
A Cryptographic Hash Function from Markoff Triples

Elena Fuchs1, Kristin Lauter2, Matthew Litman1, and Austin Tran1

1Department of Mathematics, University of California, Davis
2Facebook AI Research, Seattle, WA

October 6, 2022

Abstract

Cryptographic hash functions from expander graphs were proposed by Charles, Goren, and
Lauter in [CGL] based on the hardness of finding paths in the graph. In this paper, we propose a
new candidate for a hash function based on the hardness of finding paths in the graph of Markoff
triples modulo p. These graphs have been studied extensively in number theory and various
other fields, and yet finding paths in the graphs remains difficult. We discuss the hardness of
finding paths between points, based on the structure of the Markoff graphs. We investigate
several possible avenues for attack and estimate their running time to be greater than O(p). In
particular, we analyze a recent groundbreaking proof in [BGS1] that such graphs are connected
and discuss how this proof gives an algorithm for finding paths.

Keywords: Markoff triples, Cryptographic hash functions
MSC : 11T71, 94A60, 05C48

Contents

1 Introduction 2
1.1 Markoff tree and graph . 2
1.2 Cryptographic hash function . 3
1.3 Avenues for attack . 4
1.4 Some background on Markoff triples . 5

2 Markoff triple hash function and data 6
2.1 Cryptographic Heuristics . 6
2.2 Sampling . 10

3 Attack by Pathfinding via the Method of Bourgain-Gamburd-Sarnak 11
3.1 Rotations . 11
3.2 The End Game . 16
3.3 The Middle Game and The Opening . 20

4 Attack by Lifting 21

5 Other Possible Attacks and Future Avenues for Research 23

1

1 Introduction

In this work, we introduce a proposal for a hash function based on the hardness of finding paths in
the graph of Markoff triples, which we will define. The idea of using the hardness of path-finding in
graphs to define cryptosystems was introduced at the NIST Hash function workshop in 2005 [CGL].
The paper [CGL] proposed two different candidate families of Ramanujan graphs: 1) LPS Cayley
graphs, and 2) Supersingular Isogeny Graphs. The LPS-based hash function was attacked in two
subsequent papers, which presented efficient algorithms to find collisions [TZ], and preimages [PLQ].
Path-finding in Supersingular Isogeny Graphs remains a hard problem in cryptography so far, and
is the basis for the SIDH Key Exchange Protocol [JFP, CFLMP] in the third round of the NIST
PQC competition.

In this paper, we propose to use graphs based on solutions to Markoff’s equation to construct
a new cryptographic hash function, and discuss why it appears that these graphs may be good
candidates. Our main focus will be to evaluate the path-finding algorithm that can be extracted
from the proof of Bourgain-Gamburd-Sarnak in [BGS1] that these graphs are connected in most
cases, as this is currently the only certain way to find paths in these graphs in general. We will
hence go into the details of the proof in [BGS1] and how it yields an algorithm to find paths, as
well as explore some other potential attacks in Section 4 and 5.

1.1 Markoff tree and graph

Consider solutions in (Z≥0)3\{(0, 0, 0)} to

x21 + x22 + x23 − 3x1x2x3 = 0. (1)

Equation (1) is known as the Markoff equation, and its solutions are called Markoff triples, with the
integers that occur as members of some triples known as Markoff numbers. As we discuss below, a
lot is known about Markoff numbers, and one particularly useful observation, both to us and more
generally in the arithmetic study of Markoff numbers, is that one can generate all such triples by
considering the orbit of the group generated by the involutions

R1(x1, x2, x3) = (3x2x3 − x1, x2, x3)

R2(x1, x2, x3) = (x1, 3x1x3 − x2, x3)

R3(x1, x2, x3) = (x1, x2, 3x1x2 − x3)

acting on the triple (1, 1, 1) [M1],[M2]. In this way, one can view the set of Markoff triples as a tree
as depicted in Figure 1. Note that the tree depicted in Figure 1 shows one of several very similar
branches of the tree, the others are generated by acting on (1, 1, 1) via R1 and R2, as well as letting
one other involution act on the triple immediately adjacent to (1, 1, 1) (in the figure, that other
involution would be R1 acting on (1, 1, 2)). Those branches will simply contain permutations of the
triples shown in Figure 1.

Markoff triples first appeared in the literature in Markoff’s master’s thesis [M1], [M2] in the
context of studying rational approximations via continued fractions. Markoff found that the sequence
of Markoff numbers plays a big role in results that produce infinitely many irrationals α which
admit a continued fraction convergent p/q such that∣∣∣∣α− p

q

∣∣∣∣ < m√
dq2

2

Figure 1: A branch of the Markoff tree generated by applying the involutions R1, R2, R3 to the
fundamental solution (1,1,1).

for appropriate values of m and d which are connected to the Markoff sequence. Moreover, he was
able to determine exactly for which α the above bound is sharp. Markoff’s work on the subject
inspired a whole series of generalizations of his result which introduced novel techniques into the
theory which are still used today, e.g. [RS]. Indeed, today the Markoff equation in (1) is of interest
not only to those studying continued fractions but has become an important object in other branches
of mathematics such as algebraic geometry and theoretical physics [Ch],[LT].

For cryptographic applications, we will consider what is, roughly speaking, the mod-p reduction
of this tree, as well as a related graph where edges are defined slightly differently.

Specifically, let p be a (large) prime, and consider the set of nonzero solutions modulo p to
equation (1). We call a solution (x1, x2, x3) in (Fp)3 a triple, and each entry in the triple x1, x2, or
x3, a coordinate; so a coordinate is simply an element of Fp.

We consider two graphs: Gp and Ĝp. In both of these graphs, the vertices are comprised of
nontrivial (we exclude (0, 0, 0)) solutions modulo p. In Gp, the edges are defined by the involutions
R1, R2, R3: two triples are connected by an edge if one of the three involutions takes one triple to
the other. We will also refer to this graph as the involution graph. In Ĝp, the edges are defined by
rotations (see Section 3.1). Explicitly, they are given by

roti = τi+1,i+2 ◦Ri+1 (2)

Here τ is a transposition of coordinates, and all index additions are done modulo 3. Two triples are
connected by an edge in Ĝp if one of the 3 rotations takes one triple to the other. We refer to this
as the rotation graph.

Our reason for considering Gp is that it is particularly convenient for setting up our hash function.
It is the rotation graph Ĝp, however, for which Bourgain-Gamburd-Sarnak prove connectivity and
in fact give a path-finding algorithm. Notably, finding paths in the graph Ĝp is easily correlated to
finding paths in Gp, and vice versa.

Specifically, one can check that, given three different indices 1 ≤ i, j, k ≤ 3, and a triple (a, b, c),
one has Ri(a, b, c) = τj,iRjτk,jRkτi,kRi(a, b, c), so a path of length ` between two triples in Gp
corresponds to a path of length 3` in Ĝp, whereas a path of length ` between two triples in Ĝp
corresponds to a path of at length at least `/3, and possibly much longer, in Gp. In other words, an
algorithm to find paths in Ĝp will find paths in the other graph in time not significantly shorter,
and possibly much longer, time.

1.2 Cryptographic hash function

First we give a brief summary of the hash function we propose, with more details given in Section 2.
We choose a large prime p: typical cryptographic size primes have at least 256 bits. There are some
restrictions on the choice of p, see the discussion in the following section. We then label in Gp the
edges corresponding to the involutions R1, R2, and R3, respectively. The input to the hash function

3

Figure 2: The Markoff mod-p graphs Ĝp for p = 3, 5, and 7.

is a bit string b0b1b2 To compute the output of the hash function, start at a fixed vertex, such
as the vertex (1, 1, 1), and take a walk in the graph according to the directions in the bit string,
reading the string bit by bit, one bit for each step of the walk. The output is the vertex at which
this process ends.

The security of this hash function depends on the hardness of finding paths between two vertices
in the graph Gp. This paper is concerned primarily with exploring potential avenues for attack and
estimating their running times.

1.3 Avenues for attack

In Sections 3 and 4, we describe two potential attacks on our hash function. Both give ways of
finding paths between two triples in the graph Gp.

The work of Bourgain, Gamburd, and Sarnak in [BGS1] gives a potential attack on the
cryptosystem we have proposed, but we will show that its running time is heuristically O(p).
Specifically, in order to show that the graphs Ĝp are connected, their algorithm gives a way to
construct a path between any two vertices in the Markoff graph mod p for most primes p. The very
rough idea is to associate to every vertex a certain “order” that we describe in Section 3.1. Those
vertices of maximal possible order are grouped into what Bourgain-Gamburd-Sarnak call the cage,
which they prove is connected. They then show a way to connect any other vertex to the cage by
walking along the graph while increasing the so-called order of the vertex until the cage is reached.
We call this the BGS algorithm for finding paths in Ĝp.

Not surprisingly, this is easiest to do when the order of the vertex in question is already quite
large, and they call the process of passing from such a vertex to the cage the “End Game.” Those
points whose order is larger than a small power of p but not as large as the vertices involved in the
End Game are treated separately in what Bourgain, Gamburd, and Sarnak call the “Middle Game.”
Finally, to move from vertices of very small order into the Middle Game and beyond, they employ
rather technical methods in what they call the “Opening.” Because it is central to understanding
the potential attack that it gives on our cryptosystem, and because some of the details that are
important to us are left to the reader in [BGS1], we carefully describe these three parts of Bourgain,
Gamburd, and Sarnak’s proof of Theorem 5 and then give a heuristic for the running time in Section
2.1. We show the following.

Proposition 1. The length of the path given by the BGS algorithm is bounded from above by

O (p log log p) .

See section 2.1 for the derivation. From this, we deduce the time complexity of the algorithm.

4

Proposition 2. The time complexity of the BGS algorithm is at most

O (p log log p) .

We also provide data in Section 2.1 showing that these upper bounds are in fact of the right
order, which supports the heuristics. We observe that the path is longest modulo primes p for which
p2 − 1 is very smooth (see discussion in Section 2.1). Note that, if a faster way of finding paths
between vertices in Gp or Ĝp exists, this would be both of interest to the study of our hash function,
and to the study of the arithmetic of Markoff numbers: it could provide a second proof of Theorem
5 that works even for those primes that Bourgain, Gamburd, and Sarnak could not handle.

Related to this first attack, we also present a seemingly simple attack which would use the
fact that, as one walks without back-tracking along the Markoff tree depicted in Figure 1, the
coordinates of the triple increase. This makes it trivial to find paths between vertices in this tree:
simply walk from the two vertices in question along edges that decrease coordinates until one gets
to (1, 1, 1). If it were easily possible, given a vertex (x1, x2, x3) in Gp to lift it to a vertex in the
infinite Markoff tree which reduces to (x1, x2, x3) modulo p, then one could simply connect the two
vertices in question by connecting their lifts in the infinite tree, and then transferring this path back
to Gp. However, in Section 4, where we describe this attack more carefully, we explain the obstacles
to this approach. In particular, an efficient algorithm to lift would yield another proof of Theorem
5: an algorithm to lift any triple in Gp to one in the infinite tree (which is known to be connected)
in fact shows that Gp itself, and, by the previous discussion of how the two graphs are related, Ĝp
is connected. We conjecture the following.

Conjecture 3. The length of a path found by lifting a triple in Gp to a triple in the Markoff tree
over Z is at least O(log p) for most triples in Gp.

Note that this does not take into account the difficulty of actually finding the lift (or this path
of length log p). Hence the running time of this attack is likely comparable to the one based on the
BGS algorithm.

1.4 Some background on Markoff triples

We now note a few important facts about the graphs Gp. First of all, it is known that |Gp| = |Ĝp| =
p2 +

(
−1
p

)
· 3p if p > 3, which is mentioned in [dCM] without proof. Here

(∗
∗
)

denotes the Legendre

symbol. One way to prove this is to think of the left side of the Markoff equation as a quadratic
form in one of the variables x1, x2, x3, and then consider how many representations of 0 there are
mod p, which is a well known problem. Furthermore, Meiri and Puder have proven the following.

Theorem 4 (Meiri, Puder [MP]). Let Gp be as above and let Γp be the finite permutation group
induced by the action of Γ = 〈R1, R2, R3〉 on Gp. Then, outside a zero-density subset of all primes,
the group Γp is either the full symmetric group or the alternating group on the vertices of Gp.

They conjecture that this is in fact true for all primes p ≥ 5. So we can compare walking along
the graph Gp to generating elements of Sn and An (where n = |Gp|) with a given random generating
set, which has been studied, for example in [BH].

The graphs Gp and Ĝp are now known to be connected for the majority of primes p. This was
proven by Bourgain, Gamburd, and Sarnak in [BGS1] as a first step in studying the arithmetic
of Markoff triples (for example, the distribution of primes or numbers with a bounded number of
prime factors among Markoff numbers). The structure of these graphs plays an important roll in
sieving over Markoff triples, which is key in [BGS2]. Specifically, they show the following.

5

Theorem 5 (Bourgain, Gamburd, Sarnak [BGS1]). For all primes p 6∈ E, where E is an exceptional
set of primes, the graph Ĝp is connected. The set E is small: for any ε > 0, the number of primes
p ≤ T with p ∈ E is at most T ε for T large.

Furthermore, they conjecture not only that Gp is connected for all primes p, but that in fact
the family of graphs Gp where p is prime is an expander family. This is explored in [dCM], as we
discuss in the following section. Theorem 5 is enough to show, as Bourgain, Gamburd, and Sarnak
show in [BGS2], that the set of Markoff numbers contains infinitely many composite numbers, and
in fact that almost all Markoff numbers are composite.

2 Markoff triple hash function and data

Recall that for a sufficiently large prime p, we can construct a hash function as follows. A fixed
public initial vertex is specified, say (1, 1, 1). Also choose an involution k; the choice of k is fixed
but arbitrary. The edges of Gp are canonically labeled with 1, 2, or 3, corresponding to the
three involutions R1, R2, R3 respectively. Given a bit string of finite length as input, say b0b1b2 . . .,
designate c0 = k. Then, for i > 0, suppose ci−1 was the label of the previous edge, ci ∈ {1, 2, 3}.
Then we move along the edge

ci = (ci−1 + bi) (mod 3) + 1

Note that doing this avoids substrings of the form RiRi, and so we avoid backtracking. The output
of the hash function is the final vertex where the walk ends, after processing all the bits bi in the
string. Note that the initial bit string is not necessarily raw text or data, and will most likely be
augmented with some compression function, such as the Merkle-Damgard construction.

For example, suppose we want to encode the binary message 10011 in G13. We choose k = 0
then apply the series of rotations

10011 7→ R2 ◦R3 ◦R2 ◦R1 ◦R2(1, 1, 1) = (0, 5, 1)

We know that |Gp| = O(p2), so for the output space of this hash function to be comparable to say
SHA-256, we would want to take p ≈ 2128. The security of this hash function depends upon the
difficulty of path or cycle finding in Gp. That is, given x, y ∈ Gp, what is the time complexity of
finding a path between x and y?

Note that if the starting vertex is (1, 1, 1), the input string needs to be longer than log p so that
the coordinates of the output start to wrap around modulo p. Otherwise a trivial lifting attack
is possible. A better starting vertex v0 can be obtained by taking a walk of length log(p) from
(1, 1, 1). In general we will assume that the length of the walk from v0 is at least length log(p). In
fact, [BGS2] has conjectured that the family Gp is an expander family; walks of length O(log p)
are sufficient for mixing in expander graphs.

2.1 Cryptographic Heuristics

The theorems of Bourgain, Gamburd, and Sarnak, which we present in detail in Section 3 prove
the correctness of the following path finding algorithm in Ĝp (under certain easy assumptions on
p). This path finding algorithm uses a notion of “order” of a triple, coming from a certain rotation
assigned to it (see Section 3.1 for the definition). The idea is then that there is a large connected
component of Ĝp consisting of triples of “maximal” order, and to connect any two triples one need
only connect each of them to this large component, which Bourgain-Gamburd-Sarnak call the cage.
One does this by walking along a specially concocted path in which the orders of the triples grow as
one walks along it, until one reaches the cage. In other words, the algorithm runs as follows.

6

Suppose we want to connect two triples X and Y . We can do this in two steps:

1. First, if X or Y are not in the cage, then we want to connect them to the cage.

Every triple X is part of special cycles in Ĝp which we describe in Section 3, called maximal orbits
MX of X. Bourgain-Gamburd-Sarnak show that the orbit MX contains at least one point of higher
order than X, call it X ′. Then X ′ is connected to X, so replace X with X ′ and repeat the same
argument. The order is guaranteed to increase each step, until eventually the order is maximal.

2. Now we can suppose X and Y are both in the cage. Then by Proposition 10 (Proposition 6 in
[BGS1]), there exists a point Z in the cage such that X − Z − Y is a valid path.

In fact, we have an explicit way of finding Z. Since X or Y might have more than one maximal orbit,
we search over all maximal orbits of X and Y and look for an intersection, which is guaranteed to
exist. In the case that X and Y have the same singular maximal index, then we simply perform an
appropriate transposition on either X or Y .

As noted in Proposition 1, we have an upper bound of

O(p log log p)

on the length of the path obtained using the BGS algorithm.
To see this, suppose we start at a point that is far from the cage and walk towards it by going

around essentially a full orbit of a rotation acting on that point, then switching to an orbit that is
slightly larger, and so on. The number of steps needed is as follows: we may have to go through all
the divisors d of p− 1 and p+ 1 as we increase the divisors (these correspond to the orbit sizes).
We only need to do this up to about

√
p, according to Bourgain-Gamburd-Sarnak, since after that

there will be a point in the orbit that is in the cage. So the total number of steps needed to take in
the BGS algorithm is bounded above by∑

d|p−1

d+
∑
d|p+1

d+ 3p

where 3p bounds the number of steps needed to walk from one point in the cage to another. We
have that ∑

d|p−1

d,
∑
d|p+1

d << p log log p

and this is expected to be almost always sharp.
Note that if the two points between which wee must find a path are both in the cage, then

path-finding in the cage has complexity O(p).
We can imagine optimizing this algorithm by being greedier with the first step. Instead of

looking at the entire orbit, as soon as we find any X ′ with order higher than X, we replace X with
that X ′. The algorithm is also guaranteed to work because the order is still guaranteed to increase
at each step. If we assume this X ′ occurs uniformly randomly within the orbit, instead of looking
at d points in an orbit, we only look at d/2 points on average. The complexity of this modified
algorithm is largely unchanged (up to a constant).

This upper bound is supported by the data in Figure 3. Larger p are needed for more precise
comparison, but this is encouraging data that tracks very closely with p log log p. Note that the
relative scale for time taken is arbitrary; nevertheless we mention the specifications for reference.
Calculations were done in SageMath 9.1, running on a quad-core i7-8550U CPU.

7

Figure 3: Plot of log p vs. log average time taken by the BGS algorithm. Here we take primes
p ≤ 739. Time taken is in milliseconds, averaged over 100 trials for each p.

Now the complexity depends merely on the chance of a worst-case scenario, where the triple is
not in the cage. This depends on a couple of factors: the proportional size of the cage, and the
number of steps it could potentially take to connect any triple to the cage.

It turns out that both of these factors depend in turn on ηp, the number of divisors of p2 − 1.
There is a correlation between ηp and the number of steps needed to connect a triple (not in the
cage), as can be seen in Figure 4. Additionally, Figure 5 is supporting evidence that the size of cage
also depends on ηp. The asymptotic behavior of this graph, as ηp →∞, is a relevant open question.

Figure 4: Plot of log ηp vs. average time taken by the BGS algorithm, in seconds. Here we take
prime p < 10000 and ηp < 6000. Time taken is in seconds, averaged over 10 trials for each p.

We would also like to see if the time taken to connect a point to the cage depends on ηp. A plot
of this relationship can be seen in Figure 6, showing a strong correlation between ηp and the time
taken to connect a point to the cage.

Concretely, [BGS1] only establishes that Ĝp is connected as long as p satisfies the following

8

Figure 5: Plot of log ηp vs. proportion of all vertices in the graph Ĝp which are in the cage for
primes p < 100000 with ηp < 24000.

Figure 6: Plot of log ηp vs. time taken by the BGS algorithm to connect a point to the cage, in
seconds. Here our primes p are taken such that p < 2000 and ηp < 2000. Time taken is in seconds,
averaged over 10 trials for each p.

condition: for any y, ∑
d|p2−1,d∈[(log p)1/3,y]

d2/3 < y

Therefore p is selected so that p2 − 1 is not smooth. Not only does this guarantee connectedness,
it also assists with the problem of short cycles. The length of any orbit must divide p2 − 1, so
avoiding small factors will also avoid small orbits. Fortunately, such primes are difficult to find, and
thus easy to avoid. Different search methods have been proposed for finding smooth primes (for
example, in the appendices of [C] and [FKLPW], the authors produce two separate approaches),
all of which support the claim that finding such primes is a difficult task.

This is additional evidence that increasing ηp also increases the difficulty of path-finding. Thus
we recommend that the security parameter be dependent on both the size of p as well as ηp.

9

2.2 Sampling

Without prior knowledge of the entirety of Ĝp, how does one randomly sample a point from Ĝp?
One way would be the following. Start at a fixed point, say (1, 1, 1) which is in Ĝp for all p. Then
perform a random non-backtracking walk starting from (1, 1, 1), of a large length l, the end of which
is our sample. Below we see empirically that l does not affect the random distribution for sufficiently
large l:

Figure 7: Graph of log length of a sample path vs. a sampled estimate of the size of the cage. Here
p is fixed at 5851, and we performed 300 random walks of length l for each l. The data show how
many of these 300 samples are in the cage.

Of course, this method would be truly uniformly random if the family of graphs Ĝp were an
expander family. We do have empirical evidence of this, as well as more compelling evidence from
a paper of de Courcy-Ireland and Magee [dCM]. In particular, they state that Gp “resembles” a
random graph, which is a start to examining the spectral gap for the adjacency matrices of the
graphs Gp.

Specifically, de Courcy-Ireland and Magee show that the distribution of the eigenvalues of the
adjacency matrix of a Markoff graph Gp asymptotically follows the Kesten-McKay law for the
distribution of eigenvalues of large randomly chosen 3-regular graphs. In general, the Kesten-McKay
law says that, for a large random d-regular graph, the expected eigenvalue probability distribution is

ρd(λ) =
d

2π

√
4(d− 1)− λ2
d2 − λ2

for |λ| ≤ 2
√
d− 1 and is 0 otherwise.

Let µp be the distribution of eigenvalues on Gp, which range from [−3, 3]:

µp =
1

|Gp|
∑

δλj

De Courcy-Ireland and Magee prove the following.

Theorem 6 ([dCM], Theorem 1.1). Given p, there exists a constant L ∼ log p and a constant C,
independent of p and L, such that∫

xLdµp =

∫
xLρ3(x)dx+O(CL/p)

10

However, as mentioned in [dCM], this distribution is not strong enough to show that the family
of graphs Gp is an expander family. We would like the spectral gap to be nonzero, i.e. the number
of eigenvalues in the interval [3− ε, 3] to be O(1); the work in [dCM] only proves that this number
is O(p2/ log p).

For a beautiful graphical comparison of the plot of this distribution to analogous plots of
calculated eigenvalues for the Markoff surface mod p for p = 83 and 89, see Figure 1.1 of [dCM].
While not conclusive, this gives some indication that the family of Markoff graphs forms an expander
family.

3 Attack by Pathfinding via the Method of Bourgain-Gamburd-
Sarnak

In this section, we go through the key elements of the proof of Theorem 5, which is necessary for
the analysis of how fast of a path-finding algorithm this produces in section 2.1.

3.1 Rotations

A key collection of tools in the proof of Theorem 5 are certain rotations that are associated to every
triple in Ĝp. In this section, we go over crucial results about these rotations.

Denote by τij the transposition of the ith and jth coordinates.
Let Cj(a) denote all triples for which the jth coordinate is equal to a.
Given a triple X, define a rotation function

rotx1(X) = τ23 ◦R2(X) = (x1, x3, 3x1x3 − x2)

Note that this function is easily extended to x2 or x3 by applying the appropriate permutation to
Rj(X) for the appropriate j.

Further note that without loss of generality we applied R2 instead of R3; we can simulate the
latter by again applying the appropriate permutation to X. Thus define rotx2 , rotx3 similarly.

Since rotx1 fixes x1, we can think of rotx1 as a function in (x2, x3) on the plane defined by setting
the first coordinate to be x1:

rotx1

(
x2
x3

)
=

(
0 1
−1 3x1

)(
x2
x3

)
So we define the rotation order of x as the order of(

0 1
−1 x

)
∈ SL2(Fp)

Note here we are replacing 3x1 with x. For the remainder of this section, x will always denote 3x1.
The rotation order of a triple is then defined to be the maximum rotation order of its coordinates.
Iteratively applying one rotation to a triple X eventually returns one to X, and we call the set

of all such points the orbit of that rotation.

The eigenvalues of the rotation matrix are x±
√
x2−4
2 , and so we separate cases depending on

whether
(
x2−4
p

)
= ±1.

• If x ≡ ±2 (mod p), we say x is parabolic.

• If
(
x2−4
p

)
= 1, then x is hyperbolic.

11

• If
(
x2−4
p

)
= −1, then x is elliptic.

A triple is parabolic/hyperbolic/elliptic if its coordinate with maximal rotation order is parabolic/hyperbolic/elliptic.
These suggestive names will begin to make more sense if Ĝp is pictured literally as a subset of
Euclidean space.

To reiterate an above statement, if we were to say 12 ∈ F17 is hyperbolic, we mean that the
coordinate x1 = 4 is hyperbolic.

Lemma 7 (Lemma 3 of [BGS1]). Let x be parabolic, i.e. x ≡ ±2 (mod p). If p ≡ 3 (mod 4), then
C1(x) is empty (i.e. x does not appear in any triple in Ĝp). If p ≡ 1 (mod 4), then

C1(2/3) =

(
2

3
, t, t± 2i

3

)

C1(−2/3) =

(
−2

3
, t,−t± 2i

3

)
where i2 ≡ −1 (mod p) and t is any number (mod p). So C1(x) is a pair of disjoint lines.
Furthermore, the action of rotx is explicitly given by

rotx

((
2

3
, t, t± 2i

3

))
=

(
2

3
, t± 2i

3
, t± 4i

3

)

rotx

((
−2

3
, t,−t± 2i

3

))
=

(
−2

3
,−t± 2i

3
,−t∓ 4i

3

)
So rot2 fixes each line while rot−2 interchanges them.

Proof. Without loss of generality suppose x1 = ±2/3. Then equation (1) reduces to

x22 + x23 +
4

9
∓ 2x2x3 ≡ 0 (mod p)

(x2 ∓ x3)2 ≡ −
4

9
(mod p)

So a solution exists if and only if
(
−1
p

)
= 1, which is equivalent to p ≡ 1 (mod 4).

Set p ≡ 1 (mod 4) and suppose C1(2/3) = (2/3, t, t+ a). Then we have

t2 + (t+ a)2 +
4

9
− 2t(t+ a) ≡ 0 (mod p)

which reduces to a2 ≡ −4/9 (mod p) independent of t, which gives the desired result.
Similarly suppose C1(−2/3) = (−2/3, t,−t+ a), which gives

t2 + (−t+ a)2 +
4

9
+ 2t(−t+ a) ≡ 0 (mod p)

which again reduces to a2 ≡ −4/9 (mod p) which again gives the desired result.
Now we can explicitly calculate

rot2

((
2

3
, t, t± 2i

3

))
=

(
2

3
, t± 2i

3
, 3

2

3

(
t± 2i

3

)
− t
)

=

(
2

3
, t± 2i

3
, t± 4i

3

)

12

Figure 8: (a) Two lines in C1(12) fixed by rot12. (b) Two lines in C1(5) interchanged by rot5.

rot−2

((
−2

3
, t,−t± 2i

3

))
=

(
−2

3
,−t± 2i

3
,−3

2

3

(
−t± 2i

3

)
− t
)

=

(
−2

3
,−t± 2i

3
,−t∓ 4i

3

)
as desired.

Here is an example in G17, where 17 ≡ 1 (mod 4), 2/3 (mod p) = 12, and i ≡ 4 (mod 17).

Lemma 8. If x is not parabolic, then we can write

x = χ+ χ−1

where χ ∈ Fp if x is hyperbolic, and χ ∈ Fp2 if x is elliptic.

Proof. Suppose x is hyperbolic, i.e.
(
x2−4
p

)
= 1. Then suppose x2 − 4 = r2. Set χ = (x + r)/2,

χ−1 = (x− r)/2, and verify
x+ r

2

x− r
2

=
x2 − r2

4
= 1

Then we have
r2 = (χ− χ−1)2 = χ2 + χ−2 − 2 = (χ+ χ−1)2 − 4

as desired. Now similarly suppose x is elliptic. Then x2− 4 is not a residue in Fp, but it is a residue
in

Fp2 '
Fp[y]

y2 − (x2 − 4)

Set x2 − 4 = r2 where r ∈ Fp2 and repeat the above argument.

Upon diagonalizing the rotation matrix rotx, one arrives at

rotx =

(
1 1
χ χ−1

)(
χ 0
0 χ−1

)(
1 1
χ χ−1

)−1
= (χ−1 − χ)−1

(
1 1
χ χ−1

)(
χ 0
0 χ−1

)(
χ−1 −1
−χ 1

)

13

Thus

(rotx)l = (χ−1 − χ)−1
(

1 1
χ χ−1

)(
χl 0
0 χ−l

)(
χ−1 −1
−χ 1

)
= (χ−1 − χ)−1

(
χl−1 − χ1−l −χl + χ−l

χl − χ−l −χl+1 + χ−l−1

)
If we consider χl = t, where t ∈ 〈χ〉, then we have

〈rotx〉 =

{
(χ−1 − χ)−1

(
χ−1t− χt−1 t−1 − t
t− t−1 χ−1t−1 − χt

)
: t ∈ 〈χ〉

}
Thus

C1(x) =

{
(χ−1 − χ)−1

(
χ−1t− χt−1 t−1 − t
t− t−1 χ−1t−1 − χt

)(
x2
x3

)
: t ∈ 〈χ〉

}
= (χ− χ−1)−1

(
t(x3 − χ−1x2) + t−1(χx2 − x3), (3)

t(χx3 − x2) + t−1(x2 − χ−1x3)
)

(4)

again for t ∈ 〈χ〉. Now we can rewrite the second coordinate as at+ bt−1 where

a =
x3 − χ−1x2
χ− χ−1

, b =
χx2 − x3
χ− χ−1

Later we will need the fact that

ab =
x2x3(χ+ χ−1)− x22 − x23

(χ− χ−1)2
=

x2

(χ− χ−1)2
=

(
χ+ χ−1

χ− χ−1

)2

6= 1 (5)

Now we consider the cases of x hyperbolic or elliptic separately.

• For x hyperbolic: From equation (4), note that a, b ∈ F∗p, so substitute t 7→ ta−1 to see that

C1(x) =

{(
t+

ab

t
, χt+

ab

χt

)
: t ∈ F∗p

}
Applying the rotation gives

rotx

(
t+

ab

t
, χt+

ab

χt

)
=

(
χt+

ab

χt
, χ2t+

ab

χ2t

)
(6)

Since t ∈ F∗p, we see that |C1(x)| = p− 1. On the other hand, since x is hyperbolic, by Lemma 8,
we can write

x = ρj + ρ−j

where ρ is a primitive root of Fp. Then if we iteratively apply rotx, we cycle through p−1
j elements

in C1(x), i.e. the rotation order of rotx is p−1
j for some j.

An explicit example of this can be seen below in Figure 9 for the case of G17:

14

Figure 9: (a) A maximal order hyperbolic rotation rot3 shown in the plane C1(3). (b) A hyperbolic
rotation rot2 of order 8 = p−1

2 in C1(2). The line x2 = x3 is shown for symmetry.

• For x elliptic, the derivation is similar. We start by rewriting

x = χ+ χ−1 = ν + νp

for ν ∈ Fp2 − Fp. Then applying the rotation gives

rotx

(
x, t,

κx
t

)
=
(
x, t+

κx
t
, tν +

κx
tν

)
(7)

which implies

C1(x) =

{(
t+

ab

t
, νt+

ab

νt

)
: t ∈ F∗p2 , tp+1 = ab

}
where the latter requirement implies t ∈ Fp2\Fp, which in turn implies |C1(x)| = p + 1. On the
other hand, since x is elliptic, by Lemma 8, we can write

x = ξj + ξ−j

where ξ is some element of Fp2 . Explicitly, if γ is a generator of (Fp2)×, then ξ = γp+1. So if we

iteratively apply rotx, we cycle through p+1
j elements in C1(x), i.e. the rotation order of x1 is p+1

j
for some j.

An explicit example of rotations for elliptic and hyperbolic elements in G17 can be seen in Figure
10.

Figure 10: (a) A maximal order elliptic rotation rot7 shown in the plane C1(7). (b) A hyperbolic
rotation rot8 of order 9 = p+1

2 in C1(9).

15

From the above discussion, we have that x has a maximal rotation order of p− 1 if x is hyperbolic,
p+ 1 if it is elliptic, or p, 2p if it is parabolic. If any of these cases applies to x, we say x is maximal
hyperbolic/elliptic/parabolic respectively. A triple is maximal (hyperbolic/elliptic/parabolic) if one
if its coordinates is with respect to its corresponding type (again remembering that x = 3x1).

Note that the rotation order of a parabolic x is either p or 2p. We consider both of these
elements to be maximal parabolic. If a triple X contains either element, we can connect X to a
triple containing any coordinate.

3.2 The End Game

We are now ready to delve into the BGS algorithm. In this section we aim to show that any element
of order p1/2+δ for δ > 0 can be connected to a triple with a coordinate that is maximal with respect
to its type. Later on we will show that every element in Ĝp can be connected to a triple of maximal
order, and that such maximal triples themselves can be connected, implying the connectedness of
Ĝp.

Proposition 9 (Proposition 7 of [BGS1]). Let X be a triple with rotation order at least p1/2+δ for
δ > 0 fixed. Then X is connected to a maximal triple Y .

As defined above, the triple X can be classified as hyperbolic, elliptic, or parabolic.
The parabolic case is trivial. As we discussed above, we can connect a parabolic triple to an

arbitrary coordinate.
Let us first suppose the element is hyperbolic. Then applying (6) to X gives elements of the

form
(x1, α1t+ α2t

−1, α3t+ α4t
−1)

Here αi ∈ F∗p and t ∈ H, where H is some cyclic subgroup of F∗p. If we want to connect X to a
maximal triple by iteratively applying (6), we would like the second coordinate to eventually take
the form ρ+ ρ−1, where ρ is a primitive root of F ∗p . The latter is exactly the form of a maximal
hyperbolic element.

So let P (H) denote the number of solutions to

α1t+ α2t
−1 = ρ+ ρ−1 (8)

where ρ is a primitive root of F∗p.
On the other hand, let K be an arbitrary subgroup of F∗p. Now define P (H,K) to be the number

of solutions to (8) where we require ρ ∈ K instead of ρ being a primitive root.
The subgroups H and K are determined by their indices in F∗p; set dK = (p − 1)/|K| and

dH = (p− 1)/|H|.
Now suppose (t, y) is a solution to

α1t
dH + α2t

−dH = ydK + y−dK (9)

Then the map (t, y) 7→ (tdH , ydK) sends solutions of (9) to solutions of (8); this map is dHdK to 1.
Thus if N(α1, α2) is the number of solutions to (9), then

P (H,K) =
N(α1, α2)

dHdK

As shown by Lemma 8 of [BGS1], the curve

α1t
dH + α2t

−dH − ydK − y−dK

16

given by (9) is absolutely irreducible with genus O(dHdK). Thus applying the Hasse-Weil bound
for irreducible curves gives

N(α1, α2) = p+O(dHdK
√
p)

which in turn gives

P (H,K) =
p

dHdK
+O(

√
p) (10)

We now want to express P (H) in terms of P (H,K). We use inclusion/exclusion on K to eventually
find all primitive roots. Let pi be the distinct prime factors of p− 1. Also let Kd be the subgroup of
F∗p of index d, e.g. K1 = F∗p and Kp−1 = {1}. Then we have:

P (H) = P (H,K1)−
∑
i

P (H,Kpi) +
∑
i,j

P (H,Kpipj)− · · ·

=
∑
d|p−1

µ(d)P (H,Kd) (11)

Plugging (10) into (11) gives

P (H) =
∑
d|p−1

µ(d)

(
|H|
d

+O(
√
p)

)

=

|H| ∑
d|p−1

µ(d)

d

+O(p1/2+ε)

=

(
|H|φ(p− 1)

p− 1

)
+O(p1/2+ε)

≥ |H|(p− 1)−ε +O(p1/2+ε)

We assumed our initial triple X had order ≥ p1/2+δ, i.e. |H| ≥ p1/2+δ. Thus P (H) > 1 and so there
exists at least one solution to equation (8). This implies that the orbit of this rotation contains a
maximal triple and the hyperbolic case is handled.

The elliptic case is covered in detail in Section 3 of [BGS1]. However, as the technical details of
their argument are not needed for the paper at hand, we omit them and move on to showing the
collection of maximal elements is connected.

3.2.1 Connectedness of the Cage

The vertices in Ĝp corresponding to triples of maximal order form a connected component [BGS1].
Consider Cj(α) ∩ Ck(β) with j 6= k, and without loss of generality let j = 1, k = 2. Also suppose
α, β 6= 0,±2/3. Going forward we sometimes denote C1(α) as (α, ?, ?) and C1(α)∩C2(β) as (α, β, ?).

Then
|C1(α) ∩ C2(β)| = |(α, β, ?)| = 0, 1, 2

In particular, the intersection consists of all γ such that α2 + β2 + γ2 − 3αβγ = 0, which has a
solution in γ if (

9α2β2 − 4(α2 + β2)

p

)
≥ 0

In particular

|(α, β, ?)| = 1 +

(
9α2β2 − 4(α2 + β2)

p

)
≥ 0

17

So consider the incidence graph I(p) of Ĝp. The vertices of I(p) are Cj(α) and the number of edges
between Cj(α) and Ck(α) is |(α, β, ?)|.

Proposition 10 (Proposition 6 of [BGS1]). For p > 10, the incidence graph is connected and in
fact has diameter 2.

Proof. We want to connect C1(α) and C2(β). Thus we want to find γ such that both (α, ?, γ)
and (?, β, γ) are nonempty. So suppose there is a point (α, l, γ); solve the quadratic in the second
coordinate to see that we must have

9α2γ2 − 4α2 − 4γ2 = λ2

for some λ. Similarly we must have that

9β2γ2 − 4β2 − 4γ2 = µ2

for some µ. Rearrange the two equations into the system{
(9α2 − 4)γ2 − λ2 = 4α2

(9β2 − 4)γ2 − µ2 = 4β2
(12)

If α2 = β2, then we just take λ = µ, and we can reduce (12) to one equation and find an explicit
value for γ. Otherwise (12) is an irreducible curve for which we know a solution in γ exists for
p > 10. So the diameter of the incidence graph is at most 2. But of course C1(α) is not connected
to C1(β) if α 6= β. Thus the diameter is precisely 2.

Define the cage to be the subset of maximal triples. We claim the cage is connected, i.e.
path-connected.

Suppose X is a maximal triple with maximal coordinate α, say X = (α, ?, ?). Suppose Y is a
maximal triple with maximal coordinate β, say Y = (?, β, ?). By Proposition 10, we know there
exists a γ such that both (α, ?, γ) and (?, β, γ) are nonempty. However, we need γ to have maximal
order:

(α, ?, ?) (α, ?, γ) (?, β, γ) (?, β, ?)α maximal γ maximal β maximal

The paper of Bourgain, Gamburd, and Sarnak [BGS1] finishes the proof to guarantee the existence
of such a maximal γ. Thus the cage is connected. We now illuminate this approach through a
concrete example.

3.2.2 Constructive Example

Let’s now walk through a simple example to show how vertices are connected using the BGS
algorithm. Take p = 17. We have the elements along with their order and type in the following
table.

18

Element Order Type

0 4 parabolic
1 18 elliptic
2 8 hyperbolic
3 16 hyperbolic
4 16 hyperbolic
5 34 parabolic
6 6 elliptic
7 18 elliptic
8 9 elliptic
9 18 elliptic
10 9 elliptic
11 3 elliptic
12 17 parabolic
13 16 hyperbolic
14 16 hyperbolic
15 8 hyperbolic
16 9 elliptic

Consider the triple X = (15, 0, 8) ∈ G17. This triple is not maximal, but it does have order > p1/2+δ.
By Lemma 9, we should be able to connect X to the cage through rotations of its maximal element.

Since the coordinate 8 has the highest order, we consider rot8 applied to X:

(15, 0, 8) 7→ (0, 2, 8) 7→ (2, 14, 8) 7→ (14, 11, 8) 7→ (11, 12, 8) 7→ (12, 5, 8) 7→

(5, 6, 8) 7→ (6, 3, 8) 7→ (3, 15, 8) 7→ (15, 0, 8)

which is just a shuffle of the coordinates

15− 0− 2− 14− 11− 12− 5− 6− 3− 15

for which 14 and 3 are maximal hyperbolic, and 12 and 5 are maximal parabolic. Thus we can
connect X to the cage in a number of ways.

A visual representation of this rotation within the plane C3(8) is given in Figure 11.

Figure 11: rot8 applied to (15, 0, 8) in the plane C3(8).

19

3.3 The Middle Game and The Opening

In this section we aim to show that any triple X of small order can be connected to the cage in a
finite number of moves. By small order, we mean triples X whose order is pε (which we refer to as
The Middle Game) or those whose order is less than p < c for some constant c, i.e. points whose
orders are uniformly bounded independent of p (which we refer to as The Opening).

We first handle the Middle Game in detail, and then outline how the Opening comes into play.
In particular, we connect a triple of order pε to the cage by showing that one can connect it to a
triple whose order is strictly greater than that of the original triple, and then iterate the process
until we have a triple of order p1/2+δ and we are in the End Game. This is done via the following
procedure:

Define the maximal orbit MX of a triple X as the orbit corresponding to the rotation of the
maximal coordinate of X. So if X is a triple with order l, then |MX | = l. Any orbit occurs with
respect to either the first, second, or third coordinate; we call this number the index of the orbit.

1. Let Y ∈MX and lY be the order of Y . Of course l, lY | p2 − 1.

2. If lY > l, then necessarily the index of MY is not equal to the index of MX . Then replace X
with Y , thereby strictly increasing the order of X.

3. Otherwise, lY ≤ l. Consider the sum

Nl =
∑
l′≤l

#{Y ∈MX : lY = l′} (13)

If Nl < l, then there must be a point Z ∈MX whose order is strictly greater than that of X.
We can then replace X with Z and repeat this process until we arrive at an element with
order at least p1/2+δ, which is a reduction to the endgame. This must happen because the
order strictly increases at each step and p2 − 1 has finitely many divisors.

Now we need to effectively bound Nl. As seen in the endgame, every Y (with order lY | p2 − 1) in
the maximal orbit of X corresponds to a solution of the equation:

h1 + σ
h1

= h2 + 1
h2

h1 ∈ H1, h2 ∈ H2

H1, H2 subgroups of F∗p or F∗p2
σ ∈ Fp

(14)

where |H1| = l and |H2| = lY . Also, from equation (5), we have that σ 6= 1. So we see that in fact
Nl denotes precisely the number of solutions to (14), so equivalently we want an upper bound on
the number of solutions to (14). The following bound is derived in [BGS1], based off previous work
of Bourgain (Proposition 2 in [B10]).

Proposition 11 (Proposition 10 of [BGS1]). Given δ > 0 there is τ < 1 and Cτ depending on δ
such that if pδ < |H1| < p1−δ then the number of solutions to (14) is at most Cτ |H1|τ .

From this proposition, we simply deduce

Nl ≤ Cτ |H1|τ = Cτ l
τ

which provides a necessary upper bound to the number of solutions of (14), as desired.

20

Thus any triple of order at least pε can be connected to the cage, and so all triples of order at
least pε are connected. This algorithm is essential for our cryptographic constructions, and provides
the backbone to the first step in connecting two triples X and Y as discussed in Section 2.1.

Next we consider the part of the BGS algorithm that is called “the Opening,” in [BGS1]: that
is, the rest of the points in Ĝp whose order is less than p < c for some constant c, that is points
whose orders are uniformly bounded.

In the Opening section of [BGS1], Bourgain, Gamburd, and Sarnak prove that one can connect
triples with uniformly bounded orders to the cage to conclude that the Markoff graph mod p
is connected; however their methods are non-constructive. To go about this, they look at the
characteristic 0 case and show that there are no finite Γ-orbits. As this method is not needed in our
cryptographic analysis of Ĝp, we omit the technicalities and direct the interested reader to Section
5 of [BGS1] for a comprehensive analysis of the Opening.

The proof of Theorem 5 presented throughout Section 3 provides us with an algorithmic approach
to finding paths in Ĝp, thus establishing connectivity of Ĝp. This method need not be optimal but
the cryptographic analysis in Section 2.1 elucidates the strength of the cryptosystem against the
BGS-style attack. We now look at another possible avenue of path-finding based off lifting solutions
to Z and exploiting the structure of the Markoff tree.

4 Attack by Lifting

The main observation behind our plan of attack is the following lemma.

Lemma 12. Let (x1, x2, x3) be a Markoff triple in Z3 whose i-th coordinate xi is maximal, and
xi > 1. Then applying Ri to the triple decreases the size of the i-th entry. Formally, suppose
|xi| ≥ |xk| for all 1 ≤ k ≤ 3 in the Markoff triple (x1, x2, x3). Let (x1,i, x2,i, x3,i) be the triple
obtained from applying the i-th involution Ri to the triple:

(x1,i, x2,i, x3,i) := Ri(x1, x2, x3).

Then |xi,i| < |xi|.

Proof. Let xj , xk be the other two coordinates of the triple (x1, x2, x3) besides xi. Note that, since
|xi| > 1, it is impossible for (xi, xj , xk) to satisfy (1) if |xi| = |xj | = |xk|. In fact, in this case we
have that |xi| must be strictly larger than |xj | and |xk| in order for (1) to be true. Suppose further
without loss of generality that |xj | ≤ |xk|.

We have xi,i = 3xjxk − xi. If xi > 0, then xjxk > 0 in order for (1) to be satisfied, and, again
by (1) we have

3xjxk = (x21 + x22 + x23)/xi > xi,

so that
|xi,i| = |3xjxk − xi| = 3xjxk − xi.

Our goal is hence to show that 2xi − 3xjxk > 0. We have by (1) that

2xi − 3xjxk = 2xi −
x2i + x2j + x2k

xi
=
x2i − x2j − x2k

xi
,

which, given that xi > 0, is positive if and only if the numerator is positive. Rewrite the numerator
as

x2i + x2j + x2k − (2x2j + 2x2k)

21

and compare with the left side of (1). We claim that 2x2j + 2x2k < 3xixjxk, which would imply that
the numerator above is positive as desired.

It remains to prove our claim. Given that xi > |xj | and |xk| ≥ |xj |, we have

3xixjxk > xixjxj + 2|xk|xjxk ≥ 2x2j + 2x2k

as desired where the last inequality is true since xi ≥ 2 and |xj | ≥ 1. So, if xi > 0 we are done.
If xi < 0 the argument is nearly identical. We would have that xi,i < 0 in that case, and so our

goal would be to show that −3xjxk + xi < −xi, or that 2xi − 3xjxk < 0. Given that (−xi,−xj , xk)
is a triple satisfying the properties in the first case above where xi > 0, the argument above shows
that −2xi + 3xjxk > 0, which is exactly what we need.

This lemma gives a very straightforward way of finding a path from any triple (x1, x2, x3) in the
tree to the triple that is the “origin,” or (1, 1, 1) in absolute value, which in turn gives a simple way
of finding a path between any two vertices in the tree. Thus if triples can be efficiently lifted from
the graph Gp to the tree, this algorithm gives a path-finding attack on the graph. The algorithm is
as follows. Start with W = I, the identity.

1. If (|x1|, |x2|, |x3|) = (1, 1, 1) then we are done, and W is the word that describes the path from
(x1, x2, x3) to the origin. If not, determine i such that the i-th coordinate of (|x1|, |x2|, |x3|) is
largest. Go to step 2.

2. Replace (x1, x2, x3) with Ri((x1, x2, x3)), replace W with WRi, and go to step 1.

By the lemma, this algorithm will continuously decrease every largest coordinate in absolute value
until each coordinate is 1 in absolute value. For example, for the triple (29,−169,−14701) it gives

(29,−169,−14701)
R3−−→ (29,−169,−2)

R2−−→ (29,−5,−2)
R1−−→ (1,−5,−2)

R2−−→ (1,−1,−2)
R3−−→ (1,−1,−1).

Coming back to our problem of finding paths between two points in the graph Gp,, if our attacker
is able to take a triple (x′1, x

′
2, x
′
3) which satisfies the Markoff equation modulo p and lift it to a

solution (x1, x2, x3) to the Markoff equation in Z, then she need only run the algorithm above to
find a path from (x1, x2, x3) to the origin in which every coordinate is 1 in absolute value in order
to find a path from (x′1, x

′
2, x
′
3) to the origin in Gp (it is the path corresponding to the same word

as the one she will obtain from the above algorithm).
However, so far it appears that finding a Markoff triple that reduces to (x′1, x

′
2, x
′
3) modulo p is

difficult for most candidate (x′1, x
′
2, x
′
3)’s. The reason for this is that, according to [Z], the number

of Markoff triples in which the largest coordinate is at most T is asymptotic to C(log T)2 for some
constant C, while the number of vertices in Gp ∼ p2. So in order to have a chance of covering all
possible mod-p Markoff triples coming from Gp by Markoff triples over Z, one must consider all
those triples less than T where

C(log T)2 ≥ p2,

or, in other words, where T is of size roughly ep. More likely, T will have to be much larger than
that, since it is not at all true that all Markoff numbers less than T reduce to a different triple
modulo p. Even with this estimate of ep, however, one sees that the lifts will probably be very large
(since p itself will be taken to be large), and certainly no straightforward search for a lift in Z will
be computationally feasible.

22

Constructing a collision attack from lifting is almost equivalent to path finding. If one has a
method of efficiently finding lifts to Z, two lifts of the same triple could result in two distinct paths
between triples. Unless the two paths in Z overlap nontrivially, we would have a collision starting
with (0, 0, 0).

5 Other Possible Attacks and Future Avenues for Research

We note that the BGS algorithm can be slightly modified to search for collision resistance. Currently,
the steps of the middle game are deterministic in connecting a triple to the cage; the rotations are
always done on the maximal coordinate. For a collision attack, we would search for two distinct
paths between points. So instead of always choosing the maximal coordinate, we can randomly
choose coordinates instead (not necessarily uniformly). If we eventually arrive at the cage, then we
have found another distinct path, since the cage is connected. Of course, there is no proof, other
than empiricism, that any method other than choosing the maximal coordinate will succeed in a
similar way.

Many potential attacks involve finding small cycles on Gp or Ĝp, e.g. some adaptation of
the Pollard rho algorithm. There are a number of reasons we believe such a study is unfruitful.
A Pollard-style attempt would look for cycles by repeatedly applying a single involution. The
construction of Gp means that such short cycles occur with vanishingly little frequency, as discussed
in the Opening. In any case, such discrete logarithm attacks must involve at least Ω(

√
p) group

operations [S], which is not a significant improvement.
Nonetheless, it will certainly be important to understand better the distribution of cycle lengths

in a graph Gp or Ĝp. While it is known that small cycles in Ĝp exist, it is not known how common
they are, and how likely one is to run into one in practice. Even less is known about the cycles in
the graph Gp. This is a problem the authors hope to explore in a future paper.

In addition, it would be helpful to have a better picture of the size of an average lift of a Markoff
triple mod p to one over Z, so that we can further understand the potential for success of the lifting
attack described in Section 4. This is currently being studied by the first-named author together
with co-authors E. Bellah, S. Kim, D. Schindler, J. Sivaraman, and L. Ye.

References

[BH] Laszlo Babai, Thomas P. Hayes. The probability of generating the symmetric group when one
of the generators is random. Publ. Math. Debrecen, 69 No. 3 (2006), pp. 271-280.

[B] Jean Bourgain. A modular Szemeredi-Trotter theorem for hyperbolas. arXiv:1208.4008.

[BGS1] Jean Bourgain, Alexander Gamburd, Peter Sarnak. Markoff Surfaces and Strong Approxi-
mation: 1. arXiv:1607.01530.

[BGS2] Jean Bourgain, Alexander Gamburd, Peter Sarnak. Markoff Surfaces and Strong Approxi-
mation. arXiv:1505.06411.

[CGL] Denis X. Charles, Eyal Z. Goren, and Kristin E. Lauter. Cryptographic hash functions from
expander graphs. J. Cryptology, Vol. 22 (1), (2009) 93–113. eprint.iacr.org/2006/021

[Ch] William Chen, Nonabelian level structures, Nielsen equivalence, and Markoff triples,
preprint (2021) https://static1.squarespace.com/static/59b0d0048419c2e19a207ba7/
t/608608553348ca47ee4941e3/1619396694639/congruence.pdf.

23

[CFLMP] Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer and Anna Puskas.
Ramanujan graphs in cryptography. In: Research Directions in Number Theory: Women in
Numbers IV, Association for Women in Mathematics Series, Vol. 19, pp. 1–40 (2019) Springer.

[C] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion, In: Inter-
national Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology – ASIACRYPT 2020 (2020), pp. 440-463.

[dCM] Matthew de Courcy-Ireland, Michael Magee. Kesten-McKay law for the Markoff surface
mod p. arXiv:1811.00113.

[FKLPW] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski.
SQISign: compact post-quantum signatures from quaternions and isogenies, In: International
Conference on the Theory and Application of Cryptology and Information Security: Advances in
Cryptology – ASIACRYPT 2020 (2020), pp. 64–93.

[JFP] David Jao, Luca De Feo, and Jérôme Plût, Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies, J. Math. Cryptol. 8 (2014), no. 3, pp. 209–247.

[LT] Oleg Lisovyy and Yuriy Tykhyy, Algebraic solutions of the sixth Painlevé equation, Journal of
Geometry and Physics, Volume 85 (2014), pp. 124–163,

[M1] Andrey Markoff. Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879) 381–409.

[M2] Andrey Markoff. Sur les formes quadratiques binaires indéfinies, Math. Ann. 17 (1880) 379–399.

[MP] Chen Meiri, Doron Puder with an Appendix by Dan Carmon. The Markoff Group of Trans-
formations in Prime and Composite Moduli. Duke Math J. 167 No. 14 (2018) pp. 2679–2720.

[PLQ] Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater. Full cryptanalysis of LPS
and Morgenstern hash functions, Security and Cryptography for Networks 2008, pp. 263–277,
Springer Berlin Heidelberg.

[RS] Michelle Rabideau and Ralf Schiffler. Continued fractions and orderings on the Markov
Numbers. arXiv:1801.07155v2.

[S] Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems. EUROCRYPT
1997. Lecture Notes in Computer Science, vol 1233. Springer.

[TZ] Jean-Pierre Tillich and Gilles Zémor. Collisions for the LPS Expander Graph Hash Function,
Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in Computer Science, Vol 4965, pp.
254–269, Springer.

[Z] Don Zagier. Markoff numbers below a given bound, Mathematics of computation 39 No. 160
(1982) 709-723.

24

	Introduction
	Markoff tree and graph
	Cryptographic hash function
	Avenues for attack
	Some background on Markoff triples

	Markoff triple hash function and data
	Cryptographic Heuristics
	Sampling

	Attack by Pathfinding via the Method of Bourgain-Gamburd-Sarnak
	Rotations
	The End Game
	The Middle Game and The Opening

	Attack by Lifting
	Other Possible Attacks and Future Avenues for Research

