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Abstract. In this article, which is an elaboration of our talk at the MSRI workshop “Thin Groups and

Super Strong Approximation,” we discuss how one can approach the question of whether typical subgroups

of GLn(Z) are thin. We discuss interpretations of what typical should mean, motivated by recently solved

arithmetic problems involving thin groups. We give an overview of what is known about the ubiquity of

thin groups which come up in these problems and describe some known tools to detect whether a given

subgroup of GLn(Z) is thin.

1. Introduction

While studying number theoretic properties of arithmetic groups is fairly classical, the number theory

connected to thin groups (see Definition 1.1 below) is a relatively new and still developing area of math-

ematics, and our understanding of the theory is much more narrow than that of its classical counterpart.

Various new arithmetic methods (see [4], [10], and [28], for example) which apply to thin and arithmetic

groups alike have already served to unify these two fields by showing that thin groups often exhibit rich

properties similar to those of arithmetic groups. With this in mind, it is natural to try to further not only

our understanding of the arithmetic of specific thin groups, but also of the question of how ubiquitous thin

groups are in general. For example, given a subgroup of GLn(Z), we have a limited arsenal of tools to

determine whether the group is thin or not. Similarly, given an infinite family of groups which come up in

a specific kind of arithmetic problem, we know little about whether the generic group in such a family is

thin. In this article, we discuss both of these issues and what is currently known towards resolving them.

Throughout what follows, we focus for simplicity on subgroups of GLn(Z), and so we give the following

definition of a thin group.

Definition 1.1. Let Γ be a subgroup of GLn(Z), and let G = Zcl(Γ) be its Zariski closure. We say that

Γ is thin if Γ is of infinite index in G(Z).

We begin by reviewing briefly the tools used in various arithmetic problems associated to thin groups,

as this will shed some light on what remains to be understood from the number theoretic point of view

in this context. One of the main ingredients used in such problems is families of expander graphs. There

are various equivalent definitions of such families of graphs (see [22]). One such definition can be given by

considering the eigenvalues of the adjacency matrices of the graphs in the family. By the adjacency matrix
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M of a finite graph X on n vertices, we mean the n × n matrix whose rows and columns are indexed by

the vertices of X, with

Mij =

{
1 iff the vertices vi and vj are adjacent

0 otherwise

Let λ0(M) ≥ · · · ≥ λn−1(M) be the eigenvalues of M . If X is connected, as we will assume from now on,

we have that λ0 > λ1. Furthermore, if X is a k-regular graph, we have that λ0 = k. With this notation,

we define a family of expander graphs as follows.

Definition 1.2. Let {Xi}i≥1 be an infinite family of finite graphs (we assume here that each graph Xi

is connected and k-regular for some fixed k) and let |Xi| → ∞ as i → ∞. Let Mi denote the adjacency

matrix of Xi. We say that {Xi}i≥1 is a family of expanders iff

lim sup
n→∞

λ1(Mn) < k.

In other words, a family of graphs as above is an expander family if there is a spectral gap between the

top two eigenvalues of the family’s corresponding adjacency matrices. This notion of expander graphs is

featured in the arithmetic of finitely generated subgroups of GLn(Z) as follows. Given a group Γ ⊂ GLn(Z)

via a finite symmetric generating set S, we let Γd and Sd denote the image of Γ and, respectively, S in

GLn(Z/dZ) where d ∈ Z is square free. To each such Γd we associate the Cayley graph Cay(Γd, Sd) and

so we obtain an infinite family of connected finite graphs associated to Γ. Whether or not Γ is thin, if this

infinite family of finite graphs is an expander family, we say that Γ satisfies the expander property, and this

property plays a crucial role in various arithmetic problems, two of which we mention in the next section.

We note that checking whether or not Γ satisfies the expander property is relatively straightforward due

to the following theorem (which is a culminating result in a long line of work – see [3], [4], [6], [15], [18],

[25], [29], [30], etc) of Salehi-Golsefidy and Varju.

Theorem 1.3 (Salehi-Golsefidy-Varju [28]). Let Γ ≤ GLn(Z) be a group with a finite symmetric generating

set S and let G denote the Zariski closure of Γ. For d ∈ Z square free, let Γd and Sd denote the projection

of Γ and S, respectively, in GLn(Z/dZ). Then the necessary and sufficient condition for

{Cay(Γd, Sd) | d ∈ Z square free, (d,C) = 1}

to be a family of expanders for some integer C > 0 is that the connected component of G is perfect.

Thus to determine whether Γ has the expander property one essentially needs information only about

the Zariski closure of the group, which is completely independent of the thinness of the group and is in

practice easier to determine than the index. So if this crucial expander property does not differentiate

between thin and arithmetic groups in the above sense, what is the difference between the two in practice?

One major difference is that there is currently no method to determine a good lower bound on the spectral

gap associated to a thin group Γ, and such a lower bound can be important in applications. In fact,

although for arithmetic groups there are more tools to determine the spectral gap, these tools are only
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useful if we can show are group Γ is arithmetic in the first place (which in general is quite difficult). So it

is clear that there is a need to be able to detect thin versus arithmetic groups. In addition, it is interesting

to obtain some measure of how ubiquitous thin groups are in number theoretic applications as opposed

to arithmetic groups: if thin groups are generic in some sense, it is natural that we should try to develop

further the methods we have to study them.

In this article we give a flavor of how to approach questions about the genericity of thin groups as well

as how one might decide whether a given group is thin. Our discussion is motivated by two arithmetic

applications of Theorem 1.3: one is the affine sieve as developed in [4] and [27], and the other is the

application to monodromy groups of [10]. We describe these applications via examples in the next section:

the affine sieve will be introduced by considering Apollonian circle packings, and the application from [10]

will be introduced by considering a family of hyperelliptic curves. These examples are also meant to show

the contrast between the study of thin and arithmetic groups. In Section 2 we then survey what has been

done to answer the question of how generic thin groups are in various situations. Finally, in Section 3 we

focus on the issue of determining when certain monodromy groups are thin.

Acknowledgements: We thank MSRI as well as the organizers of the “Thin Groups and Super Strong

Approximation” workshop for a fruitful and stimulating workshop. We also thank I. Capdeboscq, C. Meiri,

I. Rivin, and P. Sarnak for the collaborations which led to much of the work summarized in this article.

1.1. Two Examples: Thin versus Arithmetic Groups. We now describe two examples of the appli-

cations of expanders discussed above: the first involves a thin group, and the second involves an arithmetic

group.

Example 1:

Our first example concerns Apollonian circle packings and is meant to illustrate how the affine sieve

can be useful in diophantine problems connected to thin groups. Apollonian packings are constructed by

starting with the Descartes configuration of four mutually tangent circles, one of which is on the outside

of the other three, and repeatedly packing smaller circles into the resulting triangular interstices as in the

picture in Figure 1. A theorem of Apollonius of Perga states that there is indeed a unique way to inscribe

a circle into every interstice below, and so this construction is well defined.

These packings give rise to problems in number theory as follows: one can show that if the original four

circles have integer curvature, all of the circles in the packing will have integer curvature: such packings

are called integer Apollonian packings. One can ask many arithmetic questions in this context (see [11],

[16], [19], etc), but in this example we will focus on the study of quadruples of mutually tangent circles

all of which have curvatures with few prime factors. The key to studying this and many other arithmetic

properties of Apollonian packings is a theorem of Descartes in [9] which relates the curvatures of any four

mutually tangent circles. Namely, if a, b, c, and d denote the curvatures of four mutually tangent circles
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Figure 1. Apollonian circle packing

(where a circle is taken to have negative curvature if it is internally tangent to the other three), then

(1.1) Q(a, b, c, d) := 2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = 0.

A fairly easy consequence of this fact (see [11], for example) is that in a given packing P one can interpret

the set of Descartes quadruples, or the curvatures of quadruples of mutually tangent circles, as the orbit

of a group A ⊂ OQ(Z) which is generated by reflections and known as the Apollonian group. Specifically,

if vP ∈ Z4 is any Descartes quadruple in the packing P then there is a one to one correspondence between

points of the orbit AvP and Descartes quadruples in P , and every Descartes quadruple in P is a vector in

AvP . So to study Apollonian packings one must study orbits of this group A. It can be shown (see [11]

for example) that A is a thin group: it is Zariski dense in OQ(C) yet it is of infinite index in OQ(Z).

Now, suppose given an Apollonian orbitO corresponding to a packing P and a polynomial f(x1, x2, x3, x4) ∈
Z[x1, x2, x3, x4] we are interested in the set of points

(1.2) {x ∈ O | f(x) has at most r prime factors}

where r is some positive integer. For example, we might wish to count the number of points in a ball in this

set, or determine for which r this set is large in some sense. For a general thin group, questions of this kind

have been only recently handled using the affine sieve as developed in [4] and [27]: for any integer orbit O
of a finitely generated subgroup G of GLn(Z) which satisfies the expander property it is known that there

is some finite r > 0 such that the set in (1.2) is large in the sense that it is Zariski dense in Zcl(O). We call

the smallest such r the saturation number of the pair (O, f). Furthermore, the affine sieve enables us to

count the number of points in the set (1.2) in a ball, and the expander property described before controls

the remainder term in this sieve. However, there is still work to be done if we wish to implement the affine

sieve with any accuracy. For example, the saturation number of (O, f) depends on the spectral gap of the

group G: the larger the spectral gap, the smaller the saturation number. As we mentioned before, there is

currently no method to get a good lower bound on the spectral gap for thin groups – the Apollonian group

A in particular. Thus the affine sieve does not give good upper bounds for saturation numbers connected

to the orbits of A. Luckily, while A is thin it is a relatively nice thin group: for example, it contains many

unipotent subgroups which are a main tool in the proof of the following theorem.



THE UBIQUITY OF THIN GROUPS 5

Theorem 1.4 ([11]). Let vP be a primitive integer Descartes quadruple, let A be the Apollonian group

and let P = AvP . For x = (x1, x2, x3, x4)t ∈ P let f(x) = x1x2x3x4/12, and let P28 denote those points

x ∈ P for which f(x) has at most 28 prime factors. Then P28 is Zariski dense in Zcl(P).

We remark here that it is conjectured that the 28 above should be 4, and without a good grip on the

spectral gap for the Apollonian group it is unclear how one could come much closer to this conjectured

value.

Example 2:

The second example comes from work of Ellenberg-Hall-Kowalski in [10]. Their results are quite general,

but we will focus on the following very specific result (Corollary 5 in their paper) for contrast with the

previous example above.

Theorem 1.5 (Ellenberg-Hall-Kowalski [10]). Let k be a number field, and let f ∈ k[X] be a squarefree

polynomial of degree 2g with g ≥ 1. Let Uf be the complement of the zeros of f in A1, and let C/U be the

family of hyperelliptic curves given by

C : y2 = f(x)(x− t),

with Jacobians Jt = Jac(Ct). Then for any d ≥ 1, the set⋃
[k1:k]=d

{t ∈ U(k1) | EndC(Jt) 6= Z}

is finite.

In the proof of this theorem, Ellenberg et.al. consider the monodromy group Γ associated to the family

of hyperelliptic curves above. In this case Γ ⊂ Sp2g(Z) and is Zariski dense in Sp2g. A crucial ingredient

in the proof is that Γ satisfies the expander property which is an immediate consequence of Theorem 1.3.

However, because in this case it is known from [31] that Γ is finite index in Sp2g(Z) – i.e. it is arithmetic –

one can show this expander property rather classically, without appealing to the intricate methods which

go into the proof of Theorem 1.3. One way to do this for g ≥ 2 is to note that Sp2g(Z) and any finite index

subgroup has Kazhdan property T (for a definition and discussion of property T , see [21]). Therefore Γ

has property T as well, and the fact that Γ must then satisfy the expander property follows by a theorem

of Margulis in [23], where expander graphs were explicitly constructed for the first time. In addition, in

this case one can get a good bound on the spectral gap. However, this property T route is not available

unless one knows that the group in question is arithmetic.

We should mention here that while Theorem 1.5 concerns just one monodromy group, [10] deals with

an infinite family of monodromy groups some of which are known to be thin.

2. Generic Thin Groups

We now turn to our question of how generic or ubiquitous thin groups are, pointing out two different

variants of the question. The first variant is inspired by the affine sieve, which is a tool to count prime
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and almost prime points in integer orbits of subgroups of GLn(Z): namely, given a suitable definition of

“likely” which we specify shortly, we ask

1) How likely is it that a finitely generated subgroup of GLn(Z) is thin?

On the other hand, we might wish to ask a more specific question about the genericity of thin groups by

focusing on Ellenberg et.al.’s work on monodromy groups in [10]. Thus another variant of the question

about the ubiquity of thin groups is

2) Is the generic monodromy group appearing in [10] thin?

Concerning Question 1 above, it is expected that the generic finitely generated subgroup of GLn(Z) is indeed

thin for many reasonable definitions of generic. One can simplify the problem somewhat by considering

this question for G = SLn(Z). Specifically, for n ≥ 2, one can consider pairs of elements (γ1, γ2) ∈ G2

and ask for the probability that Γ(γ1, γ2), the group generated by γ1, γ2, is an infinite index subgroup of

G (one can also consider groups generated by k elements for a fixed k ≥ 2). This is a little different, at

first glance, than asking for the probability that Γ(γ1, γ2) is thin – i.e. that the group is of infinite index

in its Zariski closure. However, for many reasonable definitions of “generic”, it is known that the generic

subgroup of SLn(Z) is in fact Zariski dense in SLn (see [26], for example). In particular, Zcl(Γ(γ1, γ2))

is all of SLn with high probability, and so considering the group’s index in SLn(Z) is synonymous with

considering thinness in this case.

We now describe two ways to interpret “probability” above, and note that there are of course other

ways. In both cases we define a sequence of measures µT on G which in turn defines the probability we

want.

One way to interpret the probability is combinatorial. Namely, fix a finite generating set {g1, . . . , gr}
of G and let µT denote the normalized counting measure on the set W 2

T of elements of (γ1, γ2) ∈ G2 such

that for k = 1, 2 γk can be written as a word of length ≤ T in the generators gi. We then consider the

limit

lim
T→∞

µT ({(γ1, γ2) ∈W 2
T | [G : Γ(γ1, γ2)] =∞}).

Aoun shows in [1] that this limit is in fact 1: i.e. that if we obtain our γi by taking random walks on a

fixed generating set of G then Γ will be infinite index with high probability.

Another natural way to interpret this probability is via an archimedean model (in fact, in some sense

this is the most intuitive formulation of the problem, since in arithmetic problems we are often interested

in counting in archimedean balls). Namely, we let µT be the normalized counting measure on the set B2
T of

elements (γ1, γ2) ∈ G2 such that for k = 1, 2 ||γk|| < T or ||γ−1k || < T . Here we define ||γ|| > 0 as follows:

(2.1) ||γ|| :=
√
λmax(γtγ)

where λmax denotes the maximal eigenvalue. We then consider the limit

lim
T→∞

µT ({(γ1, γ2) ∈ B2
T | [G : Γ(γ1, γ2)] =∞}).
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This limit is also shown to be 1 in [14]. The general strategy in both of these interpretations of the question

is to show that Γ(γ1, γ2) is free with high probability. Since any free subgroup of G = SLn(Z) where n > 2

is infinite index, this is enough for nearly all of the cases (in the case that n = 2 one uses the fact that the

generic subgroup Γ is free to show that its limit set will generically have small Hausdorff dimension, which

then implies the infinite index we need).

So in these senses thin subgroups of SLn(Z) are generic.

As far as Question 2 above goes, a major obstacle in answering it is choosing an intuitive definition for

a generic monodromy group which would make the question above approachable. As of yet, we have found

no such definition, and nothing is known towards answering this very broad question. We discuss the very

different issue of deciding whether a given monodromy group is thin in the next section.

3. Monodromy Groups

Since we have no satisfactory definition of a generic monodromy group, we restrict here to a special

class of the monodromy groups which come up in [10] and study the issue of thinness within this class. Let

θ = z d
dz and define the differential operator D on P1(C) by

D := D(α, β)

= D(α1, . . . , αn, β1, . . . , βn)

= (θ + β1 − 1) · · · (θ + βn − 1)− z(θ + α1) · · · (θ + αn)

where α, β ∈ Qn, 0 ≤ α1 ≤ · · · ≤ αn < 1, and 0 ≤ β1 ≤ · · · ≤ βn < 1 (one can also consider the more

general case of αi, βi ∈ C but we do not discuss this here). The differential equation D(α, β)u = 0 is

hypergeometric and is regular outside of three singularities at z = 0, 1,∞. One associates a monodromy

group to such a hypergeometric equation as follows. For x0 ∈ P1(C)\{0, 1,∞} let S0 be the solution space

to D(α, β)u = 0 at x0. We then have a representation of the fundamental group π1(P1(C)\{0, 1,∞})
in GL(S0). We call the image of this representation H(α, β) and refer to it as the monodromy group

associated to D(α, β). Beukers-Heckman prove various results about these groups which we mention

below. The following theorem of Levelt which describes H(α, β) via a generating set is key both in their

work and in joint work with Meiri and Sarnak in [13].

Theorem 3.1 (Levelt, [20]). For 1 ≤ i ≤ n let αi and βi be as above. Define the complex numbers

A1, . . . , An, B1, . . . , Bn as the coefficients of the polynomials

P (z) :=

k∏
j=1

(z−e2πiαj ) = zn+A1z
n−1 + · · ·+An and Q(z) :=

k∏
j=1

(z−e2πiβj ) = zn+B1z
n−1 + · · ·+Bn.
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Then H(α, β) is the group generated by

A =



0 0 · · · 0 -An

1 0 · · · 0 -An−1

0 1 · · · 0
...

0 0
. . . 0 -A2

0 0 · · · 1 -A1


, B =



0 0 · · · 0 -Bn

1 0 · · · 0 -Bn−1

0 1 · · · 0
...

0 0
. . . 0 -B2

0 0 · · · 1 -B1


.

Note that H(α, β) ⊂ GLn(Z) if the polynomials P (z) and Q(z) above factor as cyclotomic polynomials.

Since we are interested in integral monodromy groups, we will assume this for the rest of the article.

With the notation above, Beukers-Heckman show in [2] that H = H(α, β) falls into one of the following

categories:

(0) A finite group (Beukers-Heckman list such cases completely in [2])

(1) If n is even, H is infinite, and An/Bn = 1 then H ⊂ Spn(Z) and Zcl(H) = Spn(C)

(2) If n is odd and H is infinite; or if n is even, H is infinite, and An/Bn = −1, then H ⊂ Ofα,β (Z)

for some quadratic form f = fα,β in n variables and Zcl(H) = Of (C)

In category (2) above we further consider two subcategories: one is that H fixes a quadratic form of

signature (n − 1, 1), and the other is that it fixes a quadratic form of signature (p, q) where p, q > 1.

We should mention that computing the corresponding signature in this case is easy given α, β: Beukers-

Heckman show that if H is as in (2) above, H fixes a quadratic form of signature (p, q) where p + q = n

and

|p− q| =

∣∣∣∣∣∣
n∑
j=1

(−1)j+mj

∣∣∣∣∣∣
where mj = |{k | βk < αj}| and the αi and βi are ordered as described at the beginning of this section.

Our goal in the rest of this paper is to give a flavor of what can be said about the thinness of H in each

of these three infinite cases. In the symplectic case, the best known method to detect thinness is to apply

ping pong to show that the group is free. Outside of this one can also narrow down the given group to

two possibilities: a thin group or a specific congruence subgroup of Spn(Z). In the orthogonal signature

(n − 1, 1) case, one has more tools at one’s disposal since these groups act on hyperbolic space, and this

well developed geometry often allows us to detect whether the given group is thin or not. Finally, although

we lose these geometric tools in the orthogonal signature (p, q) case where p, q > 1, there are ways to

show thinness besides applying ping pong: in Section 3.3 we give an example of how one might do this in

signature (2, 2).

3.1. Symplectic Monodromy. The question of whether H = H(α, β) is thin in the case that H is

symplectic is perhaps the most elusive of the three scenarios outlined above. One method to answer this is

to show that H is free (although it need not be in order to be thin) by applying the ping pong lemma: this

has recently been done for a concrete example in [5]. However, the method in [5] is specific to the example

treated there and it is not clear how to find the appropriate regions for applying ping pong to a general
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group. Furthermore, in several cases we consider the group in question can be easily seen not to be free,

in which case one must look elsewhere for a method to show thinness.

In ongoing work with Capdeboscq and Rivin, we have considered 14 examples of hypergeometric mon-

odromy groups in Sp4(Z) associated to Calabi Yau three-folds (these groups are in particular among the

H(α, β)’s we described above). Each of these groups is given via two generators, one of which is a transvec-

tion: these generators are derived in a paper of Chen-Yang-Yui in [8]. Notably, the authors of this work

remark that they do not know whether these subgroups are lattices in Sp4, and that two experts they have

consulted on the matter have given them opposite conjectures: one asserts that the groups are probably

all thin, while the other guesses that they must be finite index. We are inclined to agree with the former

assessment of the situation, although we have made almost no progress in actually proving that any of the

groups in [8] are thin.

Our belief that these groups are thin is based on a series of experiments which seem to imply that the

number of elements in each of these groups of norm ≤ T is much too small for a finite-index subgroup of

Sp4(Z). We present the data from one of these experiments in Figure 2: this particular graph corresponds

to the group H = 〈A,B〉 where

(3.1) A =


1 1 0 0

0 1 0 0

16 16 1 0

0 -8 -1 1

 , B =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 .

Specifically, the picture below is meant to depict the graph of log(N(T )) versus log(T ) where

N(T ) = #{γ ∈ H | ||γ|| < T}

with || · || as in (2.1). Because the graph of log(N(T )) is only an approximation, we have denoted it by

“log(N(T ))”. The graph also depicts a linear fitting which has slope 1.396. The idea is that this slope is

much too small for H to be finite index in Sp4(Z): the same experiment for the full group Sp4(Z) yields a

graph of slope 6, and a finite index subgroup would have slope 6 as well.

Be that as it may, we have no way of ascertaining that the values of N(T ) which we found are actually

correct, and so the graph above, while suggestive, is merely a guess. Specifically, since the only information

we have about H is its generators, our method of counting elements of norm < T is as follows: we consider

walks on the generators of H and count the number of elements we find this way that have norm < T ;

eventually, once the length of the walk is long enough, all elements we find have norm > T and we assume

that we have found all elements of norm < T . However, it may be that there are many words of length

1000, say, whose norm is small and these words, if they exist, are not captured by our graph, so at this point

this data cannot prove the thinness of H (which, by the way, may well be free: we have found no relations

in its generators). We have produced similar graphs with small slope for many of the other examples in

[8], all of which suggest thinness but are inconclusive for the same reason: we do not have a method, given

only the generators of a subgroup of Sp4, to decide whether a given element is in the group or not (in fact,
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Figure 2. Counting elements in a symplectic monodromy group

this might be undecidable in general). This issue has hindered various other attempts to show that the

groups in [8] are thin.

One can, however, use the fact that Sp4(Z) has the congruence subgroup property to prove a dichotomy

statement for each of the 14 groups Hi given in [8]: namely, each of these groups is either thin or is

a congruence subgroup of Sp4(Z). Furthermore, it is not difficult to determine for each Hi the precise

candidate congruence subgroup. Because every one of these groups contains a transvection (the matrix

B in (3.1) is a transvection and is always one of the generators), one can apply Theorem 3.1 of [17] to

show that the projection of a given Hi in Sp4(Z/pZ) is surjective for all but a few explicit small primes.

One can then use a computer to determine precisely the projection of Hi in Sp4(Z/pkZ) for each of these

small primes where k is a small positive integer (see [12] for a description of how one can deduce from this

information what the projection is for higher powers of p), and consequently make explicit the candidate

congruence subgroup for Hi.

Unfortunately, this does not bring us much closer to determining whether the groups Hi are thin: we

come up against the same difficulty of deciding whether or not a given element in our candidate congruence

subgroup is in the group or not.

3.2. Orthogonal Monodromy: Signature (n−1, 1). The case which is most straightforward to handle

in some generality is the case that H ⊂ O(n− 1, 1). In [13], the (α, β) which give rise to H(α, β) ⊂ Of (Z)



THE UBIQUITY OF THIN GROUPS 11

where f is a quadratic form in n variables with signature (n−1, 1) are described completely and are shown

to belong to one of seven families outside of finitely many explicit cases in dimension n ≤ 7. Using this

description, the authors are able to write down the form f fixed by H(α, β) for in an infinite number of

cases, as well as to produce infinite families of groups H(α, β) all of which are thin (we should note here

that our group H(α, β) ⊂ O(n− 1, 1) only when n is odd).

The strategy in doing this is to use the fact that in this case H is a group acting on hyperbolic space

Hn−1. As far as thinness goes, results of Nikulin, Vinberg and Prokhorov (see [24] for a discussion of these

results) say that if n is large enough certain such groups must be thin. Specifically, let f be a quadratic

form in n variables of signature (n−1, 1) and let Rf (Z) denote the subgroup of Of (Z) which is generated by

all of the reflections in hyperplanes in Of (Z). Then Nikulin shows that for n > 300 the group Rf (Z) must

be thin (Vinberg had proven a similar result on cocompact groups generated by reflections in hyperplanes,

and Prokhorov had proven that for n > 900 the group Rf (Z) is thin).

In particular, if we could show that our groups H(α, β) contain finite index subgroups generated by

reflections, this would imply that H is automatically thin once the dimension is large. However, in general

we are not so lucky, and one has to work harder.

Namely, for H = 〈A,B〉 where A is of finite order k (it is often the case that one of the generators

is of finite order), we first obtain a finite index subgroup H ′ of H as follows. Let R0 = A−1B, and let

Ri = A−iR0A
i for 1 ≤ i ≤ k − 1. Note that each Ri is a Cartan involution of Hn−1, meaning that it fixes

a point and reverses all geodesics around that point. One can show that the group

H ′ := 〈RiRi+1 |0 ≤ i ≤ k − 1〉

is of finite index in H. Furthermore, in [13] we give an algorithm which in infinitely many cases expresses

each generator of H ′ as a product of reflections in hyperplanes, so H ′ ⊂ Rf (Z) where f is the quadratic

form fixed by H. Using the result of Nikulin above we then have that H ′, and therefore H is thin.

While there are infinitely many groups H(α, β) in this signature (n − 1, 1) case which are still to be

handled, it is conjectured that all but finitely many of these should be thin. The next step (after deciding

thinness) is to clarify further the structure of these groups: for example, are they geometrically finite?

3.3. Orthogonal Monodromy: the Split (2, 2) Case. In the case that H ⊂ O(p, q) where p, q > 1 one

cannot appeal to the tools from hyperbolic geometry as we described in the previous section. In fact, it is

not currently clear how to attack the question of whether H is thin in this situation, and in most cases the

problem is as difficult as in the symplectic case. However, given a concrete example where the signature

is (2, 2) and the quadratic form has a perfect square determinant (we call this case split), one can rely on

methods besides ping pong to decide thinness.

To demonstrate how one might tackle this problem, we consider the example H = H(α, β), where

α = {0, 0, 0, 1/2} and β = {1/4, 1/4, 3/4, 3/4} and show that it is in fact thin. We will do this in a

fair amount of detail, since this computation, unlike the results discussed in the previous sections, is not
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contained in any other paper. By Theorem 3.1, the generators of H are

(3.2) A =


0 0 0 1

1 0 0 -2

0 1 0 0

0 0 1 2

 , B =


0 0 0 -1

1 0 0 0

0 1 0 -2

0 0 1 0

 ,

and H ⊂ OQ(Z), where Q is

Q =


1 1 -1 -3

1 1 1 -1

-1 1 1 1

-3 -1 1 1

 ,

of determinant 16 and signature (2, 2). We will now show the following.

Theorem 3.2. The group H = H(α, β) as above is thin.

To prove this, we use the spin homomorphism mapping SL2×SL2 onto the connected component of the

identity in SO(2, 2) which we explain momentarily. Note that this is analogous to the strategy used in [12] to

study the congruence obstructions of the Apollonian group: in that case the spin homomorphism is a map

from SL2(C) to SOR(3, 1). We wish to determine the preimage of H ∩ SOQ(Z) under this homomorphism

(we will see that this intersection is indeed in the connected component of the identity). To this end, we

have the following description of H ∩ SOQ(Z).

Claim 1: The group H ∩ SOQ(Z) = 〈A2, B〉 where A,B are as in (3.2), and this group is of index 2 in H.

Proof. First note that, for any n ∈ Z, we haveABnA ∈ 〈A2, B〉. Namely, sinceA−1BA−1B = AB−1AB−1 =

B−1AB−1A = BA−1BA−1 = I, we have h = A2A−1BA−1BB−1 = ABA−1 ∈ 〈A2, B〉. Since ABnA =

hnA2, we have ABnA ∈ 〈A2, B〉 as desired. Any element of H ∩ SOQ(Z) can be written as a word

(3.3) An1Bm1An2Bm2 · · ·AnsBms

for some s ∈ N, mi, ni ∈ Z for 1 ≤ i ≤ s, and n1 + n2 + · · ·+ ns even since det(A) = −1 and det(B) = 1.

We want to show that the word in (3.3) is in fact an element of 〈A2, B〉.

If all of the exponents ni for 1 ≤ i ≤ s are even, we are done. Suppose therefore that k is the smallest

index for which nk is odd. Then showing that the expression in (3.3) is in 〈A2, B〉 is equivalent to showing

AnkBmkAnk+1Bmk+1 · · ·AnsBms ∈ 〈A2, B〉.

Suppose nk+1 is odd. Then for some N,M ∈ Z, we have AnkBmkAnk+1 = A2MABmkAA2N ∈ 〈A2, B〉, so

wolog it suffices to show that

An`Bm`An`+1Bm`+1 · · ·A`sBms ∈ 〈A2, B〉

where ` is the smallest index such that n` is odd and n`+1 is even. Noting that An`Bm`An`+1 =

A2MABm`AA2NA for some N,M ∈ Z, this reduces to showing

ABm`+1An`+2 · · ·A`sBms ∈ 〈A2, B〉.
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Continuing the reduction process using the fact that BK , A2K ∈ 〈A2, B〉 for all K ∈ Z and ABNA ∈ 〈A2, B〉
for all N ∈ Z, we reduce to either the identity I, in which case we are done, or to the element ABmsAns

where ns is even. But the latter case contradicts the assumption that n1 + n2 + · · ·+ ns is even, so it does

not occur.

Using again the relation AB−1AB−1 = I and applying similar arguments we have that there are only

two cosets, A〈A2, B〉 and I〈A2, B〉 of 〈A2, B〉 in H, so [H : 〈A2, B〉] = 2 as desired. �

Claim 1 implies in particular that if 〈A2, B〉 is thin then H is thin as well as stated in Theorem 3.2.

Now note that Q is equivalent over Q to

Q′ = CTQC =


1 0 0 0

0 0 2 0

0 2 0 0

0 0 0 -4

 where C =


1 -1 1 1

0 1 0 1

0 0 1 -1

0 0 0 1


and that Q′(x1, x2, x3, x4) = 2x2 · 2x3 − (2x4 − x1)(2x4 + x1) is the determinant of

M =

(
2x2 2x4 − x1

2x4 + x1 2x3

)
.

The fact that one can bring Q to this form over Q makes this example particularly nice. Under this change

of variables, 〈A2, B〉 becomes 〈A′2, B′〉 where

A′2 =


-1 -2 -8 -8

0 -1 -4 -4

1 0 3 2

0 1 2 3

 , B′ =


1 -2 -2 4

1 -1 0 2

0 1 1 -2

0 0 1 -1

 .

We now define a map from ρ : SL2 × SL2 → SOQ′ as follows. Given a pair of elements g and h in

SL2, we have det(M) = det(gMht), and in this sense a pair of elements in SL2 fix Q′. As explained in

Chapter 13.9 of [7], we map the pair (g, h) ∈ SL2(R)× SL2(R) to an element γ ∈ SOQ′(R) if

gMht =

(
2x′2 2x′4 − x′1
2x′4 + x′1 2x′3

)
,

where (x′1, x
′
2, x
′
3, x
′
4)t := γ(x1, x2, x3, x4)t. Given this, for each of our generators A′2 and B above we

solve for two matrices g, h in SL2(R) which map to the generator. Note that there will not necessarily be

a solution to this if one or both of the generators lie outside of the connected component of the identity.

However, we are able to find solutions and we get that

(3.4) ±

((
1 2

0 1

)
,

(
-1 -2

2 3

))
ρ7−→A′2

and

(3.5) ±

((
-1 -2

-1 -1

)
,

(
-1 0

1 -1

))
ρ7−→B′
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If we consider the projections of this group in each factor SL2(Z), we obtain the groups Γ1 and Γ2, where

Γ1 =

〈
±

(
1 2

0 1

)
,±

(
-1 -2

-1 -1

)〉
Γ2 =

〈
±

(
-1 -2

2 3

)
,±

(
-1 0

1 -1

)〉
.

One might hope that either Γ1 or Γ2 are of infinite index in SL2(Z), as this would immediately imply that

the preimage of H ∩ SOQ(Z) in SL2(Z) × SL2(Z) is also infinite index. Unfortunately, both Γ1 and Γ2

contain the finite index subgroup 〈(
1 0

2 1

)
,

(
1 2

0 1

)〉
and so are both finite index. So we must work with the preimage itself and show the following, which

together with Claim 1 immediately implies Theorem 3.2.

Proposition 3.3. Let

(3.6) S =

(
0 -1

1 0

)
, T =

(
1 1

0 1

)

denote the generators of SL2(Z), with relations S2 = −I and (ST )3 = −I. Let G ⊂ SL2(Z)×SL2(Z) be the

group generated by the elements in (3.4) and (3.5). Then for any integer P 6= 0 we have (±TP ,±TP ) 6∈ G,

meaning in particular that the left cosets of this group under multiplication by (±T k,±T k) where k ∈ Z
are all distinct and that G is of infinite index in SL2(Z)× SL2(Z).

Proof. We first note that the inverses of the generators of Γ in (3.4) and (3.5) are ±(T−2,−ST 2S−1T 2)

and ±(TST−1, ST−1S) where S and T are as above, and we can rewrite this as

Γ = 〈±(−T−2, T 2),±(TST−1, ST−1S)〉.

Ignoring for a moment the±, we denote by g1 and g2 the two generators above and suppose for contradiction

that there is some integer P 6= 0 and some α, β ∈ {±1} such that

(3.7) (αTP , βTP ) = gm1
1 gn1

2 · · · g
ms
1 gns2

where mi, ni ∈ Z and ni,mi 6= 0 for i > 1. Then in particular we have that

(3.8) TP = ±T−2m1(TST−1)n1 · · ·T−2ms(TST−1)ns .

Note furthermore that (TST−1)2 = −I.

Let ni1 , ni2 , . . . , nik denote the odd exponents among n1, n2, . . . , ns with i1 < i2 < · · · < ik. Suppose

k > 0 (i.e. there is at least one odd ni). Then, given (3.8), there exist integers M1,M2, . . . ,Mk+1 with

|Mi| > 0 for 1 < i < k + 1 such that

(3.9) TP = ±T 2M1+1ST 2M2ST 2M3 · · ·ST 2MkST 2Mk+1−1.

We now consider two cases:
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Case 1: Mk+1 6= 0, 1. In this case, (3.9) implies that

TP
′

= ±(ST 2M2)(ST 2M3) · · · (ST 2Mk)(ST 2Mk+1−1)

where P ′ = P − 2M1 − 1 and all powers of T on the right are > 1 in absolute value. In other words,

(3.10)

(
1 P ′

0 1

)
=

(
0 -1

1 N1

)(
0 -1

1 N2

)
· · ·

(
0 -1

1 Nk

)
where |Ni| > 1 for all 1 ≤ i ≤ k. We now need the following lemma.

Lemma 3.4. Let

(
a b

c d

)
be an integer matrix with |b| > |a| and |d| > |c|. Let N be an integer such

that |N | > 1. Then we have that (
a b

c d

)(
0 -1

1 N

)
=

(
a′ b′

c′ d′

)
where |b′| > |a′| > |a| and |d′| > |c′| > |c|.

To prove this lemma, note that a′ = b and b′ = bN − a. Since |bN − a| ≥ |bN | − |a| > 2|b| − |a| > |b|
since |b| > |a| we have the desired statement about b′. A similar argument shows that |d′| > |c′| > |c| as

well.

By the lemma, we have that the lower left entry of the expression on the right hand side of (3.10) cannot

be 0, which contradicts (3.10).

Case 2: Mk+1 = 0 or 1. First note that in this case the analog of (3.10) is that

(3.11)

(
1 P ′

0 1

)
=

(
0 -1

1 N1

)(
0 -1

1 N2

)
· · ·

(
0 -1

1 Nk

)
where |Ni| > 1 for all i < k and clearly we may assume k > 1. Again by the lemma, we have that(

0 -1

1 N1

)
· · ·

(
0 -1

1 Nk−1

)
=

(
a b

c d

)
where c 6= 0, |b| > |a|, and |d| > |c|. So in particular d 6= 0 and so the lower left entry of the expression on

the right in (3.11) cannot be 0, contradictiong (3.11).

Thus our assumption that there exist odd exponents among the ni in (3.7) was false, and so we have

ni = 2n′i for some n′i ∈ Z for all i, and the sum of the exponents mi must be −P/2 for (3.7) to hold. With

this restriction on the ni we now go to the first factor, where (3.7) implies that

TP = ±γm1
2 γ

n′
1

1 · · · γ
ms
2 γ

n′
s

1

where P is even and

γ1 =

(
1 0

2 1

)
, γ2 =

(
1 2

0 1

)
.
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Since TP = γ
P/2
2 and −I 6∈ 〈γ1, γ2〉, we have that in fact TP = γm1

2 γ
n′
1

1 · · · γ
ms
2 γ

n′
s

1 . This gives a nontrivial

relation on γ1 and γ2 as long as one of the ni > 0. But γ1 and γ2 generate a free subgroup of SL2(Z), and

so we must have that ni = 0 for all i, and that the sum of the exponents mi is P/2 in order for (3.7) to

hold. However, if P 6= 0 this contradicts the fact that the sum of the exponents mi must be −P/2 from

above and so our assumption that (±TP ,±TP ) ∈ G for some P 6= 0 was false, and we are done. �

Therefore the group is of infinite index in SL2(Z) × SL2(Z), and so H ∩ SOQ(Z) is infinite index in

SOQ(Z) and in OQ(Z). Since (H : H ∩ SOQ(Z)) = 2 (see above), we have that H is thin as stated in

Theorem 3.2.
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