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Abstract. Let W ⊂ P1 × P1 × P1 be a surface given by the
vanishing of a (2, 2, 2)-form. These surfaces admit three involutions
coming from the three projections W → P1 × P1, so we call them
tri-involutive K3 (TIK3) surfaces. By analogy with the classical
Markoff equation, we say that W is of Markoff type (MK3) if it
is symmetric in its three coordinates and invariant under double
sign changes. An MK3 surface admits a group of automorphisms G
generated by the three involutions, coordinate permutations, and
sign changes. In this paper we study the G-orbit structure of points
on TIK3 and MK3 surfaces. Over finite fields, we study fibral
connectivity and the existence of large orbits, analogous to work
of Bourgain, Gamburd, Sarnak and others for the classical Markoff
equation. For a particular 1-parameter family of MK3 surfaces
Wk, we compute the full G-orbit structure ofWk(Fp) for all primes
p ≤ 79, and we use this data as a guide to find many finite G-orbits
in Wk(C), including a family of orbits of size 288 parameterized
by a curve of genus 9.
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1. Introduction

The classical Markoff equation is the affine surface

M : x2 + y2 + z2 = 3xyz. (1)

It admits three involutions coming from the three projectionsM→ A2,
and these three involutions, together with double sign changes and
coordinate permutations, generate the automorphism group GM :=
Aut(M) of M. A classical theorem of Markoff [22] says that the set
of integer solutionsM(Z) consists of two orbits, one “small” GM-orbit
containing the single point (0, 0, 0), and one “large” GM-orbit contain-
ing (1, 1, 1).

The orbit structure of M(Fp) under the action of GM has been
studied by a number of authors, including Baragar [1] and Bourgain–
Gambard–Sarnak [8]. The latter prove that for most primes p, there
is only one large orbit in M(Fp). The proof is an ingenious algorithm
that jumps between differently oriented fibers, using the Hasse–Weil
estimate to say that if a point on a “vertical” fiber has a large enough
orbit, then one of the “horizontal” orbits consists of an entire “hor-
izontal” fiber. The proof implicitly relies on the fact that each fiber
ofM is a torus and that the fibral automorphisms are toral translations
(i.e., Gm-translations), which in [8] are called rotations. See Section 2
for more details.

The first goal of this paper is to study similar questions on an anal-
ogous family of projective surfaces that admit three involutions. We
define the family of tri-involutive K3 (TIK3) surfaces to be the hyper-
surfaces

W ⊂ P1 × P1 × P1 (2)

given by the vanishing of a (2, 2, 2)-form. These surfaces have three
involutions σ1, σ2, σ3 coming from the three projections W → P1 × P1.
The study of the geometry and arithmetic of these surfaces is of course
not new; see Section 5 for a brief history. In this paper we study
the fibral structure of W(Fp) for the three projections and the orbit
structure of W(Fp) under the action of Aut(W). For example, we
prove the following fibral linking result, which is a TIK3 analogue of [8,
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Proposition 6] for the Markoff equation. See Theorem 6.5 for further
details and a proof.

Theorem 1.1. Assume that p > 100, and letW/Fp be a TIK3 surface.
Let F1 and F2 be fibers of W(Fp) → (P1)2(Fp) for any two of the
projections. Then there is a fiber F3 for one of the projections satisfying

F1 ∩ F3 6= ∅ and F2 ∩ F3 6= ∅.
Our second goal is inspired by the classification of finite orbits on

Markoff-type surfaces over C. For example, the papers [11, 17, 21]
contain a detailed description of the (a, b, c, d) ∈ C for which the surface

Ma,b,c,d : x2 + y2 + z2 + ax+ by + cz + dxyz = 0.

has one or more finite orbits. The existence of such orbits turns out
to be related to algebraic solutions to Painlevé differential equations.
It is likewise true [10] that a (non-degenerate) TIK3 surface W(C) has
only finitely many finite orbits, but the methods used to classify the
orbits for Markoff-type equations do not seem easily applicable to the
TIK3 situation.

Generically, the automorphism group ofW is generated by the three
automorphisms. Since the Markoff equation (1) admits additional au-
tomorphisms, we consider an analogous family of TIK3 surfaces, which
we call Markoff-type K3 (MK3) surfaces. These are the TIK3 sur-
faces (2) that are invariant under coordinate permutations and dou-
ble sign changes. See Proposition 7.5 for a description of the full 4-
dimensional family of MK3 surfaces.

A typical example, which we use as a prototype, is the following one-
parameter family of MK3-surfaces Wk. For non-zero k, we define Wk

to be the projective closure in (P1)3 of the affine surface

Wk : x2 + y2 + z2 + x2y2z2 + kxyz = 0. (3)

In order to understand the orbit structure in Wk(Fp), we computed
all orbits for p ≤ 79 and all k ∈ F∗p; see Tables 5–8 in Section 11. We
use these computations for two purposes.

First, by studying small orbit sizes that appear in Wk(Fp) for many
different p and k, we find patterns which we use to construct finite orbits
in Wk(C). A full description of our findings is contained in Section 10;
see especially Table 3. We illustrate by stating a few results, including
some fairly large finite orbits that occur in 1-parameter families:

Proposition 1.2. LetWk be the projective closure in (P1)3 of the affine
surface (3).

• W−4(Q) contains an orbit of size 4 andW4(Q) contains an orbit
of size 12.
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• Wk

(
Q(i)

)
contains an orbit of size 48 for every k ∈ Q(i).

• There is a field K/Q of degree 8 and an element k ∈ K so
that Wk(K) has an orbit of size 144.
• There is a field K/Q of degree 8 and an element k ∈ K so

that Wk(K) has an orbit of size 160.
• There is a k(t) ∈ Q(t) so that Wk(t)

(
Q(t)

)
has an orbit of

size 24.
• There is a k(t) ∈ Q(i, t) so that Wk(t)

(
Q(i, t)

)
has an orbit of

size 96.
• There is an irreducible curve C/Q of genus 9 and an element k ∈
Q(C) in the function field of C so that Wk

(
Q(C)

)
has an orbit

of size 288.

In the spirit of the many uniform boundedness theorems and con-
jectures in arithmetic geometry and arithmetic dynamics, we pose the
following question:

Question 1.3. Does there exist a constant N so that

#{P ∈ Wk(C) : the orbit of P is finite} ≤ N for all k ∈ C∗?

More generally, does there exist a constant N so that for every non-
degenerate1 TIK3 surface W we have

#{P ∈ W(C) : the 〈σ1, σ2, σ3〉-orbit of P is finite} ≤ N?

See Question 10.1 for a further discussion of uniform boundedness of
finite orbits.

Second, we investigate large orbits in Wk(Fp) to see if the methods
employed in [8] for the Markoff equation are potentially applicable to
the MK3 setting. The fiber-to-fiber jumping strategy employed by [8]
uses the fact, which they prove, that if a vertical fibral orbit is suffi-
ciently large, then at least one of the points in that vertical orbit has
a horizontal orbit that consists of the entire horizontal fiber. (See Sec-
tion 4 and Remark 4.4 for further details.) We are interested in the
question of whether such a fiber-to-fiber jumping strategy will work
on the MK3-surface Wk(Fp). In Section 12 we show that the sur-
face W1(F53) has a connected component of size 3456, but that the
fiber-to-fiber jumping strategy cannot be used to prove that this com-
ponent is connected. This suggests that additional ideas may be needed
to prove the existence of a large orbit in Wk(Fp).

1See Definition 3.1, but briefly, non-degeneracy means that the three involutions
are well-defined.
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2. A brief survey of related work on the Markoff
equation

Definition 2.1. Let a ∈ K∗ and k ∈ K. The associated Markoff
equation is

Ma,k : x2 + y2 + z2 = axyz + k. (4)

Theorem 2.2. (a) (Markoff [22])

M3,0(Z) =
{

(0, 0, 0)
}
∪ G · (1, 1, 1).

(b) More generally, for all a, k ∈ Z with a 6= 0, there is a finite set of
points P1, . . . , Pr ∈Ma,k(Z) such that

Ma,k(Z) =
r⋃
i=1

G · P.

Conjecture 2.3. (Baragar [1, Section V.3], Bourgain–Gambard–Sarnak
[7, 8]) For all primes p ≥ 5 we have

M∗
3,0(Fp) =

{
(0, 0, 0)

}
∪
(
G · (1, 1, 1)

)
.

Bourgain–Gambard–Sarnak have a number of deep results related to
Conjecture 2.3, including the following:

Theorem 2.4. (a) [8, Theorem 1]

#M∗
3,0(Fp) r

(
G · (1, 1, 1)

)
= po(1), as p→∞.

(b) [8, Theorem 2] Conjecture 2.3 holds for all but possibly Xo(1) primes
p ≤ X, as X →∞.

Other recent notable results include the following:

• Konyagin–Makarychev–Shparlinski–Vyugin [20] improves The-
orem 2.4:

#M∗
3,0(Fp) r

(
G · (1, 1, 1)

)
≤ exp

(
(log p)2/3+o(1)

)
.

• Given a pseudo-Anosov element g ∈ Out(F2), g induces a per-
mutation gp on M1,k(Fp) for each prime p. Cerbu–Gunther–
Magee–Peilen [12] prove that asymptotically, the action of gp
on M1,k(Fp) has an orbit of size at least log(p)

log |λ| + Og(1), where

λ is the eigenvalue of largest modulus of g when viewed as an
element of GL2(Z).
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• M. de Courcy-Ireland and S. Lee [15] verify strong approxima-
tion for the Markoff surface for all primes p < 3000. Addi-
tionally, they completely characterize the orbit structure of the
degenerate Cayley cubic,M1,4(Fp), providing both the number
of orbits as well as their sizes, given in terms of divisors of p2−1.
• M. de Courcy-Ireland and M. Magee [16] demonstrate that the

eigenvalues of the family of Markoff graphs modulo p converge
to the Kesten-McCay measure, which is a heuristic indicator
that Markoff graphs are suitably “random”. This also provides
a (very) weak bound on the spectral gap of such graphs.
• M. de Courcy-Ireland [14] shows that if p ≡ 1 (mod 4) or if
p ≡ 1, 2 or 4 (mod 7), then the Markoff graph mod p is not
planar.
• A. Gamburd , M. Magee and R. Ronan [18] prove that the

counting function for the number of integer solutions on x21 +
· · · + x2n = ax1 · · ·xn + k, excluding potential exceptional sets,
is asymptotic to a constant multiple of (logR)β.

3. Tri-Involutive K3 (TIK3) Surfaces

Definition 3.1. A Tri-Involutive K3 (TIK3) Surface is a surface2

W = {F = 0} ⊂ P1 × P1 × P1

defined by a (2, 2, 2)-form

F (X1, X2;Y1, Y2;Z1, Z2) ∈ K[X1, X2;Y1, Y2;Z1, Z2]. (5)

For distinct i, j ∈ {1, 2, 3}, we denote the various projections of W
onto one or two copies of P1 by

πi :W −→ P1 and πij :W −→ P1 × P1.

We say that the TIK3 is non-degenerate if it satisfies the following two
conditions:

(i) The projection maps π12, π13, π23 are finite.3

(ii) The generic fibers of the projection maps π1, π2, π3 are smooth
curves, in which case the smooth fibers are necessarily curves of
genus 1, since they are (2, 2) curves in P1 × P1.

To ease notation, we write P1 = A1 ∪ {∞}, and we let

F (x, y, z) = F (x, 1; y, 1; z, 1).

2We note that our terminology is something of a misnomer, since we do not insist
that our surfaces be smooth.

3We note that π12, π13, π23 are finite if and only if their fibers are 0-dimensional,
in which case they are maps of degree 2.
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Then W is the closure in (P1)3 of the affine surface, which by abuse of
notation we also denote by W ,

W : F (x, y, z) = 0.

Definition 3.2. We denote the fibers of π1, π2, π3 : W → P1 over
points x0, y0, z0 ∈ P1 by, respectively,

W(1)
x0

= π−11 (x0), W(2)
y0

= π−12 (y0), W(3)
z0

= π−13 (z0).

For P = (xP , yP , zP ) ∈ W , we let

W(1)
P =W(1)

xP
, W(2)

P =W(2)
yP
, W(3)

P =W(3)
zP
.

Definition 3.3. LetW be a non-degenerate TIK3. For distinct i, j, k ∈
{1, 2, 3}, we write

σk :W −→W (6)

for the involution that swaps the sheets of πij, i.e., σk ∈ Aut(W) is the
unique non-identity automorphism satisfying

πij ◦ σk = πij.

The automorphism group of a TIK3 surface W contains the non-
commuting involutions σ1, σ2, σ3, and depending on the symmetries
of W ’s defining polynomial F , the automorphism group may con-
tain additional automorphisms. Typical examples include symmetry
in x, y, z that allows permutation of the coordinates, and power sym-
metry that allows the signs of two of x, y, z to be reversed. For example,
the Markoff equation (1) permits these extra automorphisms; and in
Section 7 we consider analogous TIK3 surfaces. In any case, we will be
interested in subgroups of the automorphism group that move points
around individual fibers.

Definition 3.4. Let G ⊆ Aut(W) be a group of automorphisms ofW .
We define the associated fibral automorphism groups by

G(1) =
{
ϕ ∈ G : ϕ(W(1)

x ) =W(1)
x for all x ∈ P1

}
,

G(2) =
{
ϕ ∈ G : ϕ(W(2)

y ) =W(2)
y for all y ∈ P1

}
,

G(3) =
{
ϕ ∈ G : ϕ(W(3)

z ) =W(3)
z for all z ∈ P1

}
.

For example, if {i, j, k} = {1, 2, 3}, then σi, σj ∈ G(k), since σi and σj
map the k-fiber to itself.

Definition 3.5. Let G ⊆ Aut(W) be a group of automorphisms ofW ,
and let P0 = (x0, y0, z0) ∈ W(K). The G-orbit of P is

G · P =
{
ϕ(P ) : ϕ ∈ G

}
.
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The fibral G-orbits of P are

G(k) · P =
{
ϕ(P ) : ϕ ∈ G(k)

}
for k = 1, 2, 3.

4. A strategy for proving that W(Fq) has a large
G-connected component

In this section we consider a TIK3-surface W defined over a finite
field Fq, and a group of automorphisms G ⊆ Aut(W).

Definition 4.1. Let t ∈ P1(Fq), and let i ∈ {1, 2, 3}. We say that the

fiber W(i)
t (Fq) is G-fiber connected if G(i) acts transitively on W(i)

t (Fq).
Following terminology from [7], we define the G-cage of W(Fq) to be
the set

CageG
(
W(Fq)

)
=

{
P ∈ W(Fq) :

at least one of W(1)
P (Fq), W(2)

P (Fq),
and W(3)

P (Fq) is G-fiber connected

}
.

We denote the set of G-connected fibers by

ConnFibG
(
W(Fq)

)
=

{
W(i)

t (Fq) :
i ∈ {1, 2, 3}, t ∈ P1(Fq),
W(i)

t (Fq) is G-fiber connected

}
.

With this notation, an alternative description of the cage is as the
union of the points in the fibers in ConnFibG

(
W(Fq)

)
.

In [7], to prove that the Markoff graph M3,0(Fq) is connected, they
first show that the associated cage is connected. This is done via a
process that jumps from one connected fiber to another using a version
of the following property:

Definition 4.2. We say that W(Fq) has the fiber-jumping property if
for all fibers F1 and F2 ofW(Fq) there exists a G-connected fiber F3 ∈
ConnFib

(
W(Fq)

)
satisfying

F1 ∩ F3 6= ∅ and F2 ∩ F3 6= ∅.

As described in [7], the fiber-jumping property implies that the cage
is connected. For the convenience of the reader, we recall the short
proof.

Proposition 4.3. Suppose that W(Fq) has the fiber-jumping property.
Then for all P,Q ∈ CageG

(
W(Fq)

)
there exists an automorphism γ ∈ G

such that γ(Q) = P .
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Proof. The fact that P and Q are in the G-cage means that they lie on
connected fibers, so we can find indices i and j so that

G(i) · P =W(i)
P (Fq) and G(j) ·Q =W(j)

Q (Fq). (7)

We apply the assumption that W(Fq) has the fiber-jumping property

to the fibersW(i)
P (Fq) andW(j)

Q (Fq). This allows us to find a connected

fiber F ∈ ConnFib
(
W(Fq)

)
satisfying

W(i)
P (Fq) ∩ F 6= ∅ and W(j)

Q (Fq) ∩ F 6= ∅. (8)

We choose any point R ∈ F . The connectivity of F tells us that F =

W(k)
R (Fq) = G(k) · R for some index k. Then (7) and (8) say that we

can find points

S ∈ G(i) · P ∩ G(k) ·R and T ∈ G(j) ·Q ∩ G(k) ·R.
In particular, there are automorphisms γ1, γ2, γ3, γ4 ∈ G satisfying

S = γ1P = γ2R and T = γ3Q = γ4R.

This yields
P = γ−11 γ2R = γ−11 γ2γ

−1
4 γ3Q,

which completes the proof that P ∈ G ·Q. �

The strategy that is employed in [7] to prove that the large compo-
nent of the Markoff graphM3,0(Fq) is connected has several steps. We
reformulate these steps for TIK3-surfaces, retaining (and expanding
on) their chess terminology.

Setting the board (Cage connectivity):
The cage CageG

(
W(Fq)

)
is G-connected.

End game (Large fibral orbits):

Let P ∈ W(i)
t (Fq) be a point whose fibral orbit G(i) · P is mod-

erately large. Then G(i) · P contains a point of the cage, i.e., it
intersects a G-connected fiber.

Middle game (Small fibral orbits):

Let P ∈ W(i)
t (Fq) be a point whose fibral orbit G(i) · P is of

small, but non-negligible, size. Then G(i) · P contains a point
lying in a fibral orbit of strictly larger size.

Opening (Tiny fibral orbits):

There are no non-trivial points P ∈ W(i)
t (Fq) whose fibral or-

bit G(i) · P is tiny.

Remark 4.4 (The Bourgain–Gamburd–Sarnak Connectivity Proof for
the Markoff Equation). We briefly sketch the connectivity proof for

M∗(Fp) =M3,0(Fp) r (0, 0, 0)
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in [7]. They prove connectivity using the subgroup G ⊂ Aut(M3,0)
generated by the compositions

ρ(i) = ϕi ◦ τjk, where {i, j, k} = {1, 2, 3}.

They call ρ(i) a rotation, since it acts on the fibers (M3,0)
(i)
t via a 2-by-

2 (rotation) matrix acting on the jk-coordinates. Writing ρ
(i)
t for the

restriction of ρ(i) to this fiber, they note that the order of ρ
(i)
t divides one

of p− 1, p, or p+ 1, with the exact order depending on the eigenvalues

of the matrix ρ
(i)
t . It follows that

(M3,0)
(i)
t (Fp) ⊂ Cage

(
M3,0(Fp)

)
⇐⇒ ρ

(i)
t has maximal order.

The first step in proving thatM∗(Fp) is G-connected is an argument
that uses curve coverings, point counting, and inclusion/exclusion to
show that M3,0(Fp) has the fiber jumping property for G. It follows
that CageG

(
M3,0(Fp)

)
is connected, cf. Proposition 4.3. They then use

a similar argument for the endgame, where a fiber is deemed large if it
has p1/2+ε points.

Next they consider the middle game, which consists of points whose
(small) fibral orbit has at least pε points. This comes down to showing
that certain equations have few solutions whose coordinates are ele-
ments of F∗p of small order. They provide three proofs of the required
statement, one via Stepanov’s auxiliary polynomial proof of Weil’s con-
jecture for curves over Fp, one using directly a sharp estimate due to
Corvaja and Zannier [13] for the gcd of polynomials over finite fields,
and one using a projective Szemeredi-Trotter theorem due to Bour-
gain [6]. Indeed, they can handle the middle game for even smaller
fibral components provided that p2 − 1 does not have too many prime
divisors.

Finally, for the opening, they observe that finite orbits in Ma,k(Q)
will create small orbits in Ma,k(Fp) for infinitely many p. However, in

their case M3,0(Q) contains no finite orbits other than
{

(0, 0, 0)
}

, so
this is not a problem. They next show that every point P ∈M∗(Fp) lies
in a fibral component containing at least (log20 p)

1/3 points. This and
some further calculations suffice to prove that M∗(Fp) is G-connected
unless p2−1 is very smooth, i.e., is a product of a large number of small
primes. (Conjecturally, there are only finitely many such primes.)

Remark 4.5 (Fiber Jumping and Cage Connectivity for TIK3-Sur-
faces). As explained in Remark 4.4, Bourgain, Gamburd, and Sar-
nak [7] prove that the Markoff equation M3,0(Fp) r

{
(0, 0, 0

}
is G-

connected by first verifying the fiber-jumping property, which sets the
board by implying that the cage is G-connected. Later we will give
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an example showing that the analogous statement need not be true
for TIK3 surfaces. More precisely, in Example 12.1 we describe a
TIK3-surface W such that W(F53) has one large G-connected com-
ponent W∗(F53) containing 3456 points, but W∗(F53) does not have
the G-fiber-jumping property. More precisely, the G-connected fibers
inW(F53) form two connected components, so any proof thatW∗(F53)
is G-connected must find a way to connect points in ConnFib

(
W(F53)

)
that uses points that do not lie on a G-connected fiber, i.e., using points
that are not in the cage. Of course, the prime p = 53 is not huge, so our
example may simply be a small number phenomenon. However, other
examples suggest that the number of fibral components in a TIK3 cage
tends to be smaller than the number of fibral components in a Markoff
surface cage. So a proof that TIK3 surfaces over finite fields have large
G-connected components may need to find a way to expand the cage in
order to fit it into a G-connected set that can be used for the “setting
the board” step.

In addition, the issue concerning smoothness of fibral group orders
that arises in the method of BGS will be exacerbated for TIK3 surfaces.
The analogous rotations (translations) on a TIK3 surface come from
the actions of elliptic curves on homogeneous spaces. These actions
are translations by a point whose order can range from p + 1 − 2

√
p

to p + 1 + 2
√
p. So now we are not concerned with smoothness of

only p± 1, but instead with the smoothness of all numbers within this
range. Ideally, we would like to restrict to values of p for which this
range of numbers contains no smooth numbers, but there are unlikely
to be infinitely many such p.

5. A brief survey of related work on tri-involutive K3
surfaces

We briefly describe some earlier work on the geometry and arithmetic
of TIK3 surfaces. Wang [25] explicitly constructed canonical heights
on TIK3 surfaces defined over number fields associated to the infinite
order automorphisms σi ◦σj, similar to those constructed in [23] for K3
surfaces having two involutions. Baragar [2, 3, 4] further studied these
height functions and asked, in particular, whether they fit together
to form a vector canonical height. Kawaguchi [19] answered this in
the negative for certain K3 surfaces, and Cantat and Dujardin [10]
completely characterized the surfaces on which vector canonical heights
exist.

We next state a recent result regarding finite orbits on TIK3 surfaces
in charateristic 0.
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Theorem 5.1 ([10, Cantat–Dujardin]). Let W/C be a TIK3 surface,
and let 〈σ1, σ2, σ3〉 ⊆ Aut(W) be the subgroup of W generated by the
three involutions σ1, σ2, σ3. Then{

P ∈ W(C) : the 〈σ1, σ2, σ3〉-orbit of P is finite
}

is a finite set.

Proof. This is a special case of the results in [10], since in the language
of [10], the TIK3-surfaceW and its group of automorphisms 〈σ1, σ2, σ3〉
do not form a Kummer group, andW contains no 〈σ1, σ2, σ3〉-invariant
curves. �

Finally, we mention Cantat’s fundamental paper [9], although it is
not specifically about TIK3 surfaces. Let ϕ : X → X be an automor-
phism of positive entropy of a K3 surface defined over C, e.g., σi ◦ σj
for a TIK3 surface. Then Cantat proves that there exists a unique
invariant probability measure µ with maximal entropy, that (ϕ, µ) is
measurably conjugate to a Bernoulli shift, and that µ gives the asymp-
totic distribution of periodic points.

6. The incidence graph of the fibers of a TIK3 surface

Definition 6.1. A TIK3 surface has three fibral directions associated
to the three projections onto P1. For expositional convenience, we will
say that fibers corresponding to different projections are (pairwise)
orthogonal to one another, while fibers corresponding to the same pro-

jection are parallel. So for example, the fibers W(1)
x0 and W(2)

y0 are or-

thogonal, while the fibers W(1)
x0 and W(1)

x1 are parallel.

Remark 6.2. Distinct parallel fibers clearly do not intersect, while
orthogonal fibers in W(Fq) may intersect in 0, 1, or 2 points. For
example, if x0, y0 ∈ P1(Fq), then(

W(1)
x0

(Fq) ∩W(2)
y0

(Fq)
)

=
{

(x0, y0, z) : F (x0, y0, z) = 0
}
.

Thus the intersection is non-empty if and only if a certain quadratic
form has a solution in P1(Fq).

Our goal in this section is to give an easily verifiable condition which
ensures that, given two orthogonal fibers F1 and F2 in W(Fq), there is
a third fiber F3 ⊂ W(Fq) satisfying

F1 ∩ F3 6= ∅ and F2 ∩ F3 6= ∅.
In more evocative terms, although the union F1 ∪ F2 of two orthogonal
fibers may be “disconnected,” there is a third fiber so that F1 ∪ F2 ∪ F3

is a “connected” set of orthogonal fibers. See Figure 1.
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W(1)
x0

W(2)
y0

W(3)
z1 Given x0 and y0, find z1

so that there exist x1 and y1

satisfying (x0, y1, z1) ∈ W(1)
x0

and (x1, y0, z1) ∈ W(2)
y0 .

Figure 1. Finding a fiberW(3)
z1 that intersects two given

fibers W(1)
x0 and W(2)

y0

Definition 6.3. For x0, y0, z0 ∈ P1, we define linking sets that describe
how to link two given fibers via a third fiber.

L(1)
y0,z0

=
{
x ∈ P1 :W(2)

y0
∩W(1)

x 6= ∅ and W(3)
z0
∩W(1)

x 6= ∅
}
,

L(2)
x0,z0

=
{
y ∈ P1 :W(1)

x0
∩W(2)

y 6= ∅ and W(3)
z0
∩W(2)

y 6= ∅
}
,

L(3)
x0,y0

=
{
z ∈ P1 :W(1)

x0
∩W(3)

z 6= ∅ and W(2)
y0
∩W(3)

z 6= ∅
}
.

Thus for example, the points in L(3)
x0,y0 tell us which z fibers can be used

to link the x = x0 fiber with the y = y0 fiber.

Definition 6.4. For x0, y0, z0 ∈ P1, we define the following curves that
are useful in creating fibral links:

C(1)y0,z0
=
{

(x, y, z) ∈ (P1)3 : F (x, y0, z) = F (x, y, z0) = 0
}
,

C(2)x0,z0
=
{

(x, y, z) ∈ (P1)3 : F (x0, y, z) = F (x, y, z0) = 0
}
,

C(3)x0,y0
=
{

(x, y, z) ∈ (P1)3 : F (x0, y, z) = F (x, y0, z) = 0
}
.

We note that the curve C(1)y0,z0 is the intersection in (P1)3 of a hypersur-
face of type (2, 0, 2) and a hypersurface of type (2, 2, 0), and similarly

for C(2)x0,z0 and C(3)x0,y0 . (See Lemma 6.6 for an estimate of the genera of
these curves.)

Theorem 6.5 (K3 Analogue of [8, Proposition 6]).
Let K be a field, and let x0, y0, z0 ∈ P1(K).

(a) There are surjective maps

C(1)y0,z0
(K)

(x,y,z)7→x−−−−−→ L(1)
y0,z0

(K),
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C(2)x0,z0
(K)

(x,y,z)7→y−−−−−→ L(2)
x0,z0

(K),

C(3)x0,y0
(K)

(x,y,z) 7→z−−−−−→ L(3)
x0,y0

(K).

(b) Assume that q ≥ 100. Then

L(1)
y0,z0

(Fq) 6= ∅, L(2)
x0,z0

(Fq) 6= ∅, L(3)
x0,y0

(Fq) 6= ∅.

Proof. (a) By symmetry, it suffices to prove that the first map is well-

defined and surjective. Let (x, y, z) ∈ C(1)y0,z0(K). By definition of C(1)y0,z0 ,
this means that

F (x, y0, z) = F (x, y, z0) = 0, and thus (x, y0, z), (x, y, z0) ∈ W(K).

Hence

(x, y0, z) ∈ W(2)
y0

(K)∩W(1)
x (K) and (x, y, z0) ∈ W(3)

z0
(K)∩W(1)

x (K),

which by definition of L(1)
y0,z0 shows that x ∈ L(1)

y0,z0(K). This completes
the proof that the projection map

π1 : C(1)y0,z0
(K) −→ L(1)

y0,z0
(K) (9)

is well-defined.
To prove surjectivity, we start with some x ∈ L(1)

y0,z0(K). By definition

of L(1)
y0,z0 , this means that we can find points

(x, y0, z1) ∈ W(2)
y0

(K)∩W(1)
x (K) and (x, y1, z0) ∈ W(3)

z0
(K)∩W(1)

x (K).

Then the definition of C(1)y0,z0 tells us that

(x, y1, z1) ∈ C(1)y0,z0
(K).

We have thus constructed a point in C(1)y0,z0(K) whose image in L(1)
y0,z0(K)

is x, which completes the proof that the projection map (9) is surjective.
(b) We use (a) with K = Fq. Again by symmetry, it suffices to prove
the first assertion. And from the surjectivity of the map in (a), it

suffices to prove that C(1)y0,z0(Fq) is not empty.

We let C̃(1)y0,z0 be a non-singular model for C(1)y0,z0 (or more generally for
any one of its irreducible components if it happens to be reducible), so
in particular we have a surjection

C̃(1)y0,z0(Fq) −→ C(1)y0,z0
(Fq).

Then the Weil estimate gives the inequality

#C̃(1)y0,z0(Fq) ≥ q + 1− 2 ·
(
genus C̃(1)y0,z0

)
· √q. (10)
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In particular, we see that

q + 1 > 2 ·
(
genus C̃(1)y0,z0)

)
· √q =⇒ C̃(1)y0,z0(Fq) 6= ∅. (11)

Lemma 6.6, whose proof we defer for the moment, says that the genus

of C̃(1)y0,z0 is at most 5. Hence (10) and (11) imply that C(1)y0,z0(Fq) is
non-empty provided q + 1 > 10

√
q, which is true for all q > 100. �

We now prove the genus estimate used in the proof of Theorem 6.5.

Lemma 6.6. Let W be a non-degenerate TIK3 surface. Then the irre-
ducible components of each of the curves in Definition 6.4 has geometric
genus at most 5.

Proof. We work over an algebraically closed field. By symmetry, it

suffices to fix y0, z0 ∈ P1 and to consider the curve C(1)y0,z0 . We let F be
the (2, 2, 2)-form that defines the non-degenerate TIK3 surfaceW . We
define a projection map

π : C(1)y0,z0
−→ P1, π(x, y, z) = x.

Keeping in mind that y0 and z0 are fixed, for x1 ∈ P1 we have

π−1(x1) =
{

(y, z) ∈ (P1)2 : F (x1, y0, z) = F (x1, y, z0) = 0
}
.

The equations for y and z are independent, so we find that

#π−1(x1) = #
{
z ∈ P1 : F (x1, y0, z) = 0

}
·#
{
y ∈ P1 : F (x1, y, z0) = 0

}
.

The non-degeneracy assumption tells us that F (x1, y0, z) and F (x1, y, z0)
are not identically 0, so they are non-trivial quadratic forms in, respec-
tively, z and y. As such, they have either 1 or 2 roots, and we can
determine which is the case by computing an appropriate discriminant:

#
{
z ∈ P1 : F (x1, y0, z) = 0

}
=

{
1 if Discz F (x1, y0, z) = 0,

2 if Discz F (x1, y0, z) 6= 0.

#
{
y ∈ P1 : F (x1, y, z0) = 0

}
=

{
1 if Discy F (x1, y, z0) = 0,

2 if Discy F (x1, y, z0) 6= 0.

Combining these estimates yields the following formulas

#π−1(x1) Discy F (x1, y, z0) Discz F (x1, y0, z)

4 6= 0 6= 0
2 = 0 6= 0
2 6= 0 = 0
1 = 0 = 0
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We next observe that Discy F (x, y, z0) is a degree 4 form in x, and
thus has at most 4 roots in P1 when considered as a polynomial in x;
and similarly for Discz F (x, y0, z). So there are at most 8 points x1 ∈ P1

with #π−1(x1) = 2. Further, each time we get an x1 with #π−1(x1) =
1, we see that 2 of those 8 potential values of x1 coalesce into 1 value.
So if we let

A = #
{
x1 ∈ P1 : π−1(x1) = 2

}
,

B = #
{
x1 ∈ P1 : π−1(x1) = 1

}
,

(12)

then we see that

B 0 1 2 3 4
A ≤ 8 ≤ 6 ≤ 4 ≤ 2 = 0

(13)

We assume for the moment that C(1)y0,z0 is irreducible,4 and we let

λ : C̃(1)y0,z0 −→ C(1)y0,z0

be a desingularization of C(1)y0,z0 , so the geometric genus of C(1)y0,z0 is simply

the genus of C̃(1)y0,z0 . We use the Riemann–Hurwitz genus formula

2 genus
(
C̃(1)y0,z0

)
−2 = −2 deg(π◦λ)+

∑
x1∈P1

(
deg(π◦λ)−#(π◦λ)−1(x1)

)
.

Substituting

deg π ◦ λ = deg(π) · deg(λ) = 4 · 1 = 4,

we get

genus
(
C̃(1)y0,z0

)
= −3 +

1

2

∑
x1∈P1

#(π◦λ)−1(x1)<4

(
4−#(π ◦ λ)−1(x1)

)

≤ −3 +
1

2

∑
x1∈P1

#π−1(x1)<4

(
4−#π−1(x1)

)
= −3 + #

{
x1 ∈ P1 : #π−1(x1) = 2

}
+

3

2
#
{
x1 ∈ P1 : #π−1(x1) = 1

}
= −3 + A+

3

2
B using the notation in (12),

≤ 5 from (13), since the max is at (A,B) = (8, 0).

4See Remark 6.7 for examples where C(1)y0,z0 is reducible.
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Finally, we note that if C(1)y0,z0 is reducible, then the above argument

works similarly, if we replace C(1)y0,z0 with any of its irreducible compo-
nents and note that now the map π has degree 1 or 2. This completes
the proof of Lemma 6.6. �

Remark 6.7. LetW be a TIK3 surface whose equation F is symmetric
in y and z, i.e., F (x, y, z) = F (x, z, y). Then for any ξ ∈ K there is a
factorization

F (x, ξ, z)− F (x, y, ξ) = F (x, z, ξ)− F (x, y, ξ) = (z − y)L(x, y, z),

where L(x, y, z) has degree 1 in y and z. It follows the curve C(1)ξ,ξ

described in Definition 6.4 is reducible, and indeed it is the union of
two genus 1 curves, each of which is isomorphic to the fibral curve

W(3)
ξ
∼=
{

(x, y) ∈ A2 : F (x, y, ξ) = 0
}

7. Tri-Involutive Markoff-Type K3 (MK3) Surfaces

The Markoff equation (1) and many of its variants admit not only
the involutions coming from the projections M → A2, they also ad-
mit sign-change involutions and coordinate permutations coming from
the symmetry of the Markoff equation. We give a name to the TIK3
surfaces that have these extra automorphisms.

Definition 7.1. We let S3, the symmetric group on 3 letters, act
on (P1)3 by permuting the coordinates, and we let the group

(µ3
2)1 :=

{
(α, β, γ) : α, β, γ ∈ µ2 and αβγ = 1

}
(14)

act on (P1)3 via sign changes,

εα,β,γ(x, y, z) = (αx, βy, γz). (15)

In this way we obtain an embedding5

G◦ := (µ3
2)1 oS3 ↪−→ Aut(P1 × P1 × P1).

Definition 7.2. A Markoff-type K3 (MK3) surface W is a TIK3 sur-
face whose (2, 2, 2)-form (5) is invariant under the action of G◦, i.e.,
the (2, 2, 2)-form F describing W satisfies

F (x, y, z) = F (−x,−y, z) = F (−x, y,−z) = F (x,−y,−z),

F (x, y, z) = F (z, x, y) = F (y, z, x) = F (x, z, y) = F (y, x, z) = F (z, y, x).

5We remark that (µ3
2)1 o S3 is isomorphic to S4, but for our applications the

group G◦ appears more naturally as the semi-direct product.
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Definition 7.3. Let W be an MK3 surface. We let

Gσ = 〈σ1, σ2, σ3〉 ⊂ Aut(W),

G = 〈group generated by Gσ and G◦〉 ⊂ Aut(W).

We suspect that the full automorphism group of a generic MK3-
surface is G; but as we shall see in Remark 9.6, some MK3-surfaces
admit additional automorphisms. We start by describing some ele-
mentary properties of the group G.

Proposition 7.4. Let W be an MK3-surface, and let G◦, Gσ, and G
be the subgroups of Aut(W) described in Definitions 7.1 and 7.3.

(a) Gσ is a normal subgroup of G.
(b) G = G◦Gσ.

Proof. (a) Since G is defined to be the group generated by G◦ and Gσ,
it suffices to show that G◦ is contained in the normalizer of Gσ. We
let {i, j, k} = {1, 2, 3}, and for the purposes of this proof, we define
transpositions and sign changes

τij = swap the i and j coordinates,

εij = multiply the i and j coordinates by −1.

Since S3 is generated by transpositions and (µ3
2)1 is generated by the

sign changes, it suffices to check that Gσ is normalized by the τij
and the εij. This can be checked by an explicit computation, or al-
ternatively we can use the defining property πij ◦ σk = πij of σk,
where πij is the projection map; see Definition 3.3. Thus momen-
tarily letting τ : (P1)2 → (P1)2 be the map that swaps the coordinates
and εi : (P1)2 → (P1)2 be the map that changes the sign of the ith
coordinate, we compute

πij ◦ (τ−1ij ◦ σk ◦ τij) = τ ◦ πij ◦ σk ◦ τij = τ ◦ πij ◦ τij = πij,

πjk ◦ (τ−1ik ◦ σk ◦ τik) = τ ◦ πij ◦ σk ◦ τik = τ ◦ πij ◦ τik = πjk

πij ◦ (ε−1ij ◦ σk ◦ εij) = εij ◦ πij ◦ σk ◦ εij = εij ◦ πij ◦ εij = ε2ij ◦ πij = πij,

πij ◦ (ε−1ik ◦ σk ◦ εik) = εi ◦ πij ◦ σk ◦ εik = εi ◦ πij ◦ εik = ε2i ◦ πij = πij.

It follows from the definitions of the σi that

τ−1ij ◦ σk ◦ τij = σk, ε−1ij ◦ σk ◦ εij = σk,

τ−1ik ◦ σk ◦ τik = σi, ε−1ik ◦ σk ◦ εik = σk.

Hence G◦ normalizes Gσ, and indeed, (µ3
2)1 is in the centralizer of Gσ.

(b) By definition the group G is generated by G◦ and Gσ, and from (a),
we know that Gσ is a normal subgroup of G. It follows that every
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element of G can be written as γσ with γ ∈ G◦ and σ ∈ Gσ. Hence G =
G◦Gσ. �

Proposition 7.5. Let W/K be a (possibly degenerate) MK3-surface.

(a) There exist a, b, c, d, e ∈ K so that the (2, 2, 2)-form F that de-
fines W has the form

Fa,b,c,d,e(x, y, z) = ax2y2z2 + b(x2y2 + x2z2 + y2z2)

+ cxyz + d(x2 + y2 + z2) + e = 0. (16)

(b) Let F be as in (a). Then W is a non-degenerate, i.e., the projec-
tions πij :W → (P1)2 are quasi-finite, if and only if

be 6= d2 and ad 6= b2.

Remark 7.6. We can recover the classical (translated) Markoff equa-
tion for the surfaceMa,k in Definition 1 as a special case of an Fa,b,c,d,e.
Thus Ma,k is given by the affine equation

F0,0,−a,1,−k(x, y, z) = x2 + y2 + z2 − axyz − k = 0.

We note, however, that the Markoff equation is degenerate, despite
the involutions being well-defined on the affine Markoff surface Ma,k.
This occurs because the involutions are not well-defined at some of the
points at infinity in the closure of Ma,k in (P1)3.

Proof of 7.5. (a) The space of S3-invariant quadratic polynomials in
Z[x, y, z] is spanned by the following 10 polynomials:

(1) x2y2z2 (2) xyz2 + xy2z + x2yz

(3) xyz (4) x2y2z + x2yz2 + xy2z2

(5) x2 + y2 + z2 (6) x2y2 + x2z2 + y2z2

(7) x2y + x2z + xy2 + xz2 + yz2 + y2z

(8) xy + xz + yz (9) x+ y + z (10) 1

Of these, the polynomials that are also invariant for the double-sign
changes in (µ3

2)1 are (1), (3), (5), (6), and (10). Hence all
(
(µ3

2)1oS3

)
-

invariant (2, 2, 2)-polynomials have the form indicated in (a).
(b) By symmetry, it suffices to consider π12 and σ3. The map π12 is
quasi-finite if and only if the fibers of the map π12 are 0-dimensional.
Let F be the homogenization of the polynomial in (a). Then π12 is
quasi-finite over the point(

[α, β], [γ, δ]
)
∈ P1 × P1
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if and only if the polynomial F (α, β; γ, δ;X3, Y3) is not identically 0.
Since (

the X3Y3 term of F (α, β; γ, δ;X3, Y3)
)

= αβγδX3Y3,

we see that π12 is quasi-finite unless αβγδ = 0. By the symmetry of F ,
it suffices to consider the cases that α = 0 and β = 0.

If α = 0, then

F (0, 1; γ, δ;X3, Y3) = (bγ2 + dδ2)X2
3 + (dγ2 + eδ2)Y 2

3 .

Hence π12 is quasi-finite at
(
[0, 1], [γ, δ], [α3, γ3]

)
unless

bγ2 + dδ2 = dγ2 + eδ2 = 0.

Since (γ, δ) 6= (0, 0), this is possible if and only if be = d2.
Similarly, if β = 0, we look at

F (1, 0; γ, δ;X3, Y3) = (aγ2 + bδ2)X2
3 + (bγ2 + dδ2)Y 2

3 .

Thus σ3 is well-defined at
(
[1, 0], [γ, δ], [α3, γ3]

)
unless

aγ2 + bδ2 = bγ2 + dδ2 = 0.

Since (γ, δ) 6= (0, 0), this is possible if and only if ad = b2. This
completes the proof that π12 is quasi-finite if and only if be 6= d2

and ad 6= b2. �

8. Connected Fibral Components and the Cage for MK3
Surfaces

For this section we let W be an MK3-surface, as described in Defi-
nition 7.2, defined over a finite field Fq. We note that the S3-symmetry

ofW implies that for any t ∈ P1(Fq), the three fibersW(1)
t (Fq),W(2)

t (Fq)
and W(3)

t (Fq) have the same orbit structure, so in particular

W(i)
t (Fq) ∈ ConnFib

(
W(Fq)

)
for some i ∈ {1, 2, 3}

⇐⇒ W(i)
t (Fq) ∈ ConnFib

(
W(Fq)

)
for all i ∈ {1, 2, 3}.

Thus the G-connected fibers inW(Fq) are determined by the projection
to P1(Fq) of ConnFib

(
W(Fq)

)
onto any of its coordinates. We denote

this set by

π ConnFib
(
W(Fq)

)
=
{
t ∈ P1(Fq) :W(i)

t (Fq) ∈ ConnFib
(
W(Fq)

)}
.

Then we have the useful characterization (for MK3-surfaces):

P ∈ Cage
(
W(Fq)

)
⇐⇒ some coordinate of P is in π ConnFib

(
W(Fq)

)
.
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9. A One Parameter Family of MK3 Surfaces

In the next few sections we study an interesting 1-parameter family of
MK3-surfaces. We assume throughout that K is a field with char(K) 6=
2.

Definition 9.1. For k ∈ K∗ we define Wk to be the MK3-surface

Wk : x2 + y2 + z2 + x2y2z2 + kxyz = 0.

Remark 9.2. In the notation of Proposition 7.5, the (2, 2, 2)-form
defining Wk has (a, b, c, d, e) = (1, 0, k, 1, 0). In particular, we have

be = 0 6= 12 = d2 and ad = 1 6= 02 = b2,

so Proposition 7.5(b) tells us that Wk is non-degenerate.

Remark 9.3. Let ζ ∈ K be an element satisfying ζ4 = 1. Then there
is a K-isomorphism

Wk −→Wζ3k, (x, y, z) 7−→ (ζx, ζy, ζz). (17)

So we always have an identification Wk(K) ∼= W−k(K), and if K
contains i =

√
−1, then there are further identifications Wk(K) ∼=

W±ik(K).

Remark 9.4. The three involutions (6) on Wk are given explicitly by

σ1(x, y, z) =

(
− kyz

1 + y2z2
− x, y, z

)
,

σ2(x, y, z) =

(
x,− kxz

1 + x2z2
− y, z

)
,

σ3(x, y, z) =

(
x, y,− kxy

1 + x2y2
− z
)
.

We recall from Section 7 that G◦ is the group (µ3
2)1 oS3 of order 24

sitting in Aut(Wk) composed of sign changes and coordinate permuta-
tions, that Gσ is the normal subgroup of Aut(Wk) generated by σ1, σ2, σ3,
and that G = G◦Gσ is the subgroup of Aut(Wk) generated by G◦ and Gσ.

Proposition 9.5. Let k ∈ K∗. The set of singular points ofWk always
contains the 4 points{

(0, 0, 0), (0,∞,∞), (∞, 0,∞), (∞,∞, 0)
}
. (18)

The point (0, 0, 0) is fixed by G, and the other 3 singular points form
a G-orbit.6 If k /∈ {±4,±4i}, then the set (18) is the full set of singular
points of Wk.

6If we also allow the δ-inversion involutions described in Remark 9.6, then the 4
singular points form a single orbit.
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For k = 4 the set of singular points is

Sing(W4) =
{

(0, 0, 0), (0,∞,∞), (∞, 0,∞), (∞,∞, 0)

(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1)
}

; (19)

and for the other k ∈ {±4,±4i}, the singular points can be found using
the isomorphisms described in Remark 9.3. The points in (19) with
non-zero coordinates form a single G-orbit of size 4.

Proof. We let

F (x, y, z) = x2 + y2 + z2 + x2y2z2 + kxyz (20)

be the polynomial definingWk, and we use subscripts to denote partial
derivatives. The singular points on this affine piece of Wk are the
solutions to

F = Fx = Fy = Fz = 0. (21)

The ideal of Q[x, y, z, k] generated by the four polynomials in (21)
contains the following polynomials:7

x2 − y2 x(x4 − 1) x(24x2 − k2) x(k4 − 28)
x2 − z2 y(y4 − 1) y(24y2 − k2) y(k4 − 28)
y2 − z2 z(z4 − 1) z(24z2 − k2) z(k4 − 28)

(22)

The point (0, 0, 0) is always singular. Since (22) says that singular
points satisfy x2 = y2 = z2, any other singular point (x, y, z) necessarily
has xyz 6= 0, and then (22) forces

k4 = 28, 24x2 = 24y2 = 24z2 = k2, and x4 = y4 = z4 = 1.

From k4 = 28, we see that k ∈ {±4,±4i}; and from x4 = y4 = z4 = 1,
we see that x, y, z ∈ {±1,±i}. For each of these 4 possible values of k,
it can be directly checked that the points satisfying F = Fx = Fy = Fz
are those given in the table in the statement of the proposition.

It remains to check the points on the complement in (P1)3 of the affine
piece. To do that, we use the fact that (0, 0, 0) is the only singular point
of the affine piece of Wk that has a coordinate mapped to ∞ under
the δα,β,γ inversion maps described in Remark 9.6. By symmetry, it
suffices to check points P of the following forms, where y and z are

7Indeed, this is true in the ring Z[2−1, x, y, z, k].
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non-zero:

P Singular? Why?

(∞, y, z) No δ−1,−1,1(P ) = (0, y−1, z)
(∞,∞, z) No δ−1,−1,1(P ) = (0, 0, z)
(∞, y, 0) No δ−1,−1,1(P ) = (0, y−1, 0)
(∞,∞, 0) Yes δ−1,−1,1(P ) = (0, 0, 0)
(∞, 0, 0) − /∈ Wk

(∞,∞,∞) − /∈ Wk

�

Remark 9.6 (MK3-Surfaces with Extra Involutions). The family of
MK3-surfaces Wk admit additional involutions in which two of x, y, z
are replaced by their multiplicative inverses.8 Thus analogously to (14)
and (15), we can define another action of (µ3

2)1 on (P1)3 via the formula

δα,β,γ(x, y, z) = (xα, yβ, zγ), where (α, β, γ) ∈ (µ3
2)1. (23)

We observe that the δ and ε actions commute (since (−1)−1 = −1), so
we obtain an embedding

Ĝ◦ :=
(
(µ3

2)1 × (µ3
2)1
)
oS3︸ ︷︷ ︸

We view this as a subgroup of Aut
(
(P1)3

)
.

↪−→ Aut(Wk).

Since the classical Markoff equation (4) and general MK3-surfaces (16)
do not admit these extra automorphisms, we will not include them
when constructing orbits in Wk. So for example, the finite orbits
and G◦-generators in Wk(C) that we list in Table 3 are G-orbits, as
are the finite field orbits in Wk(Fp) in Tables 5–8. There would be
some collapsing of generators and merging of orbits if we also used
the δ-automorphisms. However, the existence of these extra automor-
phisms can aid in studying the geometry of Wk, as will be illustrated
in the proof of Proposition 9.7.

More generally, Proposition 7.5 says that MK3-surfaces Wa,b,c,d,e are
described by (2, 2, 2)-forms Fa,b,c,d,e(x, y, z) that depend on 5 homoge-
neous parameters [a, b, c, d, e]. Then the formula

Fa,b,c,d,e(x, y, z)− Fa,b,c,d,e(x−1, y−1, z)x2y2

=
(

(a− d)z2 + (b− e)
)

(x2y2 − 1),

combined with the x, y, z symmetry of Fa,b,c,d,e, imply that

δα,β,γ ∈ Aut(Wa,b,c,d,e) ⇐⇒ a = d and b = e.

8Note that we’re really working in P1, so we formally set 0−1 =∞ and∞−1 = 0.
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Thus Wk =W1,0,k,1,0 corresponds to a = d = 1 and b = e = 0.

Proposition 9.7. Let K be a field with char(K) 6= 2, let k ∈ K∗, and

let ξ ∈ P1(K). Then the fiber W(1)
k,ξ is singular if and only if

ξ = 0 or ξ =∞ or k = ±2(ξ ± ξ−1).

The singular points on the singular fibers are as follows :

Sing
(
W(1)

k,0

)
=
{

(0, 0, 0), (0,∞,∞)
)
,

Sing
(
W(1)

k,∞
)

=
{

(∞,∞, 0), (∞, 0,∞)
)
,

and for all ξ /∈ {0,∞} and for all u ∈ {±1} and all v ∈ {±1,±i},

Sing
(
W(1)

u(ξ+vξ−1),ξ

)
=
{

(ξ, v,−uv3), (ξ,−v, uv3)
}
.

By symmetry, analogous statements are true for W(2)
k,ξ and W(3)

k,ξ .

Remark 9.8. Let W(i)
k,ξ be a fiber of Wk. Then each of the involu-

tions σ1, σ2, σ3 and each of the automorphisms in G◦ defines an iso-

morphism from W(i)
k,ξ to some other (or possibly the same) fiber of Wk.

It follows that the singular points on a fiber are mapped to singular
points on a fiber. Hence the set

3⋃
i=1

⋃
ξ∈P1

Sing(W(i)
k,ξ)

of fibral singular points is a finite subset of Wk that is G-invariant,
so it breaks up into a finite number of finite G-orbits. If ξ 6= 0,∞
and ξ4 6= 1, then it will be a G-orbit of size 24; cf. Table 3.

Proof of Proposition 9.7. As in the proof of Proposition 9.5, we let F
be the polynomial (20) defining Wk, and we use subscripts to denote

partial derivatives. The fiber W(1)
k,ξ is singular if and only if the simul-

taneous equations

F (ξ, y, z) = Fy(ξ, y, z) = Fz(ξ, y, z) = 0 (24)

have a solution. We compute

Resy

(
Resz(F, Fz),Resz(Fy, Fz)

)
= 212 · k8 · x26 · (2x2 − kx− 2)2

· (2x2 − kx+ 2)2 · (2x2 + kx− 2)2 · (2x2 + kx+ 2)2.

We first consider the case that ξ = 0. Then (24) forces y = z =
0, so the only affine singular point is (0, 0, 0). Using the inversion
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automorphism fixing the x-coordinate that is described in Remark 9.6,
there is an additional singular point (0,∞,∞), so we find that

Sing(W(1)
k,0) =

{
(0, 0, 0), (0,∞,∞)

}
.

And similarly, using the inversion automorphisms in Remark 9.6 that
replace the x-coordinate with x−1, we see that

Sing(W(1)
k,∞) =

{
(∞,∞, 0), (∞, 0,∞)

)
.

We now assume that ξ 6= 0,∞. Then our assumptions that char(K) 6=
2 andW(1)

k,x0
is singular imply that ξ is a root of one of the polynomials

2x2 ± kx± 2. We will consider the case that

2ξ2 + kξ + 2 = 0,

and leave the similar computation for the other three cases to the
reader. Thus we assume that

k = −2(ξ + ξ−1) and W(1)
k,ξ is singular.

Substituting the expression for k into (24), we find that (y0, z0) is a

singular point on the fiber W(1)
k,ξ if and only if (y0, z0) satisfy

(y2z2 − 2yz + 1)ξ2 − 2yz + y2 + z2 = 0,

(yz2 − z)ξ2 − z + y = 0,

(y2z − y)ξ2 − y + z = 0.

Eliminating x or y or z from these three equations, we find that (y0, z0)
satisfy

y2 − 1 = z2 − 1 = (y − z)(yz − 1) = 0,

and these equations have two solutions,

(y0, z0) = (1, 1) and (y0, z0) = (−1,−1).

Finally, we substitute k = −2(ξ + ξ−1) and (x, y, z) = (ξ,±1,±1)
into (24) and verify that F , Fy, and Fz vanish. This proves that

Sing
(
W(1)

−2(ξ+ξ−1),ξ

)
=
{

(ξ, 1, 1), (ξ,−1,−1)
}

for all ξ 6= 0,∞,

which completes the proof of Proposition 9.7. �

Remark 9.9. For a general TIK3-surface, the three projection maps
W → P1 give W three different structures as a surface fibered by
genus 1 curves, and the corresponding Jacobian variety has a section
of infinite order whose translation action on W is the σi associated to
the projection. For MK3-surfaces, the S3-symmetry implies that the
three structures are the same. Using the explicit description of the
singular points on Wk in Proposition 9.5 and the singular fibers of Wk
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in Proposition 9.7, one could compute a Néron model forWk → P1 and
compute the canonical height of the point on its Jacobian, but we will
not do this computation in the present article.

Proposition 9.10. LetWk be the MK3-surface given in Definition 9.1,

let F be the associated polynomial, let y0, z0 ∈ P1, and let C(1)y0,z0 be the

curve associated to F as given in Definition 6.4. If C(1)y0,z0 is singular,
then one of the following is true:

y0 or z0 = 0 or∞, y20 = z20 , y20z
2
0 = 1, y0 or z0 =

±k ±
√
k2 ± 16

4
.

By symmetry, analogous statements are true for C(2)x0,z0 and C(3)x0,y0.

Corollary 9.11. Let k ∈ F∗q. Then

#

{
(x0, y0, z0) ∈ Wk(Fq) :

one or more of C(1)y0,z0,

C(2)x0,z0, C(3)x0,y0 is singular

}
≤ 144q.

Proof of Proposition 9.10. To ease notation, we let b = y0 and c = z0.

An affine piece of the curve C(1)b,c is given by the equations

F (x, b, z) = F (x, y, c) = 0.

Hence a point (x, y, z) ∈ C(1)b,c is a singular point if and only if

rank

[
Fx(x, b, z) 0 Fz(x, b, z)
Fx(x, y, c) Fy(x, y, c) 0

]
≤ 1.

The rank condition and a bit of algebra yields three cases, which we
consider in turn.
Case 1: Fz(x, b, z) = Fy(x, y, c) = 0. In this case we are looking
for values of b, c, k such that the equations

F (x, b, z) = F (x, y, c) = Fz(x, b, z) = Fy(x, y, c) = 0

have a solution (x, y, z) ∈ A3. Eliminating x, y, z from these four equa-
tions gives the equation

(b2 − c2)(b2c2 − 1) = 0.

Hence if there is a singular point, then c = ±b±1.
Case 2: Fx(x, b, z) = Fz(x, b, z) = 0. In this case, which is a ver-
sion of Proposition 9.7, we are looking for values of b, c, k such that the
equations

F (x, b, z) = F (x, y, c) = Fx(x, b, z) = Fz(x, b, z) = 0
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have a solution (x, y, z) ∈ A3. Eliminating x, y, z from these four equa-
tions gives the equation

b2(2b2 − bk − 2)(2b2 − bk + 2)(2b2 + bk − 2)(2b2 + bk + 2) = 0.

Hence if there is a singular point, then

b = 0 or b =
±k ±

√
k2 ± 16

4
.

Case 3: Fx(x, y, c) = Fy(x, y, c) = 0. By symmetry, this is the
same as Case 2 with y ↔ z and b↔ c. �

Proof of Corollary 9.11. It suffices to bound the number of (y0, z0) ∈
P1(Fq) such that C(1)y0,z0 is singular, and then multiply by 3 for the xyz-
symmetry and also multiply by 2 because each (y0, z0) may yield 2
points onWk. (This includes some duplicates, so some improvement is
possible.)

According to Proposition 9.10, the singular cases are included in the
following table, where again we do not worry that some points appear
more than once:

(y0, z0) # with C(1)y0,z0 singular

y0 or z0 = 0 or ∞ ≤ 4q
y20 = z20 6= 0 or ∞ ≤ 2(q − 1)

y20z
2
0 = 1 ≤ 2(q − 1)

y0 or z0 = ±k±
√
k2±16
4

≤ 16q

Hence there are at most 24q pairs (y0, z0), and as noted earlier, this
must be multiplied by 6 to account for the other cases. �

10. Finite Orbits in Wk(C)

Table 3 describes finite G-orbits inWk(C). We do not claim that this
is the complete list of possibilities. However, we note that the varied
nature of the finite orbits in the 1-parameter family Wk suggests that
any description of finite orbits over C on general TIK3-surfaces, or even
on MK3-surfaces, is likely to be quite complicated.

Most of the orbits in Table 3 were unearthed by examining small
orbits in Wk(Fp) that appear in Tables 5–8 and looking at specific
properties of the points in the orbits. We explain the process for a
number of examples.

Question 10.1 (Uniform Boundedness Question). For each k ∈ C,
we know from [10] that there are only finitely many finite G-orbits
in Wk(C). Is there a bound that is independent of k for the largest
such orbit? More generally, is there such a bound for finite orbits
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in W(C) as W runs over all MK3-surfaces? And even more generally,
how about for all TIK3-surfaces, although in this case we look at orbits
for the group generated by the three involutions σ1, σ2, σ3?

Remark 10.2. We mention that if we consider 〈σ1, σ2, σ3〉-orbits, then
the orbit of size 144 in Remark 10.6 consist of 12 orbits of size 12, the
orbit of size 160 in Remark 10.7 consist of 4 orbits of size 40, and the
orbit of size 288 described in Remark 10.8 consist of 12 orbits of size 24.
These provide lower bounds for the putative uniform bounds discussed
in Questions 1.3 and10.1.

Definition 10.3 (Trivial Orbits). As noted in Proposition 9.5, the four
singular points in Wk form two G-orbits, namely the fixed point{

(0, 0, 0)
}

and the orbit of size 3,{
(0,∞,∞), (∞, 0,∞), (∞,∞, 0)

}
.

We will call these orbits the trivial orbits in Wk, and as such, we have
not included them in Tables 5–8.

Remark 10.4 (One-dimensional families of finite orbits in Wk(C)).
Table 3 contains several examples of one-dimensional families of finite
orbits in Wk(C), and indeed, these families are defined over Q or Q(i).
Ignoring the trivial orbits described in Definition 10.3, we have the
following examples:

Size 24: There is a k ∈ Q(t) such that Wk

(
Q(t)

)
has a G-orbit

of size 24.
Size 48: The set Wk

(
Q(i)

)
has a G-orbit of size 48

Size 192: There is a k ∈ Q(t) such that Wk

(
Q(t)

)
has a G-orbit

of size 192.
Size 288: There is a curve C/Q of genus 9 and an element k ∈

Q(C) in the function field of C so thatWk

(
Q(C)

)
has a G-orbit

of size 288.

Remark 10.5 (Orbits of Size 64). We describe the derivation of the
orbit of size 64 in Table 3. Experimentally in Tables 5–8 we see orbits
of size 64 in Wk(Fp) for various values of p and k, but the relation
between p and k is not clear. Examining the actual orbits in several
of these cases, we found that there was a single point in Wk(Fp) of the
form (β, β, β), and that the point (β, β, 1) also appeared in Wk(Fp).
We next computed

(β, β, β) ∈ Wk ⇐⇒ β6 + kβ3 + 3β2 = 0,
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(β, β, 1) ∈ Wk ⇐⇒ β4 + (k + 2)β2 + 1 = 0.

Eliminating k and the trivial solutions β ∈ {0, 1} gives the equation9

β3 + β2 + β − 1 = 0.

This gives k = −(β + β−1)2. It is then an exercise to compute the G-
orbit of (β, β, β). It turns out to be the union of the G◦ orbits of the
following five points:

Point (β, β, β) (β, 1
β
, 1
β
) (β, β, 1) ( 1

β
, 1
β
, 1) (β, 1

β
, 1)

Size of G◦-orbit 4 12 12 12 24

Remark 10.6 (Orbits of Size 144). The orbits of size 144 in Tables 5–8
tend to feature points of the form (α, β, 1) and (α, β,−β) that satisfy

σ1(α, β,−β) = (α, β,−β) and σ3(α, β,−β) = (α, β, 1).

We assume that α, β /∈ {0,∞} and that β 6= −1, and then we obtain
four conditions on k, α, β:

(α, β, 1) ∈ Wk ⇐⇒ k = −(α + α−1)(β + β−1),

(α, β,−β) ∈ Wk ⇐⇒ αβ2k = α2(β4 + 1) + 2β2,

σ1(α, β,−β) = (α, β,−β) ⇐⇒ α2β2(β4 + 1) = 2β2,

σ3(α, β,−β) = (α, β, 1) ⇐⇒ (β2 − β + 1)α2 + β = 0.

The ideal in Z[α, β, k] generated by these four relations is also generated
(according to Magma) by the three relations

α4 + 4α2 − 1 = 0, k = 4α(α2 + 4), β2 + (α2 + 3)β + 1 = 0.

(We also note that since α 6= 0, we can replace the formula for k
by k = 4α−1.)

Remark 10.7 (Orbits of Size 160). The orbits of size 160 in Tables 5–8
tend to include a single point of the form (β, β, β) having the property
that

σ1 ◦ σ3(β, β, β) = (1, β, ∗). (25)

The assumption that (β, β, β) ∈ Wk gives k = −(3 + β4)/β, and then
computing (25) explicitly gives

σ1 ◦ σ3(β, β, β) =

(
β9 + 2β5 + 5β

β8 + 6β4 + 1
, β,

2β

β4 + 1

)
.

9We note that β = 0 gives the contradiction 1 = 0, while β = 1 yields k = −4
and an orbit with fewer than 64 elements.
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Setting the first coordinate to 1 and discarding the trivial solution β =
1 yields the condition

β8 + 2β4 − 4β3 − 4β2 − 4β + 1.

Setting γ = 2β/(β4 + 1) for convenience, we find that the union of
the G◦-orbits of the following points is an orbit of size 160.

Point Size of G◦-orbit

(β, β, β) 4
(β−1, β−1, β) 12

(β, β, γ) 12
(β−1, β−1, γ) 12
(β, β−1, γ−1) 24

Point Size of G◦-orbit

(1, β, γ) 24
(1, β−1, γ) 24
(1, β, γ−1) 24

(1, β−1, γ−1) 24

Remark 10.8 (Orbits of Size 288). There is an orbit of size 288
inW11(F47) whose points have coordinates in the following set of values:

t −t t−1 −t−1

α 3 44 16 31
β 6 41 8 39
γ 11 36 30 17
δ 15 32 22 25

In particular, we find that

σ3(3, 6, 11) = (3, 6, 15) in W11(F47).

If we now treat α, β, γ as indeterminates and want to require that

(α, β, γ) ∈ Wk and that σ3(α, β, γ) = (α, β, δ),

then we find that k and δ are given by the formulas

k = −α
2 + β2 + γ2 + α2β2γ2

αβγ
, (26)

δ =
α2 + β2

γ(α2β2 + 1)
. (27)

Let P1 = (3, 6, 11) ∈ W11(F47). Then the G-orbit of P1 has size 288,
while the sub-orbit for Gσ = 〈σ1, σ2, σ3〉 has size 24 and is described
in detail in Table 1. We observe that the subgroup of G◦ leaving the
orbit Gσ · P1 invariant is

StabG◦(Gσ · P1) = {e, λ}, where λ : (x, y, z) 7−→ (x,−z,−y).

Hence the full G-orbit of P1 ∈ W11(F47) has order

#G · P1 =
(

#Gσ · P1

)
·
(

#G◦

# StabG◦(Gσ · P1)

)
= 24 · 24

2
= 288.
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Looking at Table 1, we find many relations in W11(F47), including
for example10

δ = σ1(α, β, γ)[1]−1 = −σ2(α, β, γ)[2] = σ3(α, β, γ)[3], (28)

and
σ2 ◦ σ3(α, β, γ) = σ1 ◦ σ3(−β−1,−γ, α−1). (29)

If we now view (28) and (29) as determining conditions on the indeter-
minate quantities α, β, γ, we find that α, β, γ must satisfy certain equa-
tions, and restricting to those equations that are satisfied by (3, 6, 11)
in F47, we find that α, β, γ must satisfy

α3β2 − α2β + α− β3 = 0, (30)

β3γ3 − β2 + βγ − γ2 = 0, (31)

α3γ2 + α2γ + α + γ3 = 0. (32)

These three relations for α, β, γ define a reducible subset of A3, and a
computation using Magma shows that this set consists of two pieces.
There is a finite set of points defined by

3α + γ3 = β + γ = γ4 + 3 = 0, (33)

and there is a geometrically irreducible reduced affine curve in A3 given
by the equations

C =

(α, β, γ) :

α2β − α2γ + αβ2γ2 − α + β2γ − βγ2 = 0

α2γ2 − αβ2γ3 + αβ + βγ3 = 0

β3γ3 − β2 + βγ − γ2 = 0

 (34)

We discard the points (33), since the orbit collapses if β = −γ. A
further computation shows that the affine curve C has a unique singular
point at (0, 0, 0) and that it has (geometric) genus 9.

We let I denote the ideal in Q[α, β, γ] generated by the three polyno-
mials (34) defining the curve C. Then for each of the points Pj in Ta-
ble 1, treating α, β, γ as indeterminates and taking k and δ in Q(α, β, γ)
as specified by (26) and (27), we used Magma to check that σi(Pj) is as
specified in Table 1 if we work in the fraction field of the quotient ring
Q[α, β, γ]/I. Hence the Gσ-orbit of (α, β, γ) has size 24 when we work
over this ring, and then as noted earlier, the full G-orbit has size 288.

In summary, we have shown that there is an irreducible affine curve
C/Q of geometric genus 9 and an element k ∈ Q(C) in the function
field of C so that Wk

(
Q(C)

)
contains twelve Gσ-orbits of size 24 that

combine to form one G-orbit of size 288.

10We use the convenient notation v[j] to denote the jth coordinate of the vec-
tor v.
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P P σ1(P ) σ2(P ) σ3(P )

P1 (α, β, γ) P2 P5 P7

P2 (δ−1, β, γ) P1 P3 P11

P3 (δ−1,−α−1, γ) P4 P2 λP11

P4 (−β−1,−α−1, γ) P3 P6 P10

P5 (α,−δ, γ) P6 P1 λP7

P6 (−β−1,−δ, γ) P5 P4 λP10

P7 (α, β, δ) P8 λP5 P1

P8 (γ−1, β, δ) P7 P9 P12

P9 (γ−1,−α−1, δ) P10 P8 λP12

P10 (−β−1,−α−1, δ) P9 λP6 P4

P11 (δ−1, β, α−1) P12 λP3 P2

P12 (γ−1, β, α−1) P11 λP9 P8

Table 1. The Gσ-orbit of (α, β, γ) = (3, 6, 11) ∈
W11(F47), which we want to lift to a Gσ-orbit in char-
acteristic 0. The map λ ∈ G◦ is λ(x, y, z) = (x,−z,−y).

However, we note that there are points on the curve C(C) for which
the orbit collapses. Thus if we set δ to be equal to any of α−1, −β, or γ,
then the G◦-orbits of the 12 points listed in Table 3 collapse pairwise,
and we obtain a total G-orbit of size 144, instead of 288. A short
computation shows that if we don’t allow α, β, γ to be in {0,±1,±i},
then

δ = α−1 =⇒ 3α4 = −1, δ = −β =⇒ β4 = −3, δ = γ =⇒ γ4 = −3.

Remark 10.9 (Orbits of Size 288: A Cautionary Tale). We have seen
in Remark 10.8 that there is an entire 1-parameter family of orbits of
size 288 in characteristic 0. However, there are also exceptional orbits
of size 288 in finite characteristic that do not lift. For example, we
consider the orbit of size 288 in W11(F53). This orbit contains many
points of the form (α,−α, 1) and many points of the form (0, β, iβ). We
note that an orbit containing points of this form does not fit into the
family described in Remark 10.8, but this does not preclude it coming
from some other characteristic 0 orbit, so we continue analyzing the
present example. In particular, we see that W11(F53) contains the
points

(38,−38, 1)
σ3−−→ (15, 38, 12)

σ2−−→ (15, 11, 12)
σ1−−→ (0, 11, 12).
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This suggests that we should take a point (α,−α, 1) ∈ Wk satisfying

σ1 ◦ σ2 ◦ σ3(α,−α, 1) = (0, β, iβ). (35)

The assumption that (α,−α, 1) ∈ Wk forces k = (α + α−1)2, and the
assumption that the first coordinate in (35) is 0 forces

α18−3α16+12α14−16α12+62α10−38α8+44α6−8α4+9α2+1 = 0. (36)

We next observe that in W11(F53), the orbit of (38,−38, 1) has a σ3
fixed point, specifically

σ2 ◦ σ3(38,−38, 1) = (15, 11, 12) is fixed by σ3. (37)

So in general we might want to impose the further condition that

σ3 ◦ σ2 ◦ σ3(α,−α, 1) = σ2 ◦ σ3(α,−α, 1) (38)

to mirror the behavior in W11(F53). Assuming that α 6= ±1, we find
that (38) forces α to satisfy

α12 + 2α10 + 15α8 + 12α6 + 15α4 + 2α2 + 1 = 0. (39)

However, the conditions (36) and (39) are incompatible in characteris-
tic 0. Indeed, the resultant of the two polynomials in (36) and (39) is
equal to 280 · 532, so the fact that (37) is true in W11(F53) comes from
our choice of the specific finite field F53.

Remark 10.10 (Orbits of size 256: Another Cautionary Tale). There
is an orbit of size 256 in W8(F53) whose points have coordinates in the
following set of values:

{±1,±α±1,±β±1,±γ±1} with α = 16, β = 21, γ = 39.

In particular, there are points

P1 = (α, α, α) = (16, 16, 16) ∈ W8(F53),

P2 = (α, α, γ−1) = (16, 16, 34) ∈ W8(F53),

P3 = (1, α, β) = (1, 16, 21) ∈ W8(F53),

P4 = (α, β, γ) = (16, 21, 39) ∈ W8(F53).

We first note that

P1 = (α, α, α) ∈ Wk =⇒ k = −α
4 + 3

α
,

P2 = (α, α, γ−1) ∈ Wk =⇒ α4 + 1− 2αγ = 0 (assuming P2 6= P1),
(40)

P3 = (1, α, β) ∈ Wk =⇒ (α2 + 1)β2 − (α4 + 3)β + α2 + 1 = 0,
(41)
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P4 = (α, β, γ) ∈ Wk =⇒ α2 + β2 + γ2 + α2β2γ2 − (α4 + 3)βγ = 0.
(42)

This gives three relations on α, β, γ. We can use the orbit structure
of W8(F53) to generate additional relations such as

σ1(16, 16, 16) = (39−1, 16, 16) ∈ W8(F53)

=⇒ σ1(α, α, α) = (γ−1, α, α) ∈ Wk

=⇒ α4 − 2αγ + 1 = 0, (43)

σ1(16, 21, 39) = (16, 21, 39) ∈ W8(F53)

=⇒ σ1(α, β, γ) = (α, β, γ) ∈ Wk

=⇒ α2(α4 + 3)β2 − (α4 − 1) = 0. (44)

The five relations (40)–(44) are incompatible in characteristic 0, al-
though they do of course have the solution (α, β, γ) = (16, 21, 39)
in F53. More precisely, the resultant of the five polynomials (40)–
(44) is 9752 = 23 · 23 · 53, and indeed in W2(F23) we find an orbit
of size 256 corresponding to (α, β, γ) = (6, 11, 18). So the orbits of
size 256 in W2(F23) and W8(F53) do not lift to characteristic 0.

Remark 10.11 (Orbits of Size 384: A Third Cautionary Tale). There
is a point P1 = (22, 22,−23) ∈ W13(F71). A direct computation shows
that #G ·P1 = 384. We let (α, β, γ, δ) = (22, 23, 9, 44), and we consider
the six points P1 . . . , P6 ∈ W13(F71) described in Table 2. We also

let Ĝ◦ ⊂ Aut(Wk) be the subgroup containing 96 automorphisms that
is described in Remark 9.6. Again by direct computation11 we find
that G · P1 ⊂ W13(F71) is invariant for Ĝ◦, and that it splits up into

six Ĝ◦-orbits with orbit representatives P1, . . . , P6 and orbits of size 48
or 96 as indicated in Table 2.

We now try to lift to characteristic 0, so we view α, β, γ, δ as inde-
terminates. However, it turns out that the six conditions

Pi ∈ Wk for i = 1, . . . , 6

are inconsistent in Q[α, β, γ, δ, k].

11. Full Orbits in Wk(Fp)

In this section we consider total orbits in Wk(Fp). Such orbits are
necessarily finite. In Tables 5–8 we compute the orbit structure for
each 3 ≤ p ≤ 79. We use a straightforward algorithm in which we

11Somewhat surprisingly, for this example we find that Gσ ·P1 = G·P1 = Ĝ◦Gσ ·P1

in W13(F71).
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#Ĝ◦P P P σ1(P ) σ2(P ) σ3(P )

48 P1 (α, α,−β) (γ−1, α,−β) (α, γ−1,−β) (α, α,−γ)
48 P2 (α, α,−γ) (β−1, α,−γ) (α, β−1,−γ) (α, α,−β)
48 P3 (β, β, γ) (−α−1, β, γ) (β,−α−1, γ) (β, β, δ)
48 P4 (β, β, δ) (−1, β, δ) (β,−1, δ) (β, β, γ)
96 P5 (α,−β, γ−1) (−β−1,−β, γ−1) (α,−α−1, γ−1) (α,−β, α)
96 P6 (β,−δ, 1) (β−1,−δ, 1) (β,−δ−1, 1) (β,−δ,−β)

Table 2. The G-orbit of (α, α,−β) = (22, 22,−23) ∈
W13(F71), with γ = 9 and δ = 44. We want to lift it to a
G-orbit in characteristic 0. We note that every point in
the last three columns is in the Ĝ◦-orbit of one of
P1, . . . , P6.

generate a list of points on the surface, then for each point compute
its full orbit and eliminate the points in its orbit from the list. Var-
ious programming tricks speed the computation, e.g., using a sorted
list of hash values of the points, but there are no real computational
innovations.

In view of the isomorphisms provided by Remark 9.3, for p ≡ 3 (mod 4)
we compute the orbit structure ofWk(Fp) for only one of ±k ∈ F∗p; and
for p ≡ 1 (mod 4), we compute the orbit structure of Wk(Fp) for only
one of ±k,±ik ∈ F∗p, where i =

√
−1 ∈ Fp. In Tables 5–8, we have also

omitted the trivial orbits of size 1 and 3 described in Definition 10.3.
Reducing the characteristic 0 orbits in Table 3 modulo p yields some

of the small characteristic p orbits in Tables 5-8. In particular, Table 4
lists the characteristic p orbits of sizes 144, 160 and 288 for p ≤ 79 that
come from characteristic 0.

12. Fibral Orbits in Wk(Fp)

We let

G = 〈σ1, σ2, σ3, τ12, τ13, τ23, ε12, ε13, ε23〉 ⊂ Aut(Wk).

For x0, y0, z0 ∈ K, we denote the fibers of Wk(K) as usual by

W(1)
k,x0

=
{

(x0, y, z) ∈ Wk(K)
}
,

W(2)
k,y0

=
{

(x, y0, z) ∈ Wk(K)
}
,

W(3)
k,z0

=
{

(x, y, z0) ∈ Wk(K)
}
.
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orbit
size

k G◦-generators

1 all k (0, 0, 0)
3 all k (0,∞,∞)
4 k = 4 (−1,−1,−1)
24 ξ4 6= 1

k = −2(ξ + ξ−1)
(ξ, 1, 1), (ξ−1, 1, 1)

48 all k (1, i, 0), (1, i,∞)
64 β3 + β2 + β − 1 = 0

k = −(β + β−1)2
(β, β, β), (β, β, 1)
(β−1, β−1, 1) (β, β−1, β−1)
(β, β−1, 1)

96 η4 = −1
k = −2η2

(η, η3, 0) (η, η3, η6)
(η, η2, η5) (η, η2,∞)

144 α4 + 4α2 − 1 = 0
β2 + (α2 + 3)β + 1 = 0
β4 + 2β3 − 2β2 + 2β + 1 = 0
k = 4α−1

(α, β, 1), (α−1, β, 1),
(α, β−1, 1), (α−1, β−1, 1),
(α, β,−β), (α−1, β−1,−β)

160 β8 + 2β4 − 4β3

− 4β2 − 4β + 1 = 0
γ = 2β/(β4 + 1)
k = −(3 + β4)/β

(β, β, β) (1, β, γ)
(β−1, β−1, β) (1, β−1, γ)
(β, β, γ) (1, β, γ−1)
(β−1, β−1, γ) (1, β−1, γ−1)
(β, β−1, γ−1)

192 ξ8 6= 1
k = i(ξ2 − ξ−2)

(ξ, iξ, 0), (ξ,−iξ, 1),
(ξ, iξ−1, 1), (ξ, iξ−1,∞),
(ξ−1,−iξ, 1), (ξ−1, iξ,∞),
(ξ−1, iξ−1, 0), (ξ−1, iξ−1, 1)

288
or

144∗

α2β − α2γ + αβ2γ2

−α+ β2γ − βγ2 = 0
α2γ2 − αβ2γ3 + αβ + βγ3 = 0
β3γ3 − β2 + βγ − γ2 = 0

δ =
α2 + β2

γ(α2β2 + 1)

k = −α
2 + β2 + γ2 + α2β2γ2

αβγ

(α, β, γ) (δ−1, β, γ)
(δ−1,−α−1, γ) (−β−1,−α−1, γ)
(α, β, δ) (γ−1, β, δ)
(γ−1,−α−1, δ) (−β−1,−α−1, δ)
(α,−γ, δ) (−β−1,−γ, δ)
(δ−1, β, α−1) (γ−1, β, α−1)

∗Orbit size 144 if 3α4 = −1
or β4 = −3 or γ4 = −3

Table 3. Finite G-orbits in Wk(C), where in each case
we list only one of W±k and W±ik; cf. Remark 9.3.

The G-fibral automorphism group of the fiber W(1)
k,x0

is generated by
the two involutions σ2 and σ3 that fix x0, the transposition τ23 that
swaps the y and z coordinates, and the map ε23 that changes the sign
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p k α β Orbit size

11 1 4 5 144
19 8 11 4 144
29 1 4 18 144
29 11 3 2 144
31 2 2 3 144
59 9 7 21 144
71 34 21 59 144
79 6 27 63 144

Orbits of size 144: Remark 10.6

p k β γ Orbit size

19 2 6 10 160
23 5 20 19 160
31 6 22 8 160
41 1 25 35 160
41 4 31 34 160
59 8 36 38 160
67 27 11 49 160
73 18 9 16 160

Orbits of size 160: Remark 10.7

p k α β γ Orbit size

19 9 7 2 3 144 β4 = −3
23 4 10 8 9 288
43 2 28 13 14 144 3α4 = −1
47 11 3 6 11 288
59 23 13 33 8 288
61 15 4 7 18 288
67 31 5 30 12 144 3α4 = −1
71 13 10 44 16 288
79 35 36 8 59 288
79 36 12 19 51 288

Orbits of sizes 144 and 288: Remark 10.8

Table 4. W(Fp) orbits of sizes 144, 160 and 288 in Ta-

bles 5–8 coming from W(Q) orbits in Table 3.

of y and z; and similarly for the other fibers. Thus12

G(1)x0
= 〈σ2, σ3, τ23, ε23〉 ⊂ Aut

(
W(1)

x0

)
,

G(2)y0
= 〈σ1, σ3, τ13, ε13〉 ⊂ Aut

(
W(2)

y0

)
,

G(3)z0
= 〈σ1, σ2, τ12, ε12〉 ⊂ Aut

(
W(3)

z0

)
.

We recall that since Wk is an MK3-surface, there is a set of points

π ConnFib
(
Wk(Fq)

)
⊂ P1(Fq)

such that

12We have listed more generators than needed. For example, σ3 = τ23 ◦ σ2 ◦ τ23,

so Aut
(
W(1)
x0

)
= 〈σ2, τ23, ε23〉, and similarly for the others fibers.
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p k orbit sizes

3 1 4

5 1 4, 48

7 1 64
7 2 24
7 3 4

11 1 144
11 2 64
11 3 24
11 4 4, 128
11 5 24, 64

13 1 24, 48, 192
13 2 24, 40, 48, 64, 120
13 4 4, 48, 192

17 1 4, 16, 24, 482, 64, 288
17 2 48, 96, 192
17 3 24, 48, 384
17 6 24, 48, 160, 192

19 1 24, 160
19 2 24, 160
19 3 320
19 4 4, 320
19 5 24, 288
19 6 24, 288
19 7 432
19 8 288
19 9 48, 64, 1442

23 1 24, 448
23 2 256, 352
23 3 24, 336
23 4 4, 96, 288
23 5 24, 112, 160
23 6 448
23 7 576
23 8 24, 448
23 9 608
23 10 448
23 11 24, 384

p k orbit sizes

29 1 40, 48, 120, 144, 192, 352
29 2 24, 48, 352, 672
29 3 242, 48, 1152
29 4 4, 48, 1922, 2882

29 6 242, 48, 1184
29 8 24, 48, 64, 96, 288, 576
29 11 48, 144, 1922, 384

31 1 24, 800
31 2 24, 144, 544
31 3 896
31 4 4, 768
31 5 24, 688
31 6 24, 160, 256, 384
31 7 24, 864
31 8 864
31 9 864
31 10 1024
31 11 1056
31 12 24, 624
31 13 1120
31 14 24, 800
31 15 1024

37 1 362, 48, 722, 160, 192,
216, 288, 384

37 2 24, 48, 72, 216, 576, 672
37 3 242, 48, 768, 1056
37 4 4, 48, 192, 384, 960
37 5 242, 48, 1792
37 8 24, 48, 480, 1152
37 9 24, 48, 160, 192, 1312
37 10 24, 48, 1664
37 15 48, 160, 1922, 288, 624

Table 5. Non-trivial orbits in Wk(Fp); cf. Definition 10.3



ORBITS ON K3 SURFACES OF MARKOFF TYPE 39

p k orbit sizes

41 1 48, 64, 160, 1632
41 2 24, 40, 48, 96, 120, 192, 1536
41 3 24, 48, 192, 1824
41 4 4, 24, 40, 48, 72, 120, 160,

1923, 216, 288, 576
41 6 16, 24, 482, 192, 1632
41 7 24, 48, 192, 1792
41 8 24, 48, 192, 1792
41 11 24, 48, 384, 1600
41 12 242, 48, 2160
41 16 48, 96, 192, 1440

43 1 1728
43 2 24, 48, 144, 1536
43 3 24, 1536
43 4 4, 1856
43 5 24, 1408
43 6 1632
43 7 1936
43 8 1968
43 9 1760
43 10 24, 64, 1600
43 11 1936
43 12 256, 1504
43 13 24, 1408
43 14 1728
43 15 2032
43 16 24, 1408
43 17 24, 384, 1024
43 18 1968
43 19 24, 1664
43 20 24, 256, 1408
43 21 24, 1728

p k orbit sizes

47 1 24, 1712
47 2 2304
47 3 2112
47 4 4, 1920
47 5 24, 2080
47 6 2336
47 7 64, 2016
47 8 24, 2080
47 9 24, 1776
47 10 24, 2080
47 11 64, 96, 160, 288, 1728
47 12 24, 64, 2016
47 13 24, 2080
47 14 1984
47 15 24, 1776
47 16 864, 1216
47 17 2304
47 18 2336
47 19 24, 1712
47 20 24, 2016
47 21 24, 1776
47 22 2400
47 23 1984

53 1 242, 48, 3456
53 2 48, 192, 2736
53 3 242, 48, 192, 3360
53 4 4, 48, 3072
53 5 24, 48, 64, 3168
53 6 24, 48, 192, 3040
53 8 48, 64, 192, 256, 336, 2016
53 10 24, 48, 192, 3072
53 11 24, 48, 64, 192, 288, 2688
53 13 24, 48, 192, 288, 2752
53 15 24, 48, 192, 2944
53 17 24, 48, 192, 3040
53 22 24, 48, 1922, 2752

Table 6. Non-trivial orbits in Wk(Fp); cf. Definition 10.3
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p k orbit sizes

59 1 3232
59 2 3328
59 3 3360
59 4 4, 3392
59 5 24, 2880
59 6 24, 3264
59 7 3696
59 8 24, 160, 2848
59 9 144, 160, 3328
59 10 24, 3008
59 11 24, 2880
59 12 3792
59 13 24, 3328
59 14 24, 2880
59 15 160, 3072
59 16 24, 3008
59 17 3600
59 18 3232
59 19 3632
59 20 3328
59 21 24, 3264
59 22 3232
59 23 24, 96, 288, 2944
59 24 24, 3328
59 25 24, 2880
59 26 3632
59 27 24, 3328
59 28 24, 3136
59 29 3696

61 1 24, 48, 4224
61 2 242, 48, 4512
61 3 24, 48, 192, 256, 384, 3424
61 4 4, 48, 192, 384, 3456
61 5 242, 48, 4480
61 7 24, 48, 192, 4032
61 8 242, 48, 192, 4288
61 9 242, 48, 1922, 4192
61 10 362, 48, 72, 192, 288, 3168

p k orbit sizes

61 13 48, 64, 544, 3248
61 14 24, 48, 352, 3904
61 15 24, 48, 96, 2883, 3264
61 19 48, 1922, 288, 3184
61 20 48, 288, 3568
61 25 24, 48, 192, 3936

67 1 4320
67 2 24, 4256
67 3 24, 3808
67 4 4, 4544
67 5 24, 4256
67 6 4656
67 7 24, 3936
67 8 4624
67 9 24, 4320
67 10 24, 3808
67 11 4720
67 12 4352
67 13 24, 4128
67 14 4624
67 15 4352
67 16 24, 3936
67 17 4224
67 18 24, 4256
67 19 24, 4256
67 20 24, 3936
67 21 24, 3808
67 22 4720
67 23 4320
67 24 24, 3808
67 25 24, 4128
67 26 480, 3840
67 27 96, 160, 288, 4080
67 28 288, 4528
67 29 24, 4320
67 30 4624
67 31 48, 144, 4032
67 32 4352
67 33 24, 3808

Table 7. Non-trivial orbits in Wk(Fp); cf. Definition 10.3
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p k orbit sizes

71 1 5280
71 2 4768
71 3 24, 4560
71 4 4, 4608
71 5 24, 4800
71 6 24, 4864
71 7 5376
71 8 24, 4368
71 9 5184
71 10 4864
71 11 5280
71 12 24, 4304
71 13 96, 288, 384, 4096
71 14 24, 4864
71 15 5216
71 16 24, 4800
71 17 24, 4864
71 18 24, 4672
71 19 5184
71 20 24, 4864
71 21 5216
71 22 4864
71 23 24, 4368
71 24 4864
71 25 4768
71 26 5216
71 27 24, 4672
71 28 24, 4304
71 29 4864
71 30 24, 4304
71 31 4864
71 32 5216
71 33 24, 4368
71 34 24, 144, 4224
71 35 24, 4800

73 1 48, 192, 5248
73 2 24, 48, 96, 5760
73 3 24, 48, 64, 5920
73 4 4, 24, 40, 48, 120, 160,

192, 2882, 1920, 2976
73 5 242, 48, 6448
73 6 48, 192, 5376
73 7 24, 48, 5952
73 9 242, 48, 6288
73 10 48, 192, 5248
73 12 24, 48, 192, 5792

p k orbit sizes

73 13 48, 192, 672, 4576
73 15 48, 192, 544, 4704
73 17 24, 48, 192, 5760
73 18 242, 48, 160, 192, 6000
73 20 16, 24, 482, 192, 5728
73 23 24, 48, 5856
73 26 242, 48, 6256
73 31 24, 48, 192, 5792

79 1 24, 5856
79 2 24, 5424
79 3 24, 5488
79 4 4, 5760
79 5 24, 6048
79 6 24, 144, 5344
79 7 5952
79 8 5792
79 9 24, 5488
79 10 24, 5984
79 11 24, 5984
79 12 24, 5424
79 13 6432
79 14 24, 6048
79 15 24, 5488
79 16 6400
79 17 24, 5984
79 18 6592
79 19 6400
79 20 6048
79 21 5952
79 22 24, 5488
79 23 6496
79 24 6496
79 25 6048
79 26 6432
79 27 24, 5984
79 28 6080
79 29 5792
79 30 6496
79 31 24, 6048
79 32 5952
79 33 24, 5984
79 34 6592
79 35 96, 288, 6112
79 36 24, 96, 288, 5664
79 37 24, 5680
79 38 5952
79 39 24, 64, 5616

Table 8. Non-trivial orbits in Wk(Fp); cf. Definition 10.3
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t ∈ π ConnFib
(
Wk(Fq)

)
⇐⇒

W(i)
t (Fq) ∈ Cage

(
Wk(Fq)

)
for one (equivalently all) i ∈ {1, 2, 3}.

Example 12.1. We consider the surface W1 over the finite field F53.
The set W1(F53) has six G-orbits of sizes, respectively, 1, 3, 24, 24, 48
and 3456. We compute the number of components on the various fibers,
and when we do so, we find that

π ConnFib
(
W1(F53)

)
= {±2,±4,±6,±13,±20,±24,±26}. (45)

Next, for each t in π ConnFib
(
W1(F53)

)
, we would like to know which

of the coordinates in π ConnFib
(
W1(F53)

)
appear as the coordinate of

some point in the (connected) fiber W(i)
t (F53). In general, if S is any

set of points in (P1)3, we define

Flatten(S) = the set of all coordinates of all points in S.

Then we may compute the connectivity of the cage of W1(F53) using
the data in the following table.

t Flatten
(
W(1)

1,t (F53)
)
∩ π ConnFib

(
W1(F53)

)
±2 {±6,±20}
±4 {±24}
±6 {±2,±20,±26}
±13 {±24}
±20 {±2,±6,±20,±26}
±24 {±4,±13,±24}
±26 {±6,±20}

Thus the cage in the big component of W1(F53) is not connected. It
consists of the following two pieces, which are also illustrated in Fig-
ure 2: ⋃

t∈{±2,±6,±20,±26}

⋃
i∈{1,2,3}

W(i)
1,t and

⋃
t∈{±4,±13,±24}

⋃
i∈{1,2,3}

W(i)
1,t
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20○

6○ 26○

2○
24○

4○ 13○

Figure 2. The two connected components of the cage
of W1(F53), where the segment labeled t○ denotes the

union of the six connected fibers ∪i=1,2,3∪ε=±1W(i)
1,εt(F53)
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dents and reflection groups. Invent. Math., 141(1):55–147, 2000.

[18] Alexander Gamburd, Michael Magee, and Ryan Ronan. An asymptotic formula
for integer points on Markoff-Hurwitz varieties. Ann. of Math. (2), 190(3):751–
809, 2019.

[19] Shu Kawaguchi. Canonical vector heights on K3 surfaces—a nonexistence re-
sult. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 24(2):181–197, 2013.

[20] Sergei V. Konyagin, Sergey V. Makarychev, Igor E. Shparlinski, and Ilya V.
Vyugin. On the structure of graphs of Markoff triples. Q. J. Math., 71(2):637–
648, 2020.

[21] Oleg Lisovyy and Yuriy Tykhyy. Algebraic solutions of the sixth Painlevé
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