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Abstract

In this paper we study the length of the longest induced cycle in
the unit circulant graph Xn = Cay(Zn; Z∗

n), where Z∗
n is the group

of units in Zn. Using residues modulo the primes dividing n, we
introduce a representation of the vertices that reduces the problem to
a purely combinatorial question of comparing strings of symbols. This
representation allows us to prove that the multiplicity of each prime
dividing n, and even the value of each prime (if sufficiently large) has
no effect on the length of the longest induced cycle in Xn. We also see
that if n has r distinct prime divisors, Xn always contains an induced
cycle of length 2r +2, improving the r ln r lower bound of Berrezbeitia
and Giudici. Moreover, we extend our results for Xn to conjunctions
of complete ki-partite graphs, where ki need not be finite, and also to
unit circulant graphs on any quotient of a Dedekind domain.

1 Introduction

For a positive integer n, let the unit circulant graph Xn = Cay(Zn, Z∗
n) be

defined as follows:
(1) The vertex set of Xn, denoted by V (n), is Zn, the ring of integers

modulo n.
(2) The edge set of Xn is denoted by E(n), and, for x, y ∈ V (n), {x, y} ∈

E(n) if and only if x− y ∈ Z∗
n, where Z∗

n is the set of units in the ring Zn.
The central problem adressed in this paper is to find the length of the

longest induced cycle in Xn. This problem was first considered by Berrizbeitia
and Giudici [1], who were motivated by its applications to chromatic unique-
ness.

Throughout the paper, we let n = pa1
1 pa2

2 . . . par
r , where the pi are distinct

primes, and ai ≥ 1. Then we denote the length of the longest induced cycle
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in Xn by m(n). We let M(r) = maxn m(n), where the maximum is taken
over all n with r distinct prime divisors. In [1], Berrizbeitia and Giudici
bound M(r) by

r ln r ≤ M(r) ≤ 9r!.

A simple change to the proof of the upper bound provided in [1] yields the
better upper bound of M(r) ≤ 6r!.

Our goal is to determine better bounds for M(r), as well as to extend what
we find to other graphs. In Section 2, we introduce a useful representation
of the vertices in Xn according to their residues modulo the prime divisors
of n. This representation immediately yields several helpful properties of the
longest induced cycles in these graphs. In particular, we prove that we can
disregard the multiplicities of the prime divisors of n, so we can reduce our
problem to square-free n. Also, we show that m(n) depends only on r, and
in fact m(n) = M(r) as long as the primes dividing n are all large enough.
In Section 3, we use the vertex representation introduced in Section 2 to
construct an induced cycle of length 2r + 2 in the graph Xn, where n has r
distinct prime divisors, thus raising the lower bound on M(r) substantially.
We also note that this construction is valid for any n, no matter what its
prime divisors are, so this provides a lower bound for m(n). Section 4 contains
a generalization of our results to conjunctions of complete ki-partite graphs,
as well as to unit circulant graphs on products of local rings, which include
the unit circulant graphs on Dedekind rings.

2 Residue Representation

Recall that n = pa1
1 pa2

2 · · · par
r , where the pi are prime. We will represent the

vertices of Xn in a way that will reduce the process of finding induced cycles
in Xn to checking for similarities between strings of numbers in an array.

It is clear that the following is equivalent to the definition of E(n) in the
introduction:

Observation 2.1. For x, y ∈ V (n), we have that {x, y} ∈ E(n) if and only if

x 6≡ y (mod pi), for all 1 ≤ i ≤ r.

Likewise, {x, y} 6∈ E(n) if and only if

x ≡ y (mod pi), for some 1 ≤ i ≤ r.

So, in fact, to know whether x and y are adjacent we need only their
residues modulo the primes pi. With this in mind, we introduce the following
representation of the vertices:

Definition 2.2.

the electronic journal of combinatorics 12 (2005), #R00 2



(i) Let x ∈ V (n), such that

x ≡ αi (mod pi), where 1 ≤ i ≤ r and 0 ≤ αi < pi.

We then define the residue representation of x to be the unique string α1α2 · · ·αr,
where αk is the kth term, and we write x ≈ α1α2 · · ·αr.

(ii) Let x, y ∈ V (n). If the kth term of the residue representation of x is the
same as the kth term of the residue representation of y, we say that x has a
coincidence with y.

Combining Observation 2.1 and Definition 2.2, vertices x, y ∈ V (n) are
adjacent if and only if x has no coicidences with y. So, in fact, the only
property of the residues modulo pi that we use in constructing induced cycles
is that they form a set of size pi, and we verify that a subgraph is an induced
cycle by checking that consecutive vertices do not have any coincidences, and
that any pair of non-consecutive vertices has at least one coincidence.

Also, we note that for n not square-free, a string may be the residue
representation of multiple vertices. For example, if n = 12, both 0 and 6 have
residue representation 00. However, the adjacency of vertices depends only
on their residue representations, and, by the Chinese Remainder Theorem,
every string represents at least one vertex.

This representation greatly simplifies inspection of induced cycles. In fact,
we can extend residue representation for a vertex to any induced subgraph:

Definition 2.3.

(i) Let S be an induced subgraph of Xn, where V (S) = (v0, v2, . . . , vk−1),
with vi ≈ αi1αi2 · · ·αir, and 0 ≤ i ≤ k − 1. We then define the residue
representation of S to be the array

α01 α02 · · · α0r

α11 α12 · · · α1r
...

...
...

α(k−1)1 α(k−1)2 · · · α(k−1)r.

(ii) The residue set of S is the set of residues

{αij | 0 ≤ i ≤ k − 1, 1 ≤ j ≤ r}

used in its residue representation.

So, if an induced subgraph S is a k-cycle in Xn, we can permute the rows
of the residue representation of S so that the ith row has a coincidence with
the jth row if and only if i− j 6≡ ±1 (mod k). Figure 1 displays the residue
representation of an induced 6-cycle for r = 2 and for r = 3.

An important property of an induced cycle of length greater than 4 is
that it cannot contain two vertices with the same residue representation.
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0 0 0 0 0
1 1 1 1 1
0 2 0 0 2
1 0 1 2 0
0 1 0 0 1
1 2 1 1 2

Figure 1: In these residue representations of an induced 6-cycle for r = 2 on
the left, and for r = 3 on the right, it is easy to see that two consecutive
rows (including the 1st and 6th rows) have no coincidences, and any two
non-consecutive rows have at least one coincidence. The residue set for each
cycle is {0, 1, 2}.

Proposition 2.4. The residue representation of a k-cycle C, with k > 4,
cannot contain two identical rows.

Proof. Suppose there are two vertices x and y in C that have the same residue
representation. Then a vertex z of C has no coincidence with x if and only if
it has no coincidence with y, meaning that x and y have precisely the same
neighbors in C. However, a vertex in an induced cycle is adjacent to exactly
two other vertices in the cycle, so C can have at most 4 vertices, contradicting
k > 4. Thus the residue representation of C cannot contain two identical
rows.

It is important that, once we have written an induced cycle in terms of
its residue representation, we can permute the residues in each column to
obtain an induced cycle of equal length.

Observation 2.5. Let the jth column in the residue representation of an in-
duced k-cycle C in Xn be

α0j

α1j
...

α(k−1)j,

and suppose this column contains lj distinct residues, {s1, s2, . . . , slj}. Then
let π be a permutation of {s1, s2, . . . , slj}, and replace the jth column of C
by

π(α0j)
π(α1j)

...
π(α(k−1)j).

We then have a new induced k-cycle in Xn, since we have not changed the
coincidences between any of the rows in C.
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We now use the Observation 2.5 to define isomorphisms between induced
k-cycles in Xn.

Definition 2.6. Two induced k-cycles, C and C ′, are called isomorphic if,
for every j, the jth column of the residue representation of C ′ is obtained
by permuting the residues in the jth column of C, as described in Observa-
tion 2.5.

Note that the first two rows in Figure 1 are 000 and 111. Because of this,
all of the rows that are not adjacent to either of the first two have to contain
both a 0 and a 1. Similarly, the third row in the cycle must contain a 0,
and the last row in the cycle must contain a 1. This is a useful criterion for
induced cycles in general.

Remark 2.7. Any induced cycle C in Xn is isomorphic to an induced cycle
C ′ of the same length so that the first two rows in the residue representation
of C ′ are 00 · · · 0 and 11 · · · 1.

In order to obtain such a C ′, we need only to map the first two elements in
every column of C to 0 and 1, respectively. Note that the first two elements
in each column are always different – if they were not, the first and the
second row in the residue representation of C would have a coincidence,
which contradicts their adjacency.

This tells us that all but four of the rows in our induced cycles will have to
contain both a 0 and a 1, which may limit the residue sets and consequently
the lengths of the cycles.

Another interesting fact that becomes evident with the use of residue
representation is the following proposition.

Proposition 2.8. The value M(r) increases with r. Specifically, if Xn con-
tains an induced cycle of length k, and q > 2 is a prime not dividing n, then
Xqn also contains a cycle of length k. If k is even, we can also allow q = 2.

Proof. Let n = pa1
1 pa2

2 · · · par
r , where the exponents ai are positive integers,

and pi are distinct primes. Suppose Xn contains an induced cycle C of
length k. We denote the residue representations of the vertices of C by
v0, v1, . . . , vk−1, where each vi is a string of length r. Let n′ = qn, where
q 6= 2 is prime, q 6= pi for all 1 ≤ i ≤ r. Then we will show that Xn′

also contains a cycle of length k by constructing an induced cycle C ′ in Xn′ ,
denoting the residue representations of the vertices of C ′ by w0, w1, . . . , wk−1.

If k is even, let wi = vi0 for even i, and let wi = vi1 for odd i. Notice that
we do not introduce any coincidences between two rows that were adjacent
in C, so two consecutive rows in C ′ are adjacent, as desired. Similarly, if
{vi, vj} 6∈ E(n), they have a coincidence, say, in the lth term. Then wi and
wj have a coincidence in the lth term, and so {wi, wj} 6∈ E(n′). Thus we
introduce no new adjacencies in the construction of C ′, so C ′ is indeed an
induced k-cycle in Xn′ .
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If k is odd, let wi = vi1 for odd i, let wi = vi0 for even i 6= k − 1, and let
wk−1 = vk−12 (this is possible since q 6= 2). Again, we note that we do not
introduce any coincidences between two rows that were adjacent in C, so two
consecutive rows in C ′ are adjacent, as desired. Also, if {vi, vj} 6∈ E(n), we
have that {wi, wj} 6∈ E(n′) by the argument above. Thus we introduce no
new adjacencies in the construction of C ′, so C ′ is indeed an induced k-cycle
in Xn′ .

By starting with a cycle C in X(n) that has length M(r), we see that
M(r + 1) ≥ M(r), as desired.

Corollary 2.9. If r ≥ 2, and n is square-free, then m(n) ≥ 6.

Proof. For r = 2, we have constructed a 2-cycle of length 6 in Figure 1, so
M(2) ≥ 6. Proposition 2.8 shows that M(r) is nondecreasing, so we have
that, if r > 2, M(r) ≥ M(2) ≥ 6, as desired.

We now prove that, in calculating m(n), we need consider only those n
that are square-free.

Theorem 2.10. For n = pa1
1 pa2

2 · · · par
r , and n′ = p1p2 · · · pr, where r 6= 1,

m(n) = M(n′).

Proof. (1) First we show that m(n) ≥ M(n′). In particular, we show Xn

contains cycles of length M(n′). Note that since n and n′ have the same
prime divisors, if x, y < n, then x− y ∈ Z∗

n if and only if x− y ∈ Z∗
n′ . So, in

particular, the induced subgraph of Xn on vertices 0, 1, . . . , n′−1 is precisely
Xn′ . Thus any induced cycle on Xn′ can be mapped to an induced cycle in
{0, 1, . . . , n′ − 1} ⊂ Xn, and so there is an induced cycle of length M(n′) in
Xn, as desired.

(2) Now we show that m(n) ≤ M(n′), or that there is no induced cycle of
length greater than M(n′) in Xn. Since n′ is square-free, Corollary 2.9 implies
that M(n′) ≥ 6. Suppose there is an induced cycle, Cl, of length l > M(n′)
in Xn. Then, in particular, l > 6. Using residue representation, write Cl in
terms of residues (mod p1, p2, ..., pr). If no two vertices in Cl are denoted by
the same string of residues, then we can view the residue representation of Cl

as a residue representation of an induced l-cycle in Xn′ . Since l > M(n′), this
contradicts the assumption that M(n′) is the maximum length of an induced
cycle in Xn′ . Thus there exist two vertices in Cl that have identical residue
representations. However, by Proposition 2.4, this means l ≤ 4, contradicting
the previous deduction that that l > 6. We conclude that, indeed, there are
no induced cycles of length l > M(n′) in Xn.

Proposition 2.11. Let n′ = p, and n = pa where p is a prime and a > 1.
Then M(n′) = 3, and m(n) = 4. So, M(1) = 4.
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Proof. Since the only non-unit in Zp is 0, Xn′ is a complete graph on p
vertices, and the longest induced cycle in Xn′ must hence have length 3.
From Part (2) of the proof of Theorem 2.10, we deduce that m(n) ≤ 4.
In fact, m(n) = 4, since the subgraph (0, 1, p, p + 1) is an induced cycle in
Xn.

Proposition 2.12. For n = pa1
1 pa2

2 · · · par
r where the pi are large, m(n) =

M(r).

Proof. Let n′ be a positive integer with exactly r prime divisors, such that
m(n′) = M(r), and let C be a longest induced cycle in Xn′ . Assume each pi is
larger than the number of residues that appear in the residue representation
of C. Then there is a subgraph S of Xn, such that the residue representation
of S is the same as the residue representation of C. So S is an induced cycle
of length M(r). Hence m(n) = M(r). Thus, as long as the prime divisors
of n yield enough residues for a residue representation of the longest cycle in
Xn′ , where M(n′) = M(r), we will have m(n) = M(r).

3 A Lower Bound on M(r)

One important asset of introducing residue representation is that it gives us
a way to construct a good lower bound on M(r); we achieve the following
lower bound as our main result in this section.

Theorem 3.1. For all positive integers n with r > 1 distinct prime divisors,
we have M(r) ≥ 2r + 2.

In this section, we construct an induced subgraph of Xn with 2r + 2
vertices, where r is the number of distinct prime divisors of n, and provide
two specific cycles produced by this construction. We will then prove that
this subgraph is indeed a cycle, and thus show that Theorem 3.1 holds.

In order to construct an induced 2r +2-cycle in Xn, where n = p1p2 · · · pr,
we first introduce some definitions, which are discussed in detail in [4], p.
433.

(i) An n-bit Gray Code is an ordered, cyclic sequence of the 2n n-bit
binary strings called codewords, such that successive codewords differ by the
complementation of a single bit, and the starting codeword is taken to be
(00 · · · 0). We write this sequence in the form of a matrix, as shown below.

(ii) A Reflective Gray Code (RGC) is defined recursively as follows: A
1-bit RGC is merely the 2 × 1 matrix

(
0
1

)
. If an r-bit RGC is the 2r × r

binary matrix 
G0

G1
...
G2r−1,


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then we define the (r + 1)-bit RGC to be the 2r+1 × (r + 1) binary matrix

0G0

0G1

0G2
...
0G2r−1

1G2r−1

1G2r−2
...
1G1

1G0


.

Henceforth, we fix r and index the codewords by 0, 1, . . . , 2r−1 (mod 2r),
denoting the ith codeword in an r-bit RGC by Gi, and the ith codeword in
a k-bit RGC, where k 6= r, by G

(k)
i .

(iii) The flip bit in the jth codeword of a RGC is the position of the one
bit that has changed from the (j − 1)st codeword.

We will construct an induced subgraph of Xn whose residue representation
consists of the rows v0, v1, . . . , vM , where M = 2r +1, and {vi, vj} ∈ E if and
only if i− j ≡ ±1 (mod 2r + 2). Let vM−1 ≈ 0100 · · · 0, and vM ≈ 122 · · · 2.
We define the rows {vi : i even, i 6= M − 1} by using the first half of an r-bit

RGC with a slight modification. Let Ĝi, for i 6= 0 be the ith codeword Gi

in an r-bit RGC, with the flip bit replaced by a 2. Let Ĝ0 = G0. Then we
define the even-indexed rows as follows: v2i = Ĝi, for 0 ≤ i < 2r−1.

We define the odd-indexed rows as follows: for 0 ≤ i ≤ 2r−1, let v2i+1 =
Gi, the complement of Gi. So the subgraph we have constructed is {Ĝ0, G0, Ĝ1, . . . , Ĝ2r−1−1,
G2r−1−1, vM−1, vM}. This gives us a subgraph consisting of (2r + 2) vertices.

In Figure 2, we display this construction for r = 3 and r = 4.
To prove Theorem 3.1, we must show that the subgraph we have con-

structed is indeed an induced cycle. This can be reduced to showing that the
following properties hold.

(i) Vertex vk is adjacent to vl if k− l ≡ ±1 (mod 2r +2). In other words,
{v0, v1, . . . vM} is a cycle.

(ii) If neither k nor l equals M − 1 or M , and |k − l| > 1, then vk is not
adjacent to vl.

(iii) Vertex vM is not adjacent to vl for i 6= 0, M − 1, and vertex vM−1 is
not adjacent to vl for i 6= M − 2, M .

Proof of Theorem 3.1.

(i) First we show that any two consecutive rows among v0, v1, . . . , vM−2 corre-
spond to adjacent vertices. Among these rows, no odd-indexed row contains
a 2, and an even-indexed row v2i is merely the complement of v2i+1 with

the electronic journal of combinatorics 12 (2005), #R00 8



0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 2 0 0 0 2
1 1 0 1 1 1 0
0 2 1 0 0 2 1
1 0 0 1 1 0 0
0 1 2 0 0 1 2
1 0 1 1 1 0 1
0 1 0 0 2 1 0
1 2 2 1 0 0 1

0 1 1 2
1 0 0 0
0 1 2 1
1 0 1 0
0 1 0 2
1 0 1 1
0 1 0 0
1 2 2 2

Figure 2: We construct two cycles using residue representation and our lower
bound construction. On the left is an induced 10-cycle for the graph Xn,
where n has three prime divisors (r = 3). On the right is an induced 18-cycle
for the graph Xn, where n has four prime divisors (r = 4). Note that the
rows in both cycles are derived as described from a 3-bit Reflective Gray
Code and a 4-bit Reflective Gray Code, respectively.
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one bit replaced by a 2. Thus every odd-indexed row among v0, v1, . . . , vM−2

has no coincidences with the row immediately above it. Also, since any two
consecutive codewords Gi and Gi+1 in an r-bit RGC differ only in the flip
bit of Gi+1, the codeword Gi differs from Gi+1 everywhere except in the flip
bit. However, in modifying Gi to Ĝi for 0 ≤ i < 2r−1, we have replaced
every flip bit by a 2, so v2i+1 = Gi, (which will contain no 2’s), will differ

completely from v2i+2 = Ĝi+1 if i 6= 2r−1 − 1. Thus every odd-indexed row
among v0, v1, . . . , vM−4 is adjacent to the row immediately below it.

It remains to show that vM is adjacent to vM−1, that vM is adjacent to
v0 (these two claims are trivial by inspection), and that vM−2 is adjacent to
vM−1. Note that vM−1 is precisely G2r−1−1, since, by definition,

G2r−1−1 = 0G
(r−1)

2r−2−1 = 01G
(r−2)
0 = 0100 · · · 0.

Also, vM−2 is, by definition, G2r−1−1. Thus, indeed, vM−2 is adjacent to vM−1,
and we have that {v0, v1, . . . vM} is a cycle.

(ii) It is trivial to show that no two rows whose indices have the same parity
are adjacent, since all even-indexed rows begin with a 0 and are thus not
adjacent to each other, while all odd-indexed rows begin with a 1 and are
also not adjacent to each other.

Now, take an even-indexed row v2i, with 0 ≤ i < 2r−1, and an odd-
indexed row v2j+1, with 0 ≤ j < 2r−1, such that i 6= j and i 6= j +1. Suppose
for the sake of contradiction that v2i is adjacent to v2j+1.

By definition, v2j+1 = Gj, v2i = Ĝi, and i 6= j by assumption. By the
definition of a RGC, Gj and Gi differ in at least one bit. Since i − j 6≡ 1
(mod 2r), then Gj and Gi must differ in a bit that is not a flip bit for Gi.

Therefore v2j+1 = Gj will have at least one coincidence with v2i = Ĝi, and
so v2i and v2j+1 are not adjacent, contrary to our supposition.

So, indeed, if neither k nor l equals M − 1 or M , and |k− l| > 1, then vk

is not adjacent to vl.

(iii) Since vM begins with a 1, it is not adjacent to any of the odd-indexed
rows, which also all begin with a 1. Similarly, because all of the even-indexed
rows except v0 and vM−1 have a 2 in some spot after the initial 0, and will
thus have a coincidence with vM ≈ 122 · · · 2, no even-indexed row except v0

and vM−1 will be adjacent to vM .
Since vM−1 begins with a 0, it is not adjacent to any of the even-indexed

rows, which all begin with a 0 as well. Also, note that vM−2 = v2r−1 =
G2r−1−1 = 1011 · · · 1 is the complement of vM−1, and that all odd-indexed
rows except vM are distinct and contain only 0’s and 1’s. Thus all odd-
indexed rows except vM either complement or have a coincidence with VM−1 =
0100 · · · 0. So all odd-indexed rows except for vM−2 and vM are not adjacent
to vM−1.
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Thus we have that vertex vM is not adjacent to vi for i 6= 0, M − 1, and
vertex vM−1 is not adjacent to vi for i 6= M − 2, M .

Note that, for any n = p1p2 · · · pr, where p1 < p2 < · · · < pr are primes,
the cycle constructed above does not depend on the choice of pi. The first
column of the cycle’s residue representation contains residues 0 and 1 only,
allowing for p1 = 2, and the residue set of the cycle is {0, 1, 2}, which puts
no bounds on the rest of the primes pi.

Also, Theorem 2.10 implies that our construction of a (2r + 2)-cycle for
n′ = p1p2...pr, r > 1 holds for n = p1

a1p2
a2 ...pr

ar , while Proposition 2.11
implies that the lower bound in Theorem 3.1 holds for r = 1.

4 Generalizing to Other Graphs

A natural question to ask is what properties of the circulant graph Xn are
necessary to obtain the results we have. It is noted in [1] that, for p prime
and a a positive integer, Xpa is complete p-partite. In fact, this tells us that
for n = pa1

1 pa2
2 · · · par

r , Xn is the conjunction Xp
a1
1
∧Xp

a2
2
∧· · ·∧Xpar

r
of graphs

Xp
a1
1

, Xp
a2
2

, · · · , Xpar
r

, where a conjunction of graphs is defined as follows:

Definition 4.1. Let the graph G1 have vertex set V (G1) and edge set E(G1),
and graph G2 have vertex set V (G2) and edge set E(G2). Then the conjunc-
tion G1 ∧ G2 has vertex set V (G1 ∧ G2) = V (G1) × V (G2), and (v1, v2) is
adjacent to (u1, u2) if v1u1 ∈ E(G1), and v2u2 ∈ E(G2).

Interestingly, our results can be extended to any conjunction G1 ∧ G2 ∧
· · · ∧ Gr, where each Gi is complete ki-partite. Let S = {k1, k2, . . . , kr} be
an r-tuple of positive integers. Let GS = {G|G = G1 ∧G2 ∧ · · · ∧Gr}, where
Gi is a complete ki-partite graph. Denote the length of the longest induced
cycle in G ∈ GS by M(S), and define µ(r) = maxS M(S) to be the length
of the longest induced cycle in all graphs in GS, where S contains r integers.

Theorem 4.2. For r > 1, we have that µ(r) = M(r).

To prove Theorem 4.2, we will create for conjunctions of ki-partite graphs
a representation similar to residue representation. Then, using this represen-
tation, we will show how cycles in G ∈ GS and Xn are related.

Definition 4.3. Let S = {k1, k2, . . . , kr}, and let G ∈ GS, G = G1 ∧
G2 ∧ · · · ∧ Gr. Label the partitions in Gi by {0, 1, 2, . . . , ki − 1}. Let
v = (v1, v2, . . . , vr) ∈ V (G), where vi belongs to partition αi in Gi. Then
the partition representation of v is α1α2 · · ·αr, and we say v ' α1α2 · · ·αr.

We can define the partition representation of a subgraph of G ∈ GS as we
defined the residue representation of a subgraph of Xn. Namely, an induced

the electronic journal of combinatorics 12 (2005), #R00 11



subgraph on {x1, x2, . . . , xl} is written as an array of partition representa-
tions of the vertices xi. Note that an induced subgraph in G is a cycle
precisely when its partition representation satisfies the conditions needed for
the residue representation of an induced cycle in Xn – no two non-consecutive
rows can have coincidences, and two non-consecutive rows must have at least
one coincidence.

Proof of Theorem 4.2.

(1) First we show that M(r) ≥ µ(r). Suppose S = {k1, k2, . . . , kr}, and G ∈
GS contains an induced cycle C of length µ(r), whose partition representation
is

α11 α12 · · · α1r

α21 α22 · · · α2r
...

...
...

αµ(r)1 αµ(r)2 · · · αµ(r)r

.

Note that, applying Proposition 2.4 to partition representations, no two rows
above are identical if µ(r) > 4. So, if µ(r) > 4, let n = p1p2 · · · pr, where pi ≥
max {α1i, α2i, . . . , αµ(r)i}, and pi are prime. Then the partition representation
of C above is in fact also the residue representation of an induced cycle in
Xn, and so Xn contains a cycle of length µ(r), as desired. If µ(r) ≤ 4, we
know that M(r) ≥ µ(r), since M(1) = 4, and M(r) increases with r by
Proposition 2.8.

(2) Now we show that µ(r) ≥ M(r). Let Xn, where n = p1p2 · · · pr, contain
an induced cycle of length M(r). Then Xn ∈ G{p1,...,pr}, so µ(r) ≥ M(r), as
desired.

Since our original problem concerns the circulant graph Xn, we are also
interested in circulant graphs to which our results generalize. In particular,
we are interested in those graphs G = Cay(A; A∗), where A is a ring, A∗ is
the group of units in A, and the graph G is defined as follows:

(1) The vertex set V (G) of G is the set of elements in A.
(2) If x, y ∈ V (G) then {x, y} ∈ E(G), the edge set of G, if and only if

x− y ∈ A∗.
We know that we can extend our results to any graph G that is a con-

junction of complete ki-partite graphs for some ki. Note that, surprisingly, ki

need not be finite, and, in fact, our circulant graph need not contain a finite
number of vertices. For this, we rely on a partition using the Chinese Re-
mainder Theorem. One can refer to an algebra text such as [2], pp. 92-97 for
the basic facts about rings and ideals needed to prove when such a partition
gives us the desired graph structure.

Definition 4.4. A local ring is a ring that contains only one maximal ideal.
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With this definition, we can show that a unitary circulant graph on a
product of local rings is a conjunction of complete ki-partite graphs.

Theorem 4.5. Let A1, A2, . . . Ar be local rings, and let mi be the one maximal
ideal in Ai. If A = A1 ×A2 × · · · ×Ar, then the circulant graph Cay(A; A∗)
is a conjunction of complete ki-partite graphs, for some nonzero ki.

Theorem 4.5 lets us extend our results to various unitary circulant graphs.
In particular, it allows us to generalize to unitary circulant graphs on Dedekind
rings.

Definition 4.6. A Dedekind domain ([3]) is an integral domain R such that
(1) Every ideal in R is finitely generated;
(2) Every nonzero prime ideal is a maximal ideal;
(3) R is integrally closed in its field of fractions

K = {α/β : α, β ∈ R, β 6= 0}.

A Dedekind ring is simply a quotient of a Dedekind domain.
If R is a Dedekind domain, and mi is a maximal ideal of R, then R/mi

is a field and thus contains only one maximal ideal, (0), and R/mai
i contains

only the maximal ideal mi, so R/mai
i is a local ring. This is essential for the

following corollary.

Corollary 4.7. Let R be a Dedekind domain, and let I = ma1
1 ma2

2 · · ·mar
r be

a nonzero, non-unit ideal in R, where mi are maximal ideals of R. Then the
circulant graph Cay(A; A∗) is a conjunction of complete ki-partite graphs, for
ki = #(R/mi).

Proof. Since mi are the distinct maximal ideals, mai
i + m

aj

j = R for all 1 ≤
i < j ≤ r. Then the Chinese Remainder Theorem implies that

A = R/ma1
1 ma2

2 · · ·mar
r = R/ma1

1 ×R/ma2
2 × · · · ×R/mar

r

We have noted above that R/ma1
1 is local, and thus we have that A is a

product of local rings. By Theorem 4.5, we have that the circulant graph
Cay(A; A∗) is a conjunction of complete ki-partite graphs, for ki = #(R/mi).

So, indeed, our theorems concerning M(r) generalize to the maximum
lengh of a cycle in unit circulant graphs on a Dedekind domain quotiented
by an ideal with r distinct maximal factors. Dedekind domains are exactly
those integral domains in which every ideal has a unique factorization into
prime ideals, and thus are the rings of number theoretical interest. Some
nice examples of the Dedekind rings that we have generalized to above are
the Gaussian integers modulo a + bi, denoted by Z[i]/(a + bi); any quotient
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of the ring of algebraic integers in the pth cyclotomic field Z[ζp], where ζp

is a pth root of unity; and any quotient of C[x, y]/(y2 − x3 + x), the ring of
regular functions on the elliptic curve y2 = x3 − x. Note that we also have
generalized to unit circulant graphs on quotients of principal rings.
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