.
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Proof. The fact that P and () are in the G-cage means that they lie on
connected fibers, so we can find indices 7 and j so that

GO . P=WY[E,) and GV .Q=wWJ(F,). (7)
We apply the assumption that W(F,) has the fiber-jumping property

to the fibers WI@ (F,) and Wg )(Fq). This allows us to find a connected
fiber F € ConnFib(W(F,)) satisfying

WHENNF A0 and WY (F,) NF £ 0. (8)
We choose any point R € F. The connectivity of F tells us that F =
Wj(zk) (F,) = G® . R for some index k. Then (7) and (8) say that we
can find points

ScgD.png®.R and Teg(i).@gg(k).g_
In particular, there are automorphisms 71, 72, 3,74 € G satisfying
S=mP=v%R and T =30 =R.
This yields
P =97"0R =77 50,

which completes the proof that P € G - Q). O

The strategy that is employed in [7] to prove that the large compo-
nent of the Markoff graph M o(F,) is connected has several steps. We
reformulate these steps for TIK3-surfaces, retaining (and expanding
on) their chess terminology.

Setting the board (Cage connectivity):
The cage Cageg(W(F,)) is G-connected.

End game (Large fibral orbits):
Let P € Wti) (F,) be a point whose fibral orbit G® - P is mod-
erately large. Then G - P contains a point of the cage, i.e., it
intersects a G-connected fiber.

Middle game (Small fibral orbits):
Let P ¢ W (F,) be a point whose fibral orbit G& - P is of
small, but non-negligible, size. Then G® - P contains a point
lying in a fibral orbit of strictly larger size.

Opening (Tiny fibral orbits):
There are no non-trivial points P € W.” (F,) whose fibral or-
bit G& - P is tiny.

Remark 4.4 (The Bourgain—-Gamburd—Sarnak Connectivity Proof for
the Markoff Equation). We briefly sketch the connectivity proof for

M*(Fp) == MgV()(]Fp) AN (O, O, 0)
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in [7]. They prove connectivity using the subgroup G C Aut(Msjy)
generated by the compositions

p" = ;0 my, where {i,j,k} = {1,2,3}.

They call p a rotation, since it acts on the fibers (M&o)y) via a 2-by-
2 (rotation) matrix acting on the jk-coordinates. Writing pgl) for the

restriction of p( to this fiber, they note that the order of pgi) divides one
of p—1, p, or p+1, with the exact order depending on the eigenvalues
of the matrix p\”. It follows that

(M?),o)gi) (Fp) C Cage(M?),O(Fp)) — p,gi) has maximal order.

The first step in proving that M*(F,) is G-connected is an argument
that uses curve coverings, point counting, and inclusion/exclusion to
show that Mj(FF,) has the fiber jumping property for G. It follows
that Cageg (Mg,o(Fp)) is connected, cf. Proposition 4.3. They then use
a similar argument for the endgame, where a fiber is deemed large if it
has p'/?*¢ points.

Next they consider the middle game, which consists of points whose
(small) fibral orbit has at least p¢ points. This comes down to showing
that certain equations have few solutions whose coordinates are ele-
ments of F) of small order. They provide three proofs of the required
statement, one via Stepanov’s auxiliary polynomial proof of Weil’s con-
jecture for curves over F,, one using directly a sharp estimate due to
Corvaja and Zannier [13] for the ged of polynomials over finite fields,
and one using a projective Szemeredi-Trotter theorem due to Bour-
gain [0]. Indeed, they can handle the middle game for even smaller
fibral components provided that p?> — 1 does not have too many prime
divisors.

Finally, for the opening, they observe that finite orbits in M, x(Q)
will create small orbits in M, x(F,) for infinitely many p. However, in
their case M30(Q) contains no finite orbits other than {(0,0,0)}, so
this is not a problem. They next show that every point P € M*(F,) lies
in a fibral component containing at least (logy,p)'/® points. This and
some further calculations suffice to prove that M*(F,) is G-connected
unless p? — 1 is very smooth, i.e., is a product of a large number of small
primes. (Conjecturally, there are only finitely many such primes.)

Remark 4.5 (Fiber Jumping and Cage Connectivity for TTIK3-Sur-
faces). As explained in Remark 4.4, Bourgain, Gamburd, and Sar-
nak [7] prove that the Markoff equation Ms(F,) \ {(0,0,0} is G-
connected by first verifying the fiber-jumping property, which sets the
board by implying that the cage is G-connected. Later we will give
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an example showing that the analogous statement need not be true
for TIK3 surfaces. More precisely, in Example 12.1 we describe a
TIK3-surface W such that W(Fs3) has one large G-connected com-
ponent W*(Fs3) containing 3456 points, but W*(F53) does not have
the G-fiber-jumping property. More precisely, the G-connected fibers
in W(Fs3) form two connected components, so any proof that W*(Fs3)
is G-connected must find a way to connect points in ConnFib(W(Fs3))
that uses points that do not lie on a G-connected fiber, i.e., using points
that are not in the cage. Of course, the prime p = 53 is not huge, so our
example may simply be a small number phenomenon. However, other
examples suggest that the number of fibral components in a TIK3 cage
tends to be smaller than the number of fibral components in a Markoff
surface cage. So a proof that TIK3 surfaces over finite fields have large
G-connected components may need to find a way to expand the cage in
order to fit it into a G-connected set that can be used for the “setting
the board” step.

In addition, the issue concerning smoothness of fibral group orders
that arises in the method of BGS will be exacerbated for TIK3 surfaces.
The analogous rotations (translations) on a TIK3 surface come from
the actions of elliptic curves on homogeneous spaces. These actions
are translations by a point whose order can range from p + 1 — 2,/p
to p+ 1+ 2,/p. So now we are not concerned with smoothness of
only p 4+ 1, but instead with the smoothness of all numbers within this
range. Ideally, we would like to restrict to values of p for which this
range of numbers contains no smooth numbers, but there are unlikely
to be infinitely many such p.

5. A BRIEF SURVEY OF RELATED WORK ON TRI-INVOLUTIVE K3
SURFACES

We briefly describe some earlier work on the geometry and arithmetic
of TIK3 surfaces. Wang [25] explicitly constructed canonical heights
on TIK3 surfaces defined over number fields associated to the infinite
order automorphisms o; o 0;, similar to those constructed in [23] for K3
surfaces having two involutions. Baragar [2, 3, 1] further studied these
height functions and asked, in particular, whether they fit together
to form a vector canonical height. Kawaguchi [19] answered this in
the negative for certain K3 surfaces, and Cantat and Dujardin [10]
completely characterized the surfaces on which vector canonical heights
exist.

We next state a recent result regarding finite orbits on TIK3 surfaces
in charateristic 0.
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Theorem 5.1 ([10, Cantat-Dujardin]). Let W/C be a TIK3 surface,
and let (o1,09,03) C Aut(W) be the subgroup of W generated by the
three involutions o1, 09, 03. Then

{P e W(C) : the (01,02, 03)-0rbit of P is finite}
s a finite set.

Proof. This is a special case of the results in [10], since in the language
of [10], the TTK3-surface W and its group of automorphisms (o, 02, 03)
do not form a Kummer group, and W contains no (o1, o9, 03)-invariant
curves. U

Finally, we mention Cantat’s fundamental paper [9], although it is
not specifically about TIK3 surfaces. Let ¢ : X — X be an automor-
phism of positive entropy of a K3 surface defined over C, e.g., 0, 0 0}
for a TIK3 surface. Then Cantat proves that there exists a unique
invariant probability measure p with maximal entropy, that (p, u) is
measurably conjugate to a Bernoulli shift, and that u gives the asymp-
totic distribution of periodic points.

6. THE INCIDENCE GRAPH OF THE FIBERS OF A TIK3 SURFACE

Definition 6.1. A TIK3 surface has three fibral directions associated
to the three projections onto P!. For expositional convenience, we will
say that fibers corresponding to different projections are (pairwise)
orthogonal to one another, while fibers corresponding to the same pro-
jection are parallel. So for example, the fibers ng(l)) and Wég) are or-
thogonal, while the fibers Wa(;(l)) and Wﬁ) are parallel.

Remark 6.2. Distinct parallel fibers clearly do not intersect, while
orthogonal fibers in W(FF,) may intersect in 0, 1, or 2 points. For
example, if xg,yo € P'(F,), then

(WOE) O WEE,)) = {(@0,90,2) : Flwo, 30, 2) = 0}.

Thus the intersection is non-empty if and only if a certain quadratic
form has a solution in P*(F,).

Our goal in this section is to give an easily verifiable condition which
ensures that, given two orthogonal fibers F; and F> in W(F,), there is
a third fiber 73 C W(F,) satisfying

.Flﬂ./rg#@ and Fgﬂfg#@.

In more evocative terms, although the union F; U F; of two orthogonal
fibers may be “disconnected,” there is a third fiber so that F; U Fo U F3
is a “connected” set of orthogonal fibers. See Figure 1.
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2)
./ W

(331, Yo, 21)

(1) Given zg and g, find 21
z0

so that there exist x; and y;
satisfying (xo,y1,21) € W}c}))

and (x1,y0,21) € Wg)

(36’07 Y1, 21)

FiGURE 1. Finding a fiber Wg’) that intersects two given
fibers ng(l)) and Wéﬁ)

Definition 6.3. For zg, 4o, 20 € P!, we define linking sets that describe
how to link two given fibers via a third fiber.

L0, = {zeP W2 AWD £0 and WP N WD £ 0},
L. ={yeP WD WP £ 0 and WE N WP £ 0},
LY ={zeP WP AW £0 and W2 N WD £ 0},

Thus for example, the points in E;i),yo tell us which z fibers can be used
to link the z = x( fiber with the y = yq fiber.

Definition 6.4. For ¢, 1o, 2o € P!, we define the following curves that
are useful in creating fibral links:

. = {(x,9,2) € (') : Flx,y0,2) = Flx,y,2) = 0},
CIO 20 { Y,z (]P)l) (x(byv ) F(.Z' ZJ,ZO = 0}
C(S) = { T, Y, % (]P)l) (ZL'() Y,z ) - F 'I yYo,2) = O}

1)

Z0,Y0
We note that the curve Cyo » 18 the intersection in (IP’l) of a hypersur-
face of type (2,0,2) and a hypersurface of type (2,2,0), and similarly

for Cg),ZO and Cg(;%),yo. (See Lemma 6.6 for an estimate of the genera of
these curves.)

Theorem 6.5 (K3 Analogue of [, Proposition 6)).
Let K be a field, and let xo,yo, 20 € P*(K).

(a) There are surjective maps

c (K)mﬁ(l (K),

Yo,20 Y0,20
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CO_(f) EvAY L0 (g

x0,20 0,20

C® () EYATE LG (fy,

z0,Y0 Z0,Y0

(b) Assume that ¢ > 100. Then

LY (F)#0, LB (EF)#0, LD, (F,)#0.

Proof. (a) By symmetry, it suffices to prove that the first map is well-
defined and surjective. Let (z,y, z) € C@%?ZO(K ). By definition of CQSJOL?ZO,
this means that

F('r?y()vz) = F(‘CC?:%ZO) = 07 and thUS (x7y07 2)7 (33',?/,20) S W(K)
Hence
(2,90,2) € WP(K)NWI(K) and  (,y,2) € W (K)nWI(K),

which by definition of Eé})),z() shows that = € ,Cg(),})),ZO(K ). This completes
the proof that the projection map

m o CW(K) — LW (K) 9)

© Y0520 Y0,20
is well-defined.
To prove surjectivity, we start with some x € Lz%),z() (K). By definition
of £§,BZO, this means that we can find points

(2,50, 21) € W ()W (K) - and (2,41, 20) € WD (K)NWD (K).
Then the definition of Céé?zo tells us that
(x,y1,21) € Cz(/(l)?zo(K).

We have thus constructed a point in Céé?zo (K') whose image in £3(/%))7ZO (K)
is x, which completes the proof that the projection map (9) is surjective.
(b) We use (a) with K = F,. Again by symmetry, it suffices to prove
the first assertion. And from the surjectivity of the map in (a), it
suffices to prove that Cgs(l)?ZO (IF,) is not empty.

We let CZ(,})?ZO be a non-singular model for Cf,é?zo (or more generally for
any one of its irreducible components if it happens to be reducible), so
in particular we have a surjection

Cio)zo (Fy) — CO_ (F,).

Y0,20

Then the Weil estimate gives the inequality

—_—~— —_~—

HCHo(F) > q+1—2- (genusCit:y) - V4. (10)
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In particular, we see that

g+1>2- (genusCioho)) V4 = Choo(Fy) #0. (1)

Lemma 6.6, whose proof we defer for the moment, says that the genus

of C{t)., is at most 5. Hence (10) and (11) imply that Cg(,(l)?ZO(IFq) is
non-empty provided ¢ + 1 > 10,/g, which is true for all ¢ > 100. O

We now prove the genus estimate used in the proof of Theorem 6.5.

Lemma 6.6. Let W be a non-degenerate TIK3 surface. Then the irre-
ducible components of each of the curves in Definition 6.4 has geometric
genus at most 5.

Proof. We work over an algebraically closed field. By symmetry, it

suffices to fix yo, 20 € P! and to consider the curve Céé?ze. We let F' be
the (2,2, 2)-form that defines the non-degenerate TIK3 surface YW. We
define a projection map

7:CY Pl n(z,y,z2) =z

Y0,20

Keeping in mind that yy and 2 are fixed, for z; € P* we have

7 1) = {(y,2) € (P')*: F(x1,y0,2) = F(21,y,20) = 0}.

The equations for y and z are independent, so we find that

#ﬂ- #{ZEPI ((Elij’Z)IO}'#{yE}Pﬂ :F(x17y720):0}'

The non—degeneracy assumption tells us that F'(z1, yo, z) and F(x1,y, z0)
are not identically 0, so they are non-trivial quadratic forms in, respec-
tively, z and y. As such, they have either 1 or 2 roots, and we can
determine which is the case by computing an appropriate discriminant:

1 if Disc, F(x1,y0,2) =
e P! c F( ,2) =10
#{Z xl Yo, = } {2 if DiSCZ (331,?/0, ) 7£ 0
1 if Disc, F(z1,y,20) =0
€P': Fz1,y,20) = 0} = o |
#{y (1,9, 20) = 0} {2 if Disc, F'(z1,¥, z0) # 0.

Combining these estimates yields the following formulas

’ Hp1 \ Disc, F(x1,y, 20) \ Disc, F(x1,yo, 2) ‘
4 £ 0 %0
2 —0 £0
2 #0 =0
1 =0 =0
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We next observe that Disc, F(z,y, 29) is a degree 4 form in z, and
thus has at most 4 roots in P' when considered as a polynomial in z;
and similarly for Disc, F'(z, yo, 2). So there are at most 8 points z; € P!
with #7~!(z;) = 2. Further, each time we get an z; with #7~(z,) =
1, we see that 2 of those 8 potential values of x; coalesce into 1 value.

So if we let
A=#{z, e P : 7N (z) =2},

12
B=#{x; eP' 77 (1) = 1}, (12)
then we see that
B 0 1 2 3 4
Al €8] <6] <4| <2| =0 (13)

We assume for the moment that Céé?zo is irreducible,* and we let

Ay — CLY

Y0,%0

be a desingularization of CZ%?ZO, so the geometric genus of Céé?ze is simply

the genus of Céé?zo. We use the Riemann—Hurwitz genus formula

—_~—

Qgenus(Cg%?ZO) —2=—2deg(mo )+ Z (deg(ﬁo/\)—#(wo/\)—l(;pl)>.

x1€PL
Substituting
degmo A =deg(m) - deg(A) =4-1=4,
we get
) 1
genus(Céé?ZO) = -3+ 3 Z <4 — #(mo )\)—l(xl)>

$1€P1
#(moX) "1 (z1)<4

< -3+ % Z (4 - #W_1($1)>

xlepl
#r1(21)<4

=—-3+ #{xl cP:#r i (z) = 2}
3
+ 5#{:1:'1 c P #r(zy) = 1}
3
=-3+A+ §B using the notation in (12),
<5 from (13), since the max is at (A, B) = (8,0).

4See Remark 6.7 for examples where C;L(/é?zo is reducible.
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Finally, we note that if Céé?zO is reducible, then the above argument

works similarly, if we replace CZ%?ZO with any of its irreducible compo-
nents and note that now the map 7 has degree 1 or 2. This completes
the proof of Lemma 6.6. O

Remark 6.7. Let W be a TIK3 surface whose equation F' is symmetric
iny and z, i.e., F(x,y,2) = F(z,z,y). Then for any £ € K there is a
factorization

F(m,f,z) - F(ZE,y,g) = F(IVZ?S) - F(ZL‘,y,f) = (Z - y)L(l’,y, 2)7

where L(z,y,z) has degree 1 in y and z. It follows the curve Célg
described in Definition 6.4 is reducible, and indeed it is the union of
two genus 1 curves, each of which is isomorphic to the fibral curve

Wé?’) (] {(x7y) € AZ : F(x,%g) = 0}

7. TRI-INVOLUTIVE MARKOFF-TYPE K3 (MK3) SURFACES

The Markoff equation (1) and many of its variants admit not only
the involutions coming from the projections M — A2, they also ad-
mit sign-change involutions and coordinate permutations coming from
the symmetry of the Markoff equation. We give a name to the TIK3
surfaces that have these extra automorphisms.

Definition 7.1. We let G3, the symmetric group on 3 letters, act
on (P')3 by permuting the coordinates, and we let the group

(3)1:= {(@.B,7) @, B.v € py and affy = 1} (14)
act on (P')3 via sign changes,
Ea,ﬁ,’y(xvyvz) = (OA’E,By,VZ). (15)
In this way we obtain an embedding®
G° = (u3)1 x &3 — Aut(P' x P* x P').

Definition 7.2. A Markoff-type K3 (MK3) surface W is a TIK3 sur-
face whose (2,2,2)-form (5) is invariant under the action of G°, i.e.,
the (2,2,2)-form F' describing W satisfies

F(l‘,y,Z) = F(—Q?, -v, Z) = F<_$7y7 _Z) = F(Z’, —-v, _Z)a
F(z,y,z) = F(z,x,y) = F(y,z,x) = F(z,z,y) = F(y,x,2) = F(2,y, z).

SWe remark that (u3); x G5 is isomorphic to &4, but for our applications the
group G° appears more naturally as the semi-direct product.
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Definition 7.3. Let WW be an MK3 surface. We let
G% = (01,09,03) C Aut(W),
G = (group generated by G° and G°) C Aut(W).

We suspect that the full automorphism group of a generic MK3-
surface is G; but as we shall see in Remark 9.6, some MK3-surfaces
admit additional automorphisms. We start by describing some ele-
mentary properties of the group G.

Proposition 7.4. Let W be an MKS3-surface, and let G°, G°, and G
be the subgroups of Aut(W) described in Definitions 7.1 and 7.3.

(a) G7 is a normal subgroup of G.

(b) G =G°G.

Proof. (a) Since G is defined to be the group generated by G° and G,
it suffices to show that G° is contained in the normalizer of G7. We
let {i,j,k} = {1,2,3}, and for the purposes of this proof, we define
transpositions and sign changes

7;; = swap the 7 and j coordinates,

€;; = multiply the ¢ and j coordinates by —1.

Since &3 is generated by transpositions and (u3); is generated by the
sign changes, it suffices to check that G° is normalized by the 7;
and the ¢;;. This can be checked by an explicit computation, or al-
ternatively we can use the defining property m;; o o = m;; of oy,
where m;; is the projection map; see Definition 3.3. Thus momen-
tarily letting 7 : (P')? — (P')? be the map that swaps the coordinates
and ¢ : (P1)? — (P')? be the map that changes the sign of the ith
coordinate, we compute

7Tijo<7—i; OO’kOTij)ITOWijOUkOTij:TOﬂ'Z‘jOTZ'j:ﬂ'Z‘j,
-1
Tk © (T, © Ok O Tig) =T OT;; 0 0p O Tijg =T OTij O Tipy = Tjg

1

- —_— — .. .. .. 2 . = ..
Tij © (eij 00 O€j) = €;; OT;j OO0 O €j=€;OT;jO€; = €;; © Tij = Tijy
2

—1
Tij 0 (€, © Ok O €ik) = €; O Wi O Ok O €, = €; O Wij O € = €; O Myj = Tyj.
It follows from the definitions of the o; that

-1 - -1 —
Tij OO‘kOTij—O'k, 61-]- OO’kOEij—O'k,

Ty © 0k O Ty = 03, €1 © Ok O € = O
Hence G° normalizes G, and indeed, (u3); is in the centralizer of G°.
(b) By definition the group G is generated by G° and G?, and from (a),
we know that G7 is a normal subgroup of G. It follows that every
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element of G can be written as yo with v € G° and ¢ € G°. Hence G =
Gege. 0
Proposition 7.5. Let W/K be a (possibly degenerate) MK3-surface.

(a) There exist a,b,c,d,e € K so that the (2,2,2)-form F that de-
fines W has the form

Fupede(r,y,2) = ar’y*2® + b(z?y* + 2°2° + y*2?)
+ecryz +d(@* +y* +2*) +e=0.  (16)
(b) Let F be as in (a). Then W is a non-degenerate, i.e., the projec-
tions m;; : W — (P1)? are quasi-finite, if and only if
be #d* and ad# b*
Remark 7.6. We can recover the classical (translated) Markoff equa-

tion for the surface M, in Definition 1 as a special case of an Fj, ;¢ 4.
Thus M, is given by the affine equation

FO,O,—a,l,—k(‘Ta Y, Z) = xZ + y2 + 22 — aryz — k=0.

We note, however, that the Markoff equation is degenerate, despite
the involutions being well-defined on the affine Markoff surface M, .
This occurs because the involutions are not well-defined at some of the
points at infinity in the closure of M, in (P')3.

Proof of 7.5. (a) The space of &z-invariant quadratic polynomials in
Z|x,y, z] is spanned by the following 10 polynomials:

(1) 2%y*2? (2) zyz? + 2y’z + 2?yz

(3) zyz (4) 2%z + 2%y + 1y s?
(5) 2?44?42 (6) a2y + a22% 4 222

(7) 2*y+ 224+ ay® +02° +y22 + %2

(8) xy+zz+yz 9) z+y+=z (10) 1

Of these, the polynomials that are also invariant for the double-sign
changes in (p3); are (1), (3), (5), (6), and (10). Hence all ((p3)1 x &3)-
invariant (2, 2,2)-polynomials have the form indicated in (a).

(b) By symmetry, it suffices to consider 75 and o3. The map 5 is
quasi-finite if and only if the fibers of the map 75 are O-dimensional.
Let F be the homogenization of the polynomial in (a). Then 75 is
quasi-finite over the point

([a,ﬁ], [7,5]) e P! x P?
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if and only if the polynomial F(«, 3;7,0; X3,Y3) is not identically 0.
Since

(the X3Y; term of F(a, f;7,6; X3, Yg)) = afv6X3Y3,

we see that 75 is quasi-finite unless afv0 = 0. By the symmetry of F,
it suffices to consider the cases that a = 0 and 5 = 0.
If « =0, then

F(0,1;7,0; X3,Y3) = (by* + d6*) X2 + (dy* + ed?) Y.
Hence 75 is quasi-finite at ([0, 1], [y, 0], [ovs, v3]) unless
by? + d6? = dy* 4 ed? = 0.

Since (7, 4) # (0,0), this is possible if and only if be = d?.
Similarly, if g = 0, we look at

F(1,0;7,0; X3,Y3) = (ay® + b6*) X2 + (by* + d6*) Y5
Thus o3 is well-defined at ([1, 0], [v, 6], [, 73]) unless
ay? +b6* = by? +dé* = 0.

Since (7,d) # (0,0), this is possible if and only if ad = b*. This
completes the proof that m, is quasi-finite if and only if be # d?
and ad # b%. O

8. CONNECTED FIBRAL COMPONENTS AND THE CAGE FOR MK3
SURFACES

For this section we let W be an MK3-surface, as described in Defi-
nition 7.2, defined over a finite field IF,. We note that the G3-symmetry

of W implies that for any ¢ € P!(FF,), the three fibers w (F,), W (F,)
and W (F,) have the same orbit structure, so in particular
WL (F,) € ConnFib(W(F,)) for some i € {1,2,3}
= Wt(i)(IFq) € ConnFib(W(F,)) for all i € {1,2,3}.

Thus the G-connected fibers in W(F,) are determined by the projection
to P*(F,) of ConnFib(W(F,)) onto any of its coordinates. We denote
this set by

7 ConnFib(W(F,)) = {t e P'(F,) : WO(F,) € ConnFib(W(Fq))}.

Then we have the useful characterization (for MK3-surfaces):

P € Cage(W(F,)) <= some coordinate of P is in 7 ConnFib(W(F,)).
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9. A ONE PARAMETER FAMILY OF MK3 SURFACES

In the next few sections we study an interesting 1-parameter family of
MK3-surfaces. We assume throughout that K is a field with char(K) #
2.

Definition 9.1. For £ € K* we define W, to be the MK3-surface
Wh s 2+ 9% + 22 + 2%y?2 + kayz = 0.
Remark 9.2. In the notation of Proposition 7.5, the (2,2,2)-form
defining Wy, has (a,b,¢,d,e) = (1,0,k,1,0). In particular, we have
be=0#1>=d* and ad=1%# 0? =107
so Proposition 7.5(b) tells us that W is non-degenerate.

Remark 9.3. Let ( € K be an element satisfying ¢* = 1. Then there
is a K-isomorphism
Wk — W@ku (CL’,y,Z) — (Cxu C?JyCZ) (17)

So we always have an identification Wy(K) = W_,(K), and if K
contains i = /—1, then there are further identifications Wy (K) =

Wein(K).
Remark 9.4. The three involutions (6) on Wj, are given explicitly by

kyz
01(1’71/72): 5., LY,z ),

1222
kxz

02(%%2): %—m—yaz )
kxy

03(%%2’): 37797—?96@2—2 .

We recall from Section 7 that G° is the group (u3); x &3 of order 24
sitting in Aut(Wj) composed of sign changes and coordinate permuta-
tions, that G7 is the normal subgroup of Aut(W;,) generated by o1, 03, 03,
and that G = G°G7 is the subgroup of Aut(W;) generated by G° and G°.

Proposition 9.5. Let k € K*. The set of singular points of Wy, always
contains the 4 points

{(0,0,0), (0, 00,00), (c0,0,00), (00,00,0)}. (18)

The point (0,0,0) is fized by G, and the other 3 singular points form
a G-orbit.’ Ifk ¢ {£4,+4i}, then the set (18) is the full set of singular
points of W.

5Tf we also allow the d-inversion involutions described in Remark 9.6, then the 4
singular points form a single orbit.
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For k = 4 the set of singular points is

Sing(Ws) = {(0,0,0), (0,00, 00), (00,0, 50), (00, 00,0)
(1,1,-1), (1,—-1,1), (—=1,1,1), (—1,—1,—1)}; (19)
and for the other k € {£4,+4i}, the singular points can be found using

the isomorphisms described in Remark 9.3. The points in (19) with
non-zero coordinates form a single G-orbit of size 4.

Proof. We let
F(z,y,2) = 2* +y* + 22 + 2%y*2* + kayz (20)

be the polynomial defining W;, and we use subscripts to denote partial
derivatives. The singular points on this affine piece of W, are the
solutions to

F=F,=F,=F.,=0. (21)

The ideal of Q[z,y, 2z, k| generated by the four polynomials in (21)
contains the following polynomials:”

2?2 —y? [ 2(2® — 1) [ 2(2%2? — k%) [ 2 (k* — 28)
v — 2 y(y' — 1) | y(2hy? — ) | y(k' — 2% (22)
P =22 2(2P = 1) | 2(2%2%2 — k%) | 2(kT - 25)

The point (0,0,0) is always singular. Since (22) says that singular
points satisfy 22 = y? = 22, any other singular point (x,y, z) necessarily
has xyz # 0, and then (22) forces

- 28, 24p? = 243/2 =942 = k2, and 2t = y4 =2'=1.

From k* = 28, we see that k € {£4, +4i}; and from z* = y* = 24 =1,
we see that x,y, z € {1, £i}. For each of these 4 possible values of £,
it can be directly checked that the points satisfying F' = F, = F,, = F,,
are those given in the table in the statement of the proposition.

It remains to check the points on the complement in (P!)? of the affine
piece. To do that, we use the fact that (0,0, 0) is the only singular point
of the affine piece of W, that has a coordinate mapped to co under
the 0,3, inversion maps described in Remark 9.6. By symmetry, it
suffices to check points P of the following forms, where y and z are

"ndeed, this is true in the ring 727 Y x,y, 2, k).
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non-zero:
| P | Singular? | Why? |

(OO,y,Z) No 5—1,—1,1(P) - (an717z)
(O0,00,Z) No (5_1’_1’1(P> = (0,0,Z)
(OO,y,O) No 571,71,1(P) = (072/_170)
(00, 00,0) Yes d_1-11(P) =(0,0,0)
(OO, Oa O) — ¢ Wk

(OO’ o0, OO) — ¢ Wi

O

Remark 9.6 (MK3-Surfaces with Extra Involutions). The family of
MK3-surfaces W, admit additional involutions in which two of x,y, 2
are replaced by their multiplicative inverses.® Thus analogously to (14)
and (15), we can define another action of (u3); on (P')? via the formula

dapr(T, Y, 2) = (xa,yﬁ,z”), where (o, 3,7) € (u3);. (23)

We observe that the ¢ and € actions commute (since (—1)~! = —1), so
we obtain an embedding

G° = ((13)1 % (p3)1) G:i‘—> Aut(We).

TV
We view this as a subgroup of Aut((P1)3).

Since the classical Markoff equation (4) and general MK3-surfaces (16)
do not admit these extra automorphisms, we will not include them
when constructing orbits in W,. So for example, the finite orbits
and G°-generators in W (C) that we list in Table 3 are G-orbits, as
are the finite field orbits in W (F,) in Tables 5-8. There would be
some collapsing of generators and merging of orbits if we also used
the d-automorphisms. However, the existence of these extra automor-
phisms can aid in studying the geometry of W, as will be illustrated
in the proof of Proposition 9.7.

More generally, Proposition 7.5 says that MK3-surfaces Wy p ¢4, are
described by (2,2, 2)-forms F,pcae(x,y, 2) that depend on 5 homoge-
neous parameters [a, b, ¢, d, e]. Then the formula

Fa,b,c,d,e(xu Y, Z) - Fa,b,c,d,e(l’ily yil, Z)I2y2

= <(a —d)22+(b— e)) (y* — 1),
combined with the z,y, z symmetry of Fj,; . 4., imply that
Oapry € AUt(Wa,b,C,d,e) <~ a=dandb=c.

8Note that we're really working in P!, so we formally set 0~! = 0o and co™! = 0.
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Thus Wi, = Wi gx,1,0 corresponds toa =d =1 and b =e = 0.
Proposition 9.7. Let K be a field with char(K) # 2, let k € K*, and
let £ € PY(K). Then the fiber W,glg is singular if and only if
=0 or £€=o00 or k=26,
The singular points on the singular fibers are as follows:
Sing(W) = {(0,0,0), (0,00,0)),
Sing(Wy2,) = {(00,00,0), (00,0,00)).
and for all & ¢ {0,00} and for all uw € {£1} and all v € {£1, £i},
Sing (W, (é+v£ 1)5) {(&v, —w?), (& —v,uv®)}.
By symmetry, analogous statements are true for W,?g and ng?)g

Remark 9.8. Let W ) be a fiber of W,. Then each of the involu-
tions o0y, 09,03 and each of the automorphisms in G° defines an iso-
morphism from W ¢ to some other (or possibly the same) fiber of W.
It follows that the smgular points on a fiber are mapped to singular
points on a fiber. Hence the set

3
U U Sing(W,gf%)
i=1¢ePt

of fibral singular points is a finite subset of W that is G-invariant,
so it breaks up into a finite number of finite G-orbits. If £ # 0,00
and £* # 1, then it will be a G-orbit of size 24; cf. Table 3.

Proof of Proposition 9.7. As in the proof of Proposition 9.5, we let F
be the polynomial (20) defining W, and we use subscripts to denote

partial derivatives. The fiber W,E,lg is singular if and only if the simul-
taneous equations

F(f,y,z):Fy(f,y,z):Fz(ﬁ,y,z) =0 (24)
have a solution. We compute
Res, <Resz(F, F.),Res.(F,, Fz)> =22 k% 2% (227 — kx — 2)?
(227 — kx +2)% (227 + kr — 2)? - (207 + kx + 2)%

We first consider the case that £ = 0. Then (24) forces y = z =
0, so the only affine singular point is (0,0,0). Using the inversion
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automorphism fixing the x-coordinate that is described in Remark 9.6,

there is an additional singular point (0, 00, 00), so we find that
Sing(Wi)) = {(0,0,0), (0,00, 00)}.

And similarly, using the inversion automorphisms in Remark 9.6 that

replace the z-coordinate with 27!, we see that

Sing(W,Sgo) = {(oo, 00, 0), (00,0, oo))
We now assume that £ # 0, co. Then our assumptions that char(K) #
2 and W,glm)o is singular imply that ¢ is a root of one of the polynomials
222 4 kx 4+ 2. We will consider the case that
28 +kE+2=0,

and leave the similar computation for the other three cases to the
reader. Thus we assume that

k=—-2(¢64+¢1) and W,glg is singular.

Substituting the expression for k into (24), we find that (yo,29) is a
singular point on the fiber W,glg if and only if (yo, zo) satisfy

(y2* —2yz + 1) — 2z + 2 + 22 =0,
(y2* —2)€ — 2 +y =0,
(v —y)&® —y+2=0.
Eliminating x or y or z from these three equations, we find that (v, 20)
satisfy
Y -l=2-1=(y—2)(yz—1) =0,
and these equations have two solutions,
(Yo, 20) = (1,1) and (yo, 20) = (—1,—1).

Finally, we substitute ¥ = —2(¢ + &1 and (z,9,2) = (£, +1,41)
into (24) and verify that F', F,, and F, vanish. This proves that

Sing(W e 1)) = {(€.1,1), (6,=1,=1)} for all £ # 0,00,
which completes the proof of Proposition 9.7. O

Remark 9.9. For a general TIK3-surface, the three projection maps
W — P! give W three different structures as a surface fibered by
genus 1 curves, and the corresponding Jacobian variety has a section
of infinite order whose translation action on W is the o; associated to
the projection. For MK3-surfaces, the G3-symmetry implies that the
three structures are the same. Using the explicit description of the
singular points on W in Proposition 9.5 and the singular fibers of Wy
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in Proposition 9.7, one could compute a Néron model for W, — P! and
compute the canonical height of the point on its Jacobian, but we will
not do this computation in the present article.

Proposition 9.10. Let W be the MK3-surface given in Definition 9.1,
let F' be the associated polynomial, let yo, 2o € P, and let CZ%?ZO be the

curve associated to F' as given in Definition 6.4. If Cz%?ZO s singular,
then one of the following is true:

2 2 2,2
Yo orzg =0o0roo, wyy =25, Yszo =1, yoorz=

+k £+ Vk%+ 16
1 .

By symmetry, analogous statements are true for Cg?ZO and Cfg?yo.

Corollary 9.11. Let k € F,. Then

(1)
one or more of Cyylz,
# < (20, Y0, 20) € Wh(F) - (2) 3) _f YoE0 < 144q.
Cro.z0, Caouo 1S singular

Proof of Proposition 9.10. To ease notation, we let b = 1y and ¢ = z,.
An affine piece of the curve Célc) is given by the equations

F(z,b,2) = F(x,y,c) = 0.
Hence a point (z,y, z) € Célc) is a singular point if and only if

F.(x,b,2) 0 F.(x,b,z2)

rank Fy(z,y,¢) Fy(x,y,c) 0

<1

The rank condition and a bit of algebra yields three cases, which we
consider in turn.

Case 1: F,(z,b,z) = F,(x,y,c) = 0. In this case we are looking
for values of b, ¢, k such that the equations

F(x,b,z) = F(z,y,c) = F,(z,b,2) = Fy(x,y,¢) =0

have a solution (x,y, z) € A%. Eliminating z,y, z from these four equa-
tions gives the equation

(b — ) (b — 1) = 0.

Hence if there is a singular point, then ¢ = +b%".

Case 2: F,(x,b,z) = F,(x,b,z) = 0. In this case, which is a ver-
sion of Proposition 9.7, we are looking for values of b, ¢, k such that the
equations

F(z,b,2) = F(x,y,c) = Fy(x,b,2) = F.(x,b,z) =0
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have a solution (x,y, z) € A3. Eliminating z,y, z from these four equa-
tions gives the equation

b?(20* — bk — 2)(26* — bk + 2)(2b? + bk — 2)(2b* + bk + 2) = 0.
Hence if there is a singular point, then

+k+VEk24+ 16
b=0 or b= 1 .

Case 3: Fy(z,y,c) = Fy(x,y,c) = 0. By symmetry, this is the
same as Case 2 with y <> z and b < c. U

Proof of Corollary 9.11. It suffices to bound the number of (yo, z0) €
P!(F,) such that Cl(,(l,?zo is singular, and then multiply by 3 for the xyz-
symmetry and also multiply by 2 because each (yo,29) may yield 2
points on Wj. (This includes some duplicates, so some improvement is
possible.)

According to Proposition 9.10, the singular cases are included in the
following table, where again we do not worry that some points appear
more than once:

’ (Yo, 20) ‘ # with Cg(,é?ZO singular ‘
Yo or zg =0 or oo < 4q
yg = 23 # 0 or 0o <2(qg—1)
Yoz = 1 <2(¢—1)
Yo OT 2o = iki\/4k2i16 < 16¢

Hence there are at most 24¢ pairs (yo, 20), and as noted earlier, this
must be multiplied by 6 to account for the other cases. U

10. FINITE ORBITS IN W, (C)

Table 3 describes finite G-orbits in W (C). We do not claim that this
is the complete list of possibilities. However, we note that the varied
nature of the finite orbits in the 1-parameter family W, suggests that
any description of finite orbits over C on general TIK3-surfaces, or even
on MK3-surfaces, is likely to be quite complicated.

Most of the orbits in Table 3 were unearthed by examining small
orbits in Wi(F,) that appear in Tables 5-8 and looking at specific
properties of the points in the orbits. We explain the process for a
number of examples.

Question 10.1 (Uniform Boundedness Question). For each k& € C,
we know from [10] that there are only finitely many finite G-orbits
in Wi (C). Is there a bound that is independent of k for the largest
such orbit? More generally, is there such a bound for finite orbits
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in W(C) as W runs over all MK3-surfaces? And even more generally,
how about for all TIK3-surfaces, although in this case we look at orbits
for the group generated by the three involutions oy, 09, 037

Remark 10.2. We mention that if we consider (o1, 09, 03)-orbits, then
the orbit of size 144 in Remark 10.6 consist of 12 orbits of size 12, the
orbit of size 160 in Remark 10.7 consist of 4 orbits of size 40, and the
orbit of size 288 described in Remark 10.8 consist of 12 orbits of size 24.
These provide lower bounds for the putative uniform bounds discussed
in Questions 1.3 and10.1.

Definition 10.3 (Trivial Orbits). Asnoted in Proposition 9.5, the four
singular points in W, form two G-orbits, namely the fixed point

{(0,0,0)}
and the orbit of size 3,
{(0,00,00), (00,0, 00), (oo,oo,())}.

We will call these orbits the trivial orbits in Wy, and as such, we have
not included them in Tables 5-8.

Remark 10.4 (One-dimensional families of finite orbits in W;(C)).
Table 3 contains several examples of one-dimensional families of finite
orbits in Wy (C), and indeed, these families are defined over Q or Q(7).
Ignoring the trivial orbits described in Definition 10.3, we have the
following examples:

Size 24: There is a k € Q(¢) such that W, (Q(t)) has a G-orbit
of size 24.

Size 48: The set W;(Q(i)) has a G-orbit of size 48

Size 192: There is a k € Q(t) such that Wj,(Q(t)) has a G-orbit
of size 192.

Size 288: There is a curve C'/Q of genus 9 and an element k €
Q(C) in the function field of C' so that W, (Q(C')) has a G-orbit
of size 288.

Remark 10.5 (Orbits of Size 64). We describe the derivation of the
orbit of size 64 in Table 3. Experimentally in Tables 5-8 we see orbits
of size 64 in Wy(F,) for various values of p and k, but the relation
between p and k is not clear. Examining the actual orbits in several
of these cases, we found that there was a single point in Wy(IF,) of the
form (8,8, 8), and that the point (5,3,1) also appeared in Wj(IF,).
We next computed

(6,5,@)6W]€ < 56+k53+362:07
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(B,8,1) eWy = B*+(k+2)3*+1=0.
Eliminating k and the trivial solutions 3 € {0, 1} gives the equation’
B+p+B-1=0.

This gives k = —(8 + 871)%. It is then an exercise to compute the G-
orbit of (5,3, 3). It turns out to be the union of the G° orbits of the
following five points:

Pot [ (5.5.0) (B LD [G.AD [ (L LD (B L)
Size of G°-orbit 4 12 12 12 24

Remark 10.6 (Orbits of Size 144). The orbits of size 144 in Tables 5-8
tend to feature points of the form («, 3,1) and («, 8, —/) that satisfy

Ul(aaﬁa _6) = (avﬁa _5) and US(CY?@’ _5) = (avﬁv 1)

We assume that a, 8 ¢ {0,00} and that 8 # —1, and then we obtain
four conditions on k, «, (:

(Oz,/@, 1) e Wy
(a7ﬁ> _B) € Wk

k=—(a+a )(B+671),

af’k = o?(B* +1) + 267,

oi(a, B, =B) = (a, 8, =) o?B(B + 1) = 26,
os(a, B, =) = (a, 5, 1) (62 =B +1)a*+5=0.

The ideal in Z[a, B, k| generated by these four relations is also generated
(according to Magma) by the three relations

ot 440 —1=0, k=4da(c®+4), F+(*+3)+1=0.

rvee

(We also note that since a # 0, we can replace the formula for k
by k= 4a™1))

Remark 10.7 (Orbits of Size 160). The orbits of size 160 in Tables 5-8
tend to include a single point of the form (5, 5, 5) having the property
that

o1003(8,8,8) = (1,3,%). (25)

The assumption that (3,3, 8) € Wj, gives k = —(3 + %)/, and then
computing (25) explicitly gives

9 5
aloagw,w):(ﬂ 25 155 5 25 )

68+6ﬁ4+1 64+1

9We note that 8 = 0 gives the contradiction 1 = 0, while g = 1 yields £ = —4
and an orbit with fewer than 64 elements.
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Setting the first coordinate to 1 and discarding the trivial solution g =
1 yields the condition

B8 4284 —4p% — 452 — 45 + 1.

Setting v = 28/(B* + 1) for convenience, we find that the union of
the G°-orbits of the following points is an orbit of size 160.

| Point | Size of G°-orbit | | Point | Size of G°-orbit |
(8,5,8) 4 (1,8,7) 24

CR RN 12 (1,7) 24
(3,8,7) 12 (L,B,77 ) 24
B4 12 (LN 24
(8,777 24

Remark 10.8 (Orbits of Size 288). There is an orbit of size 288
in Wi (F47) whose points have coordinates in the following set of values:
HEEISE
3144116 | 31
6 |41 | 8 39
11136 30| 17
1513222 25

|2 || L

In particular, we find that
03(3,6,11) = (3,6,15) in Wi1(Fy7).
If we now treat a, 3,7 as indeterminates and want to require that
(o, B,7) € Wy, and that o3(a, 8,7) = (o, B, 9),
then we find that k and ¢ are given by the formulas
o 4+ B2+ 42 + 2B
aBy

k= , (26)

a? + (2
0= ——. 27
Y(@?6> +1) 27
Let P, = (3,6,11) € Wi1(IF47). Then the G-orbit of P; has size 288,
while the sub-orbit for G = (01, 09, 03) has size 24 and is described
in detail in Table 1. We observe that the subgroup of G° leaving the
orbit G? - P; invariant is

Stabge (G° - P1) = {e, A}, where X:(x,y,2)— (z,—2,—y).
Hence the full G-orbit of P; € Wi;(FF47) has order

_ g #go
#9 - P = <#g 'P1> ' (#Stabgo(g"'Pl))

=24 24—288
= 5 = )
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Looking at Table 1, we find many relations in Wy (F,7), including
for example'®

0= 01(04, 67 7)[1]_1 = —02(&, 5) 7) [2] = 0'3(04, 57 ’7) [3]’ (28)
and
0-200-3(0475”7/) :01003(_5_17_7705_1)' (29)
If we now view (28) and (29) as determining conditions on the indeter-
minate quantities «, 3, y, we find that «, £, v must satisfy certain equa-
tions, and restricting to those equations that are satisfied by (3,6, 11)
in Fy7, we find that «, 3,y must satisfy

3B —a2B+a— =0, (30)
By = B2+ By =77 =0, (31)
Py +aly+ a4+ =0. (32)

These three relations for «, 3, define a reducible subset of A3, and a
computation using Magma shows that this set consists of two pieces.
There is a finite set of points defined by

3a++y*=p+v=+"+3=0, (33)

and there is a geometrically irreducible reduced affine curve in A® given
by the equations
a’f— o’y +af*y’ —a+ fy - By’ =0
C=1(p7): o’y —af*y +af+ 5y =0, (34)
By = B+ By =" =0
We discard the points (33), since the orbit collapses if § = —y. A
further computation shows that the affine curve C' has a unique singular
point at (0,0,0) and that it has (geometric) genus 9.

We let I denote the ideal in Q[ 3, ] generated by the three polyno-
mials (34) defining the curve C. Then for each of the points P; in Ta-
ble 1, treating «, 5, v as indeterminates and taking k and 0 in Q(«, 3, )
as specified by (26) and (27), we used Magma to check that o;(F;) is as
specified in Table 1 if we work in the fraction field of the quotient ring
Q[a, B,7]/1. Hence the G7-orbit of («, 3,7) has size 24 when we work
over this ring, and then as noted earlier, the full G-orbit has size 288.

In summary, we have shown that there is an irreducible affine curve
C/Q of geometric genus 9 and an element & € Q(C) in the function
field of C' so that Wj,(Q(C)) contains twelve G7-orbits of size 24 that
combine to form one G-orbit of size 288.

10We use the convenient notation v[j] to denote the jth coordinate of the vec-
tor v.



32 E. FUCHS, M. LITMAN, J.H. SILVERMAN, AND A. TRAN

’ P ‘ P ‘ o1(P) ‘ ao(P) ‘ o3(P) ‘
P (o, B,7) Py Ps P
Py 60, 5,7) Py Py Py

P3 (571, —Ozil,’)/) P4 P2 )\Pll
Py | (=1, —aty)| Py Py P

( —(5, ’Y) P6 P1 /\P7

B (—p 19, v) B P, AP
( ) P ADPs P

) Py Py Py

) Py P APy
Py | (- -1 —04_1,(5) 1) AP P,
Py (5_1,5, 04_1) Pis AP P,
Py| (v '.B,a7) Py APy P

TABLE 1. The G7-orbit of («,f,7) = (3,6,11) €

Wi1(Fy7), which we want to lift to a G7-orbit in char-
acteristic 0. The map A € G° is \N(z,y, 2) = (z, —z, —y).

However, we note that there are points on the curve C(C) for which
the orbit collapses. Thus if we set § to be equal to any of a~t, —f3, or v,
then the G°-orbits of the 12 points listed in Table 3 collapse pairwise,
and we obtain a total G-orbit of size 144, instead of 288. A short
computation shows that if we don’t allow «, 3,7 to be in {0, 1, +i},
then

S=a'=3a'=-1, §=—p=p'=-3, d=y=1+"=-3.

Remark 10.9 (Orbits of Size 288: A Cautionary Tale). We have seen
in Remark 10.8 that there is an entire 1-parameter family of orbits of
size 288 in characteristic 0. However, there are also exceptional orbits
of size 288 in finite characteristic that do not lift. For example, we
consider the orbit of size 288 in W;;(Fs3). This orbit contains many
points of the form (a, —«, 1) and many points of the form (0, 3,i3). We
note that an orbit containing points of this form does not fit into the
family described in Remark 10.8, but this does not preclude it coming
from some other characteristic 0 orbit, so we continue analyzing the
present example. In particular, we see that W,;(IF53) contains the
points

(38,-38,1) =5 (15,38,12) 25 (15,11,12) = (0, 11, 12).
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This suggests that we should take a point (a, —c, 1) € W satisfying
01 00'2003(@, _aal) = (076725) (35)

The assumption that (a, —a, 1) € W, forces k = (a 4+ a~1)? and the
assumption that the first coordinate in (35) is 0 forces

a'®—3a'+120M ~16a"2+620'"—-380° +440° —8a* +9a*+1 = 0. (36)

We next observe that in Wi;(Fs3), the orbit of (38, —38,1) has a o3
fixed point, specifically

o9 0 03(38,—38,1) = (15,11,12) is fixed by o3. (37)
So in general we might want to impose the further condition that
030090 03(a, —a, 1) = 09 0 o3, —a, 1) (38)

to mirror the behavior in Wiy (Fs3). Assuming that o # £1, we find
that (38) forces a to satisfy

a'? + 20 4 150° 4+ 12a° + 15a* +2a* + 1 = 0. (39)

However, the conditions (36) and (39) are incompatible in characteris-
tic 0. Indeed, the resultant of the two polynomials in (36) and (39) is
equal to 2% - 53, so the fact that (37) is true in Wiy (Fs3) comes from
our choice of the specific finite field F5s.

Remark 10.10 (Orbits of size 256: Another Cautionary Tale). There
is an orbit of size 256 in Ws(Fs3) whose points have coordinates in the
following set of values:

{£1, +a0*, £8% £} with o =16, =21, v = 39.
In particular, there are points
P = (a,a,a) = (16,16, 16) € Wy(Fs3),
= (a,a, v 1) = (16,16, 34) € Wx(Fs3),
=(La ﬁ) (1,16,21) € Ws(Fs3),
= (o, 8,7) = (16,21, 39) € Wxs(Fs3).
We first note that

4
3
P =(av,a,0) €W, — ]{;:_a;,
P=(v,a, v Y eW, = a'+1-2ay=0 (assuming P, # P),
(40)
Ps=(L,a,8) €W, = (@®+1)B*—(a*+3)8+a*+1=0,

(41)
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Py=(a,8,7) EWr = &+ 2+ +a?8 — (o' +3)8y =0,
(42)
This gives three relations on «, 3,7. We can use the orbit structure
of Wg(Fs3) to generate additional relations such as

01(16,16,16) = (391,16, 16) € Wx(Fs3)
— oo, a,0) = (v HLa,a) e W,
— a'—20y+1=0, (43)
71(16,21,39) = (16,21, 39) € Wy(Fss)
= 01(@,577):(06,677)6Wk
— (o' +3)B* - (a*—1)=0. (44)
The five relations (40)—(44) are incompatible in characteristic 0, al-
though they do of course have the solution («a,f,v) = (16,21,39)
in Fs3. More precisely, the resultant of the five polynomials (40)—
(44) is 9752 = 23 - 23 - 53, and indeed in W,(Fs3) we find an orbit

of size 256 corresponding to (a,f3,7) = (6,11,18). So the orbits of
size 256 in Wy (IFo3) and Ws(Fs3) do not lift to characteristic 0.

Remark 10.11 (Orbits of Size 384: A Third Cautionary Tale). There
is a point P} = (22,22, -23) € Wi3(F7;). A direct computation shows
that #G- P, = 384. We let (a, 8,7,0) = (22,23,9,44), and we consider
the six points P ..., s € Wi3(F7;) described in Table 2. We also
let G° C Aut(W;) be the subgroup containing 96 automorphisms that
is described in Remark 9.6. Again by direct computation'’ we find
that G - P, C Wi3(F7) is invariant for QO, and that it splits up into
six G°-orbits with orbit representatives P, ..., Ps and orbits of size 48
or 96 as indicated in Table 2.

We now try to lift to characteristic 0, so we view «, 3,7,0 as inde-
terminates. However, it turns out that the six conditions

Pew, for i1=1,...,6

are inconsistent in Q[«, 3,7, d, k].

11. FuLL ORBITS IN Wj(F,)

In this section we consider total orbits in Wy (F,). Such orbits are
necessarily finite. In Tables 5-8 we compute the orbit structure for
each 3 < p < 79. We use a straightforward algorithm in which we

Hgomewhat surprisingly, for this example we find that G7-P, = G- P, = Qog”-Pl
in ng(F’?l )
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#G°P | P P o1(P) a2(P) o3(P)

48 Pl (Oé,Oé, _5) (7717051 _B) (av’yilv_ﬁ) (Oé,Oé, _7)
48 P2 (a,a, 7,)/) (6_1304777) (0%5_17*7) (Oé,Oé, *ﬁ)
48 P3 (ﬁ7ﬁ77) (_a_1757’}/) (Bv_a_lafy) (/676)5)
48 P4 (67675) (_17 ) ) (57_175) (ﬁaﬁ?f}/)
96 P5 (Oé, _57’7_1) (_5_17_Ba7_1) (Oé, _a_lafy_l) (Oé,—,B,OL)
96 P6 (57 _67 1) (ﬁ_l)_(s) 1) (/87 _5_171) (/87 _57 _B)

TABLE 2. The G-orbit of (o, ar, =) = (22,22, -23) €
Wis(F71), with v = 9 and 6 = 44. We want to lift it to a
G-orbit in characteristic 0. We note that every point in

the last three columns is in the Qo—orbit of one of
Py, ... B

generate a list of points on the surface, then for each point compute
its full orbit and eliminate the points in its orbit from the list. Var-
ious programming tricks speed the computation, e.g., using a sorted
list of hash values of the points, but there are no real computational
innovations.

In view of the isomorphisms provided by Remark 9.3, for p = 3 (mod 4)
we compute the orbit structure of Wj,(IF,,) for only one of £k € Fy; and
for p =1 (mod 4), we compute the orbit structure of Wy(F,) for only
one of +k, +ik € F;, where i = v/—1 € F,. In Tables 5-8, we have also
omitted the trivial orbits of size 1 and 3 described in Definition 10.3.

Reducing the characteristic 0 orbits in Table 3 modulo p yields some
of the small characteristic p orbits in Tables 5-8. In particular, Table 4
lists the characteristic p orbits of sizes 144, 160 and 288 for p < 79 that
come from characteristic 0.

12. FIBRAL ORBITS IN Wi(F,)
We let

g - <O'1,0'2,0-3,7_12,7—13,7-23,612, €13, 623) C AU‘t(Wk‘)

For xg, Yo, 20 € K, we denote the fibers of W (K) as usual by

{
W(,Q) - {(35,90,2’) € Wk(K)}7
{(Jc,y,zo) € Wk(K)}
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Or.blt k G°-generators
size
1 all £ (0,0,0)
3 all k (0, 00, 00)
4 k=4 (—1,—-1,-1)
k=—-20+&
48 all k (1,4,0), (1,7,00)
64 63+52+B_1:0 (57 7/37 (/87671
k=—(B+p71)7? (B~ Ly (8,676
(8,671,1)
96 nt=-1 (n,7°,0) (7%, 1°)
= —27? (n,n*,n°)  (n,m%, 00)
144 at+4a?—-1=0 (a,8,1), (a7 1,3,1),
B4+ (@ +3)8+1=0 (.71 1), (a71, 571 1),
54+253_252+2/8+1:0 (O‘aﬁa_/@>7 (ailaﬁi 7_6)
k=4a71
160 B5 25— 4p° B.8.8) (LB
_462_45_‘_1:0 (ﬁ*l,ﬁ*l,ﬁ) (176717’7)
v=28/(6*+1) (8,8,7) (1,8,771)
k=—-B+p"/8 (67587 (LB
(8,87197Y
192 ‘58 7& 1 (572570)7 (57 _iéal)a
k=i(&?—¢72) (&™), (&g, 00),
(6717_11571)7 (57177;5700)7
(€hih0), (it
288 | a’f— oy + af?y? (a,3,7) (071, 8,7)
or _a+627_672 =0 (6717_057177) (_Bila_aila'y)
144* | a*y? —ap? P +af+By2 =0 | (o,8,9) (v, 8,0)
6373 _/82"’_57_72 =0 (7717_047175) (_67 7_047175)
o a2 + ﬁ2 (a7 -7, 5) (_ _17 -, 6)
B 7(042,82 +1 (5_ B, 1) (7_17ﬂ70‘_1)
. a2+ B2 442 + a2B22
- afBy *Orbit size 144 if 3a* = —1
or B =-3ory*=-3

TABLE 3. Finite G-orbits in Wy (C), where in each case
we list only one of W4, and Wa,; cf. Remark 9.3.

The G-fibral automorphism group of the fiber W,S;O is generated by
the two involutions oo and o3 that fix xg, the transposition 753 that
swaps the y and z coordinates, and the map €3 that changes the sign
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’p\kHa\BHOrbitsize‘ ’p\kHB\fyHOrbitsize‘
111114415 144 19| 2| 6 |10 160
19| 8 |11 4 144 2315 12019 160
29| 1 || 4 |18 144 311 6 [|22] 8 160
29|11 3 | 2 144 4111 || 25|35 160
31121213 144 411 4 || 31| 34 160
591 9 || 7|21 144 59 | 8 || 36|38 160
71134 21|59 144 67|27 || 11 | 49 160
791 6 || 27|63 144 73118 9 | 16 160
Orbits of size 144: Remark 10.6 Orbits of size 160: Remark 10.7
(o [F [ a [ 5] [Orbit sie] |
19 71213 144 B = -3

9
2314110 819 288
431 2 || 2813 |14 144 3at = —1
A7T|11 ) 3|6 |11 288
09 1231333 8 288
61|15 4 | 7 |18 288
67131 5 (30|12 144 3at = —1
711131 10|44 |16 288
79 135( 36| 8 |59 288
79136 || 12|19 |51 288
Orbits of sizes 144 and 288: Remark 10.8

TABLE 4. W(F,) orbits of sizes 144, 160 and 288 in Ta-
bles 5-8 coming from W(Q) orbits in Table 3.

of y and z; and similarly for the other fibers. Thus'?
ga(ci) = (02,03, Ta3, €23) C Aut( ),
915? = (01,03, T13, €13) C A11t<)/\/(2))7
gﬁ? = (01,09, T12, €12) C Aut( )
We recall that since W, is an MK3-surface, there is a set of points
ﬂConnFib(Wk(IFq)) C ]Pl([Fq)
such that

2WWe have listed more generators than needed. For example, 05 = To3 0 09 0 723,
so Aut (W&)) = (02, 23, €23), and similarly for the others fibers.
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\ k \ orbit sizes ‘ ] P \ k \ orbit sizes ‘
| 1] 4 \ 29 | 1 |40,48,120,144,192, 352
N 1,48 | 29| 2 24,438,352, 672

1 64 29| 3 247,48,1152

5 o1 29| 4 4,48,192%, 288"

3 1 29[ 6 24%,48,1184

: o 29 | 8 | 24,4864, 96,288,576

5 ol 20 [ 11 48,144,1922, 384

3 51 31 1 24, 800

1 1128 31 2 24,144, 544

5 91,64 313 896

1 24, 48,192 2} ‘51 24426888

i 24’45’4488’16942’120 31 6 24,160, 256, 384

— 31| 7 24, 864

1 [ 4,16,24, 487 64,288 R o651

2 48,96,192 211 o S6d

3 24, 48,384 YRIT 094

6 24, 48,160, 192 TR 1056

1 24,160 3112 24, 624

2 24,160 3113 1120

3 320 3114 24,300

4 4,320 3115 1024

5 24,288 371 1 | 36% 48, 722 160,192,

6 24,288 216,288, 384

7 432 37| 2 | 24,48,72, 216,576,672

S - 62581442 37 3 9247.48,768, 1056

0%, 37 4 4, 48,192,334, 960

1 24, 448 375 247 48,1792

2 256, 352 378 24, 48,480, 1152

3 24, 336 371 9 | 24,48,160,192,1312

4 4,96, 288 37110 24, 48,1664

5 24,112,160 37|15 | 48,160, 192% 288, 624

6 448

7 576

8 24, 448

9 608

10 448

11 24, 384

TABLE 5. Non-trivial orbits in Wy (F,); cf. Definition 10.3
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] P \ k \ orbit sizes ‘ ] P \ k \ orbit sizes
411 1 48,64, 160, 1632 4711 24,1712
411 2 [ 24,40,48,96,120,192,1536 | | 47| 2 2304
411 3 24,48,192, 1824 471 3 2112
41 4 | 4,24,40,48,72,120, 160, 471 4 4,1920
1923, 216, 288, 576 471 5 24,2080
411 6 16,24, 482,192, 1632 471 6 2336
411 7 24,48,192,1792 471 7 64,2016
41 ] 8 24,48,192,1792 471 8 24,2080
41|11 24,48, 384, 1600 4719 24,1776
41112 247 48,2160 47 | 10 24,2080
41 ] 16 48,96, 192, 1440 47111 | 64,96,160,288,1728
437 1 1728 47 1 12 24,64, 2016
43| 2 24,48, 144, 1536 47 | 13 24,2080
431 3 24,1536 47114 1984
431 4 4,1856 47 | 15 24,1776
431 5 24,1408 47 | 16 864,1216
431 6 1632 47 1 17 2304
431 7 1936 47 | 18 2336
431 8 1968 47119 24,1712
431 9 1760 47 1 20 24,2016
43| 10 24,64, 1600 47 1 21 24,1776
43 111 1936 47 | 22 2400
4312 256, 1504 47123 1984
43113 24,1408 53] 1 242 48,3456
43114 1728 53] 2 48,192, 2736
43115 2032 53] 3 242 48,192, 3360
43116 24,1408 53] 4 4, 48,3072
43 | 17 24,384,1024 531 5 24,48, 64, 3168
43| 18 1968 53| 6 24,48,192, 3040
43119 24,1664 53 | 8 |48,64,192,256,336,2016
43120 24,256, 1408 53|10 24,48,192,3072
43 1 21 24,1728 53 | 11 ] 24,48, 64,192,288, 2688
53 | 13| 24,48,192,288,2752
53|15 24,48,192, 2944
53 | 17 24,48,192, 3040
53 | 22 24,48,192%, 2752

TABLE 6. Non-trivial orbits in Wj(IF,); cf. Definition 10.3
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] P \ k \ orbit sizes ] P \ k \ orbit sizes ‘
59 | 1 3232 61|13 48,64, 544, 3248
59 | 2 3328 61 | 14 24,48, 352, 3904
59 | 3 3360 61 | 15 | 24,48, 96, 2883, 3264
59 | 4 4,3392 61 [ 19| 48,1922,288,3184
59 | 5 24,2880 61 | 20 48,288, 3568
59| 6 24,3264 61 | 25 24, 48,192, 3936
59 | 7 3696 67| 1 4320
59 | 8 24,160, 2848 671 2 24,4256
5919 144,160, 3328 67 | 3 24, 3808
59 | 10 24,3008 67| 4 4,4544
59 | 11 24,2880 671 5 24, 4256
59 | 12 3792 671 6 4656
59 | 13 24,3328 67 | 7 24,3936
59| 14 24,2880 67 | 8 4624
59 | 15 160, 3072 671 9 24,4320
59 | 16 24, 3008 67 | 10 24,3808
59 | 17 3600 67 | 11 4720
59 | 18 3232 67 | 12 4352
59 | 19 3632 67 [ 13 24,4128
29 | 20 3328 67 | 14 4624
59 | 21 24, 3264 67 |15 4352
09 | 22 3232 67 | 16 24,3936
59 | 23 24,96, 288, 2944 67 |17 4994
09 | 24 24,3328 67 | 18 24,4256
99 | 25 24,2880 67 | 19 24,4256
59 | 26 3632 67 | 20 24,3936
09 | 27 24,3328 67 | 21 24,3808
59 | 28 24,3136 67 | 22 4720
59 | 29 3696 67 | 23 4320
61| 1 24, 48,4224 67 | 24 24,3808
61| 2 242 48,4512 67 | 25 24,4128
61 | 3 | 24,48,192,256,384, 3424 67 | 26 480, 3840
61| 4 4,48,192, 384, 3456 67 | 27 | 96,160,288, 4080
61| 5 24248, 4480 67 | 28 288,4528
61| 7 24,48,192,4032 67 | 29 24,4320
61| 8 242 48,192, 4288 67 | 30 4624
619 247 48,1922, 4192 67 | 31 48, 144,4032
61 | 10 | 362,48, 72,192,288, 3168 67 | 32 4352

67 | 33 24,3808

TABLE 7. Non-trivial orbits in Wj(IF,); cf. Definition 10.3
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’ P \ k \ orbit sizes ‘ ’ P \ k \ orbit sizes
711 5280 73| 13 48,192,672,4576
71| 2 4768 73| 15 48,192, 544,4704
71 3 24, 4560 73| 17 24, 48,192, 5760
71| 4 4,4608 73 | 18 | 242,48, 160, 192, 6000
71| 5 24,4800 73 20| 16,24,482,192,5728
71] 6 24,4864 73| 23 24, 48,5856
717 5376 73 | 26 242,48, 6256
71] 8 24,4368 73 | 31 24,48,192,5792
119 5184 9] 1 24,5856
71110 4864 79 2 24,5424
7111 5280 9] 3 24, 5488
71112 24,4304 79 4 4, 5760
71113 96, 288, 384, 4096 791 5 24,6048
7114 24,4864 7916 24,144, 5344
71| 15 5216 79| 7 59592
71| 16 24, 4800 79 8 5792
7117 24,4864 791 9 24,5488
71| 18 24,4672 791 10 24,5984
7119 5184 79 [ 11 24,5984
71| 20 24,4864 79 1 12 24,5424
71| 21 5216 79 1 13 6432
71122 4864 79 | 14 24,6048
71| 23 24,4368 79 1 15 24,5488
71| 24 4864 79 | 16 6400
71025 4768 7917 24,5984
71| 26 5216 79 | 18 6592
71|27 24,4672 79 119 6400
71| 28 24,4304 79 | 20 6048
71129 4864 79 | 21 5952
71 | 30 24,4304 79 | 22 24, 5488
71| 31 4864 79 | 23 6496
71| 32 5216 79 | 24 6496
711 33 24,4368 79 | 25 6048
71| 34 24,144, 4224 79 | 26 6432
71| 35 24,4800 79 | 27 24,5984
73| 1 48,192, 5248 79 | 28 6080
73| 2 24, 48,96, 5760 79 | 29 5792
73] 3 24,48, 64,5920 79 | 30 6496
73| 4 4,24, 40, 48,120, 160, 79 | 31 24,6048

192, 2882,1920, 2976 79 | 32 5952
73| 5 242 48,6448 79 | 33 24,5984
73| 6 48,192, 5376 79 | 34 6592
737 24, 48,5952 79 | 35 96, 288,6112
731 9 242, 48,6288 79 | 36 24,96, 288, 5664
73| 10 48,192, 5248 79 | 37 24,5680
73|12 24, 48,192, 5792 79 | 38 5952

79 | 39 24, 64,5616

TABLE 8. Non-trivial orbits in Wy (IF,); cf. Definition 10.3
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t € m ConnFib(Wy,(F,)) <=
@ (F,) € Cage(Wi(F,)) for one (equivalently all) i € {1,2,3}.

Example 12.1. We consider the surface W, over the finite field Fss.
The set W, (Fs3) has six G-orbits of sizes, respectively, 1, 3, 24, 24, 48
and 3456. We compute the number of components on the various fibers,
and when we do so, we find that

7 ConnFib(W, (Fs3)) = {£2, £4, £6, £13, £20, £24, £26}.  (45)

Next, for each ¢ in 7 ConnFib(W; (Fs3)), we would like to know which
of the coordinates in 7 ConnFib(W1 (]F53)) appear as the coordinate of

some point in the (connected) fiber wt (Fs3). In general, if S is any
set of points in (P')3, we define

Flatten(S) = the set of all coordinates of all points in S.

Then we may compute the connectivity of the cage of Wi (IF53) using
the data in the following table.

’ t ‘ Flatten (Wl(lt)(]Fg,g)) N« ConnFib(W; (F53)) ‘

+2 {£6, £20}

+4 {243

£6 {£2, £20, £26}
113 {£243

120 {£2, £6, £20, £26}
124 {£4, £13, 124}
126 {£6, £20}

Thus the cage in the big component of W;(Fs3) is not connected. It
consists of the following two pieces, which are also illustrated in Fig-

ure 2:
U U wi aa U U W

te{+2,46,420,4+26} ic{1,2,3} te{+4,+13,+24} ie{1,2,3}
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© /e @ G

& 2 g

FIGURE 2. The two connected components of the cage
of Wi (Fs3), where the segment labeled (t) denotes the

union of the six connected fibers U;—1 2 3 Ue—11 Wl(’fzt(Fag)

REFERENCES

[1] Arthur Baragar. The Markoff equation and equations of Hurwitz. ProQuest
LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-Brown University.

[2] Arthur Baragar. Rational curves on K3 surfaces in P! x P! x P'. Proc. Amer.
Math. Soc., 126(3):637-644, 1998.

[3] Arthur Baragar. Canonical vector heights on algebraic K3 surfaces with Picard
number two. Canad. Math. Bull., 46(4):495-508, 2003.

[4] Arthur Baragar. Canonical vector heights on K3 surfaces with Picard number
three—an argument for nonexistence. Math. Comp., 73(248):2019-2025, 2004.

[5] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997.
Computational algebra and number theory (London, 1993).

[6] Jean Bourgain. A modular Szemerédi-Trotter theorem for hyperbolas. C. R.
Math. Acad. Sci. Paris, 350(17-18):793-796, 2012.

[7] Jean Bourgain, Alexander Gamburd, and Peter Sarnak. Markofl surfaces and
strong approximation, 1, 2016. arXiv:1607.01530.

[8] Jean Bourgain, Alexander Gamburd, and Peter Sarnak. Markoff triples and
strong approximation. C. R. Math. Acad. Sci. Paris, 354(2):131-135, 2016.

[9] Serge Cantat. Dynamique des automorphismes des surfaces K3. Acta Math.,
187(1):1-57, 2001.

[10] Serge Cantat and Romain Dujardin. Finite orbits for large groups of automor-
phisms of projective surfaces, 2020. arXiv:2012.01762.

[11] Serge Cantat and Frank Loray. Dynamics on character varieties and Mal-
grange irreducibility of Painlevé VI equation. Ann. Inst. Fourier (Grenoble),
59(7):2927-2978, 2009.

[12] Alois Cerbu, Elijah Gunther, Michael Magee, and Luke Peilen. The cycle struc-
ture of a Markoff automorphism over finite fields. J. Number Theory, 211:1-27,
2020.

[13] Pietro Corvaja and Umberto Zannier. Greatest common divisors of u—1, v—1
in positive characteristic and rational points on curves over finite fields. J. Eur.
Math. Soc. (JEMS), 15(5):1927-1942, 2013.


arXiv:1607.01530
arXiv:2012.01762

44 E. FUCHS, M. LITMAN, J.H. SILVERMAN, AND A. TRAN

—
—
—_
w
—
~
—
©
[\
w
[\
©

[37]41]
10 [ 12
11 [ 12

[to\p ]

8

I
w

== =] = = =] N =]~

|| U |W N —=O

©

== =] =] = =] =] = =] =] o =

[
o

—_
—
NN N[N DN =] =N NN DN N Ot i

—_
[\

—_
w

—
=~

—_
ot

N|WIN[ AW N NN NN W AN W NSO

=
(=)}

—_
-3

N OO PR RO =] O =N N =

—_
[e2]

—_
©

[\
o

[\
—

IR e e N N e I L N e e e R e N R T N

N
N

N
w

N
=~

[\
ot

[\
(=)

[\
3

W NN N W NN NN ] =N NN NN W N NN~ w| o] oo

[\
3]

[\
©

w»a»a»ab—l»—l»—t»—t»ﬂ»ﬂ[\)»—l»—t»—t»ﬂ»ﬂ)—l»—t»—t[\’)»ﬂ»ﬂ»—l»—t»—t»—t»ﬂl—l»—lwwHfﬁ

w
(=]

w
—

w
S

w
w

w
b

w
ot

(DN WO | N W N W W[W|[ N W] —W] MWW W[N] W| | N ]| W] O] w| N

w
=]

w
33

w
oo

w
Ne)

[SUIRSCI IS I T Y ] IS TS N ) T e B S Y e e M R D N = e e e N R RN I I S PN Y S AL S S S ot

40

TABLE 9. # of fibral Aut(W{ft)O)-orbits in Wy(F,) fori=1,2,3

[14] Matthew de Courcy-Ireland. Non-planarity of Markoff graphs mod p, 2021.
arXiv:2105.12411.

[15] Matthew de Courcy-Ireland and Seungjae Lee. Experiments with the Markoff
surface, 2018. arXiv:1812.07275.

[16] Matthew de Courcy-Ireland and Michael Magee. Kesten-McKay law for the
Markoff surface mod p, 2018. arXiv:1811.00113.


arXiv:2105.12411
arXiv:1812.07275
arXiv:1811.00113

ORBITS ON K3 SURFACES OF MARKOFF TYPE 45

[17] B. Dubrovin and M. Mazzocco. Monodromy of certain Painlevé-VI transcen-
dents and reflection groups. Invent. Math., 141(1):55-147, 2000.

[18] Alexander Gamburd, Michael Magee, and Ryan Ronan. An asymptotic formula
for integer points on Markoff-Hurwitz varieties. Ann. of Math. (2), 190(3):751—
809, 2019.

[19] Shu Kawaguchi. Canonical vector heights on K3 surfaces—a nonexistence re-
sult. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 24(2):181-197, 2013.

[20] Sergei V. Konyagin, Sergey V. Makarychev, Igor E. Shparlinski, and Ilya V.
Vyugin. On the structure of graphs of Markoff triples. Q. J. Math., 71(2):637—
648, 2020.

[21] Oleg Lisovyy and Yuriy Tykhyy. Algebraic solutions of the sixth Painlevé
equation. J. Geom. Phys., 85:124-163, 2014.

[22] A. Markoff. Sur les formes quadratiques binaires indéfinies. Math. Ann.,
17(3):379-399, 1880.

[23] Joseph H. Silverman. Rational points on K3 surfaces: a new canonical height.
Invent. Math., 105(2):347-373, 1991.

[24] The PARI Group, Univ. Bordeaux. PARI/GP version 2.9.0, 2016. available
from http://pari.math.u-bordeaux.fr/.

[25] Lan Wang. Rational points and canonical heights on K3-surfaces in P! x P! x P
In Recent Developments in the Inverse Galois Problem (Seattle, WA, 1993),
volume 186 of Contemp. Math., pages 273-289. Amer. Math. Soc., Providence,
RI, 1995.

FEmail address: efuchs@math.ucdavis.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA DAviS, ONE
SHIELDS AVE, Davis, CA 95616 USA. ORCID: HTTPS://ORCID.ORG/0000-
0002-0978-5137

FEmail address: mclitman@ucdavis.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA DAvIS, ONE
SHIELDS AVE, Davis, CA 95616 USA. ORCID: HTTPS://ORCID.ORG/0000-
0002-0908-9369

Email address: jhs@math.brown.edu

DEPARTMENT OF MATHEMATICS, BoXx 1917 BROWN UNIVERSITY, PROVI-
DENCE, R1 02912 USA. MR AUTHOR ID: 162205. ORCID: HTTPS://ORCID.ORG/0000-
0003-3887-3248

FEmail address: austran@ucdavis.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA DAvIS, ONE
SHIELDS AVE, Davis, CA 95616 USA. ORCID: HTTPS://ORCID.ORG/0000-
0003-3725-7822


http://pari.math.u-bordeaux.fr/

	1. Introduction
	2. A brief survey of related work on the Markoff equation
	3. Tri-Involutive K3 (TIK3) Surfaces
	4. A strategy for proving that WFq has a large G-connected component
	5. A brief survey of related work on tri-involutive K3 surfaces
	6. The incidence graph of the fibers of a TIK3 surface
	7. Tri-Involutive Markoff-Type K3 (MK3) Surfaces
	8. Connected Fibral Components and the Cage for MK3 Surfaces
	9. A One Parameter Family of MK3 Surfaces
	10. Finite Orbits in Wk(C)
	11. Full Orbits in Wk(Fp)
	12. Fibral Orbits in Wk(Fp)
	References

