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ABSTRACT. An Apollonian circle packing (ACP) is an ancient Greek construction which is made by

repeatedly inscribing circles into the triangular interstices in a Descartes configuration of four mutually

tangent circles. Remarkably, if the original four circles have integer curvature, all of the circles in the

packing will have integer curvature as well, making the packings of great interest from a number theoretic

point of view. This point of view has been explored extensively by Graham, Lagarias, Mallows, Wilkes,

and Yan as part of a series of papers on ACP’s. In this thesis, we use the correspondence between integer

ACP’s and orbits of a certain Schottky group combined with the recently developed affine linear sieve of

Bourgain, Gamburd, and Sarnak to answer many of the questions raised by Graham et.al. in their account.
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The Kiss Precise

For pairs of lips to kiss maybe

Involves no trigonometry.

’Tis not so when four circles kiss

Each one the other three.

To bring this off the four must be

As three in one or one in three.

If one in three, beyond a doubt

Each gets three kisses from without.

If three in one, then is that one

Thrice kissed internally.

Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance from the center.

Though their intrigue left Euclid dumb

There’s now no need for rule of thumb.

Since zero bend’s a dead straight line

And concave bends have minus sign,

The sum of the squares of all four bends

Is half the square of their sum.

To spy out spherical affairs

An oscular surveyor

Might find the task laborious,

The sphere is much the gayer,

And now besides the pair of pairs

A fifth sphere in the kissing shares.

Yet, signs and zero as before,

For each to kiss the other four

The square of the sum of all five bends

Is thrice the sum of their squares.

– Frederick Soddy, 1936
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CHAPTER 1

Introduction

One of the most essential tools in number theory is the theory of automorphic forms and L-functions

(see [45] and [31] for an elegant survey of various applications). For example, several long-standing

problems in analytic number theory have been reduced to finding good estimates for Fourier coefficients

of automorphic forms, and so, with or without applications in mind, automorphic forms have been

studied extensively throughout the past century and are still of great interest today.

One major aspect of these tools is understanding the spectral theory of the Laplace operator ∆ on

L2(Γ,H), where Γ is classically taken to be a congruence subgroup of SL2(R) (more generally one

might consider automorphic forms on GLn over a number field). For example, it is known that the

base eigenvalue in the spectrum for such groups is λ0 = 0, corresponding to the constant eigenfunction.

In the case Γ = Γ0(N), the modular group, Selberg’s eigenvalue conjecture states that there are no

eigenvalues 0 < λ < 1/4, and there are analogs of this conjecture in more general cases as well.

However, in the case that Γ\H has infinite volume (we call Γ thin if this is the case) it is unclear how

these tools would apply and much less is known. For example, it is no longer true that the base eigen-

value is 0 – in fact, the constant function is no longer square integrable in this situation! Nevertheless,

there is a wealth of diophantine problems which can be rephrased precisely in terms of such a group

Γ. In this thesis, we approach a particularly beautiful example of this kind of problem and are able

to solve several relevant open questions without relying on automorphic forms – rather, certain rich

properties of the group in question allow us to make use of the arithmetic analysis recently carried out

by Bourgain, Gamburd, and Sarnak in [7]. This example is meant to convince the reader that it is very

natural to consider diophantine problems associated with thin groups as well as to outline the methods

one might use to address them.

1. History and setup

Consider four mutually tangent circles, one of them internally tangent to the other three as in the

first picture in Fig. 1. One might ask whether there is a unique way to inscribe a circle into each of

the curvilinear triangles in this picture. In fact, this uniqueness follows from an ancient theorem of

Apollonius of Perga:

THEOREM 1.1. (Apollonius, circa 200 BC): To any three mutually tangent circles or lines there are

precisely two other circles or lines which are tangent to all three.

9



10 1. INTRODUCTION

Apollonius discovered this while attempting the difficult task of constructing mutually tangent circles

and straight lines using only a straight edge and compass. Coming back to our picture in Fig. 1,

Theorem 1.1 implies that there is a unique circle which can be inscribed into every curvilinear triangle

produced by the four mutually tangent circles we have constructed (see the second picture in Fig. 1).

We now have 12 new curvilinear triangles, each of which can be filled with a unique inscribed circle

again. This process can be continued indefinitely, and the resulting picture is duly called an Apollonian

circle packing (ACP). Given this process of constructing the packing, we say that the original four

circles in the first picture of Fig. 1 are born in the first generation of the packing, the new circles in the

second picture are born in the second generation, and so on.

            
!           Generation 1                     Generation 2    Generation 3

FIGURE 1. Packing Circles

One can study Apollonian circle packings from many different angles – various properties of the

packings are investigated in a beautiful series of papers by Graham, Lagarias, Mallows, Wilkes, and

Yan (see [24], [21], [22], [23]). Such packings are certainly of interest in classical geometry – for

example, the process of producing a new circle at generation k is in fact equivalent to reflecting one of

the circles born at generation k−1 in another circle or straight line (see Section 2.1 for a discussion of

this).

We are particularly interested in the number-theoretic questions about ACP’s which are addressed

extensively by Graham et.al. in [24]. To understand how these questions arise in the context of this

purely geometric construction, consider the curvatures, or reciprocals of the radii, of the circles in

a given ACP (equivalently one may consider the radii but these quickly tend to zero, so it is more

convenient to work with the curvatures instead). The number theoretic aspect of ACP’s traces back to

the following theorem due to Descartes, that the curvatures of any four mutually tangent circles in an

ACP satisfy a quadratic equation:

THEOREM 1.2. (Descartes, 1643): Let a,b,c, and d denote the curvatures of four mutually tangent

circles, where a circle has negative curvature iff it is internally tangent to the other three. Then

(1.1) Q(a,b,c,d) := 2(a2 +b2 + c2 +d2)− (a+b+ c+d)2 = 0.
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For a proof of this, see [11]. We will refer to the quadratic form Q in (1.1) as the Descartes quadratic

form, and to the curvatures (a,b,c,d) of any four mutually tangent circles as a Descartes quadruple.

In 1936, the Chemistry Nobel Prize Laureate Frederick Soddy rediscovered Theorem 1.2 and ex-

pressed it in the form of The Kiss Precise, the poem at the beginning of this thesis. He deduced from

it that if any Descartes quadruple (a,b,c,d) in an ACP is integral – i.e. a,b,c,d ∈ Z – all of the circles

in the ACP must in fact have integer curvature. Furthermore, we will see in Section 2.1 that there

are infinitely many integer ACP’s which makes them particularly interesting from a number-theoretic

point of view. One example of an integer ACP is illustrated in Figure 2 – it is the packing generated by

starting with circles of curvatures −1,2,2, and 3.

This remarkable integrality feature gives rise to several natural questions about integer1 ACP’s –

Graham et.al. make some progress towards answering them in [24] and make several striking conjec-

tures which we investigate further here. Since each chapter in this thesis addresses a different question

from [24], we give a brief summary of their content and what is known below. We first recall the notion

of a root quadruple of an ACP from [24] in the following theorem:

THEOREM 1.3. (Graham, Lagarias, Mallows, Wilkes, Yan, 2003): Define a Descartes quadruple

v = (a,b,c,d) with a+ b+ c+ d > 0 to be a root quadruple if a ≤ 0 ≤ b ≤ c ≤ d and a+ b+ c ≥ d.

Then every integer ACP has a unique root quadruple. However, the packing may contain more than

one quadruple of mutually tangent circles which yields the root quadruple.

Essentially, a root quadruple of a packing consists of the four largest circles in the packing and

completely defines the ACP in question. For example, the root quadruple of the packing in Fig. 2 is

v = (−1,2,2,3), and it is the only circle packing with this root quadruple. For a detailed discussion of

the algorithm for finding the root quadruple of a packing, see [24].

With this in mind, our aim is to shed light on the following questions.

1) What can be said about the residues modulo an integer d > 1 of the curvatures of circles in a

given ACP?

Graham et.al. observe by considering subpackings of ACP’s that there are always congruence

obstructions modulo 12 in any given ACP, and that there are no congruence obstructions mod-

ulo d > 1 if the greatest common divisor (d,30) = 1. Specifically, they show the following

regarding possible Descartes quadruples in any integer ACP:

THEOREM 1.4. (Graham, Lagarias, Mallows, Wilkes, Yan, 2003): In any primitive inte-

gral Apollonian packing, the Descartes quadruples modulo 12 all fall into exactly one of the

four possible orbits. The first orbit Y modulo 12 consists of all permutations of

{(0,0,1,1),(0,1,1,4),(0,1,4,9),(1,4,4,9),(4,4,9,9)} (mod 12).

The other three orbits are (3,3,3,3)−Y , (6,6,6,6)+Y , and (9,9,9,9)−Y modulo 12.

1We consider only primitive integer ACP’s, or those in which the curvatures share no common factor.
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FIGURE 2. The Apollonian circle packing with root quadruple (−1,2,2,3)

In their “strong density conjecture," Graham et.al. furthermore predict that any suffi-

ciently large integer satisfying some fixed congruence conditions appears as a curvature in a

given ACP. For a detailed discussion of this and convincing data in support of such a local

to global conjecture, see [19]. While proving this conjecture is seemingly out of reach using

what we know today, it is much more feasible to determine which integers do not occur as

curvatures in an ACP – i.e. what are the congruence obstructions in a given ACP, and how

do they depend on the packing in question? Graham et.al. show that there are no congruence

obstructions modulo primes p > 5 in any integer ACP:

THEOREM 1.5. (Graham, Lagarias, Mallows, Wilkes, Yan, 2003): Let P be a primitive

integral Apollonian packing. For any integer m with gcd(m,30) = 1, every residue class

modulo m occurs as the value of a curvature of some circle in the packing P.

In Chapter 2, we further these results and show that the only congruence obstructions

for any ACP are modulo 24, and that the 30 in Theorem 1.5 above can be improved to 6.

The methods which go into this improvement come from studying ACP’s using a convenient

representation of the curvatures as maximum-norms of vectors in an orbit of a group A (called

the Apollonian group), which is a subgroup of the orthogonal group fixing the Descartes form

Q. We introduce this group in Section 2.1 and use it throughout. Given this representation

of ACP’s as orbits of a group, we are able to specify any ACP modulo d by analyzing the

mod d structure of the group A. It is worth noting that Graham et.al. prove their theorems by

considering only unipotent subgroups of A, while we exploit the full Apollonian group.

2) How many circles of curvature with few prime factors are there in a given ACP?
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In studying (primitive) integral ACP’s, it is natural to consider which primes appear as curva-

tures of circles in a given packing. In [47] Sarnak shows that there are infinitely many circles

of prime curvature and infinitely many pairs of tangent circles both of prime curvature in any

given packing P. We summarize his results in the following theorem.

THEOREM 1.6. (Sarnak, 2007): Let P denote the orbit of Descartes quadruples corre-

sponding to a primitive integer Apollonian circle packing P, and let

(1.2) C = {x ∈ C4 |x 6= 0,Q(x) = 0}

denote the cone of solutions to the Descartes equation in (1.1).

(i) Let πP(X) denote the number of circles in P of prime curvature less than X. Then

π
P(X)>

cX
(logX)3/2

for large X, where c is a constant depending on P.

(ii) The set of points {x ∈P |x1,x2 are prime} is Zariski dense in C.

Furthermore, in [35] Kontorovich and Oh establish upper bounds for the number πP(X)

of circles of curvature less than X in a packing P as well as the number πP
2 (X) of pairs of

circles both of prime curvature less than X :

THEOREM 1.7. (Kontorovich, Oh, 2007): Given a primitive integral Apollonian circle

packing P,

(i) πP(X)� Xδ

logX ,

(ii) πP
2 (X)� Xδ

(logX)2

where δ = 1.3056 . . . and the implied constants depend on the packing P.

Note that since Kontorovich and Oh also show that the number of circles in a packing

of curvature less than X is asymptotic to c ·Xδ (see Theorem 1.8), the upper bounds above

are of the correct order of magnitude. In both of these theorems, the constant δ is in fact

the Hausdorff dimension of the limit set of the packing P, which is defined to be the smallest

positive number so that the series

∑
C∈P

r(C)s

where C is a circle in the packing P and r(C) is its radius, converges for s > δ . The Haus-

dorff dimension is the same for every Apollonian circle packing, and has been computed to 5

decimals by McMullen in [41].

The proof of Theorem 1.7 relies on the recently developed affine sieve in [7]. In [19] the

results of Chapter 2 are paired with the affine sieve to give a heuristic for precise asymptotics

for πP(X) and πP
2 (X). In Chapter 3 of this paper, we give a similar heuristic for asymptotics

for πP
gen(T ), the number of circles of prime curvature which are born at generation T .
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Another problem we address in Chapter 3 is that of determining the saturation number

r0( f ,P), where P again denotes the set of Descartes quadruples x = (x1,x2,x3,x4) in a

packing P, and f (x) = x1x2x3x4 for x ∈P . The saturation number in this case is defined to

be the smallest positive integer such that the set of points

{x ∈P | f (x) has at most r0 prime factors}

is Zariski dense in the cone C in (1.2). Theorem 1.6 states that r0 = 2 if f (x) = x1x2. Consid-

ering the saturation number in the case of f (x) = x1x2x3x4 is equivalent to finding Descartes

quadruples of circles all of whose curvatures have few prime factors. It is conjectured in [7]

that the saturation number in this case should be r0 = 6, and the affine sieve guarantees that

r0 is in fact finite. However, we are unable to use it to obtain a good upper bound in the case

f (x) = x1x2x3x4 (we explain this in Chapter 3). Instead, we give a rather crude upper bound

of r0 ≤ 28 by considering subpackings of ACP’s.

3) Do the integers which come up as curvatures in a given ACP make up a positive fraction of

N?

With regard to counting the number of integers represented in a given ACP, Graham et.al.

appeal to the existence of unipotent elements in A in [24] to establish the lower bound below

for the number κ(P,X) of distinct curvatures less than X of circles in an integer packing P:

(1.3) κ(P,X)�
√

X

where the notation

y�β z or y�β z

is taken to mean that there exists a constant c > 0 depending only on β such that

y≥ cz or, respectively y≤ cz.

Graham et.al. suggest in [24] that the lower bound in (0.29) can be improved. In fact, they

conjecture that the integers represented as curvatures in a given ACP actually make up a

positive fraction of the positive integers N, and jointly with Jean Bourgain we prove this

conjecture in Chapter 4.

It is important to note that this question is different from the one addressed in [35] by

Kontorovich and Oh about the number NP(X) of circles in a given packing P of curvature less

than X . This involves counting curvatures appearing in a packing with multiplicity, rather

than counting every integer which comes up exactly once as we do in Chapter 4 of this thesis.

In fact, the results in [35] suggest that the integers occurring as curvatures in a given ACP

arise with significant multiplicity. Specifically, Kontorovich and Oh prove the following:

THEOREM 1.8. (Kontorovich, Oh, 2007): Let NP(X) be the number of circles of curvature

less than X in an Apollonian packing P. Then

NP(X)∼ cP ·Xδ ,
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where δ = 1.3056 . . . is the Hausdorff dimension of the limit set of the packing and cP is a

constant depending on P.

Kontorovich and Oh’s techniques, however, do not extend in any obvious way to proving

that the integers represented by curvatures in an ACP make up a positive fraction in N.

A more fruitful method for this problem is to consider arithmetic Fuchsian subgroups of

A. In [47] Sarnak uses these subgroups to get a bound of

(1.4) κ(P,X)�P
X√

logX

towards Graham et.al.’s positive density conjecture. This method, which we summarize in

Section 1, was further improved to yield a bound of

κ(P,X)�P
X

(logX)ε

where ε = 0.150 . . . in a preprint [18].

Jointly with J. Bourgain, we refine this Fuchsian subgroup method in a number of ways

to settle the positive density question of Graham et.al. and show

κ(P,X)�P X

where the implied constant depends on the packing P.

In order to address any of these questions, we rely on the expression of ACP’s as orbits of a subgroup

of the orthogonal group OQ(Z) fixing the Descartes form Q. We introduce this group in the following

section.

2. The Apollonian group

Recall from Theorem 1.2 that if a,b,c, and d are curvatures of four mutually tangent circles,

Q(a,b,c,d) = 2(a2 +b2 + c2 +d2)− (a+b+ c+d)2 = 0

and that in the context of ACP’s the outside circle in a bounded packing (which is internally tangent

to the other circles) must have negative curvature to satisfy the equation. Note that fixing three of the

curvatures (say b,c,d) above yields a quadratic equation which has two solutions a = a+,a− such that

a++a− = 2(b+ c+d).

In fact, the circles Ca+ and Ca− of curvatures a+ and a−, respectively, are precisely the two circles

tangent to all three of the mutually tangent circles of curvature b,c, and d in Theorem 1.1. Thus if

v = (a,b,c,d)T is a vector of curvatures of mutually tangent circles in a packing P, all of the curvatures

of circles in P are given by the coordinates of vectors in the orbit Av, where A is a group given by the
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four generators

(2.1) S1 =


-1 2 2 2

0 1 0 0

0 0 1 0

0 0 0 1

 , S2 =


1 0 0 0

2 -1 2 2

0 0 1 0

0 0 0 1

 ,

S3 =


1 0 0 0

0 1 0 0

2 2 -1 2

0 0 0 1

 , S4 =


1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 -1


Since its orbits are in one-to-one correspondence with Apollonian circle packings, A is known as the

Apollonian group. Note that S2
i = I for 1≤ i≤ 4, and one can deduce that there are no other relations

among the generators of A by considering their geometric representation below.

Specifically, the generators of A can be realized as reflections in dual circles of the packing P. Four

such dual circles are drawn in dotted lines for the first generation of a circle packing in Fig. 3. The

shaded circle on the inside is the image of the outside circle under reflection through the smallest of the

dual circles. Throughout this thesis, the Apollonian group will be our main tool in analyzing ACP’s,

FIGURE 3. Dual circles in an Apollonian circle packing

and we list some of its properties in the following lemma:

LEMMA 2.1. Let A be the Apollonian group and let Q be the Descartes quadratic form. Then

(i) A is an infinite-index subgroup of the orthogonal group OQ(Z) fixing Q,

(ii) A is Zariski dense in OQ(C).

Since the Descartes form Q has signature (3,1) over R, the group A is a subgroup of OR(3,1) ∼=
SL2(C), the isometry group of hyperbolic space H3. The generators Si in this context are reflections

through the hemispheres above the dual circles in Fig. 3, and the fundamental domain of the action

of A on H3 is the complement of three mutually tangent hemispheres inside an infinite cylinder. This

fundamental domain has infinite volume, and so A is an infinite-index subgroup of the orthogonal group
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OQ(Z) as stated in part (i) of Lemma 2.1. In this sense, the Apollonian group is a thin group, and this

makes integral ACP’s virtually unapproachable via classical methods such as the theory of automorphic

forms. However, the richness of the group implied by part (ii) of the lemma is precisely the necessary

condition for the analysis in [7] and [52] to apply in this case. We prove part (ii) below.

PROOF. The Zariski closure G of the Apollonian group A is an algebraic group defined over R,

where G(R) is a Lie subgroup of SL2(C). Therefore G could be either the full orthogonal group or one

of the following:

• A finite group: since A itself is not finite (for example, the unipotent element S1S2 has infinite

order), its closure cannot be finite.

• The group SOQ : since the generators of A all have determinant−1, this cannot be the closure

of A.

• A torus or parabolic subgroup: Let A′ be the Zariski closure of A consider an orbit P ′ = A′v
of A′. By Theorem 1.8 we have

#{x ∈P | ||x||max ≤ X}� c ·X1.3056....

However, this count for a parabolic or a torus subgroup is bounded above by c ·X . Therefore

A′ cannot be parabolic or toral.

• The orthogonal group fixing the ternary quadratic form Q′ of signature (2,1) over R obtained

by fixing one of the xi in (1.1). As before, Theorem 1.8 implies that

#{x ∈P | ||x||max ≤ X}� c ·X1.3056...,

but for an orthogonal group fixing a form in three variables this count is again bounded above

by c ·X .

Since the Zariski closure of A is none of the above groups, it must be the full orthogonal group, and so

A is Zariski dense in OQ(C). �

It is precisely the fact that A is Zariski dense in OQ(C) that makes its orbits suitable for the affine

sieve described in [7]. In Chapter 2, we use this to deduce the mod d structure of the orbits of A which

is crucial to the sieve on the orbits of A in Chapter 3.





CHAPTER 2

Congruence Obstructions

In this chapter we determine the reduction of any integer orbit Av of the Apollonian group modulo

integers d > 1. This analysis is central to understanding the arithmetic of ACP’s. For example, many

diophantine problems over orbits of Zariski dense subgroups of the orthogonal group can be handled

using the affine sieve as described in [7] (see [19] for a concrete application of the sieve to integer

ACP’s). To execute such a sieve one needs to know the structure of the orbit modulo d – in particular

it is important that the orbit possesses a strong approximation property, or the analog of the Chinese

Remainder Theorem over the integers. A theorem of Weisfeiler (see Theorem 0.2) implies that such

a strong approximation principle can be specified given Lemma 2.1, and we do this in the following

sections.

We first consider the reduction of the Apollonian group modulo square free d. For this it is con-

venient to work with the preimage of A in the spin double cover of SOQ rather than the Apollonian

group itself. The main reason for this is that A is a subgroup of the orthogonal group OR(3,1) where

strong approximation does not hold, and it is difficult to say anything about the projection of A into

OQ(Z/pZ) by working in the orthogonal group alone. However, the preimage Γ of A under the spin

homomorphism in (1.1) is a Zariski dense subgroup of SL2(C) where general results regarding strong

approximation are known. Specifically, Weisfeiler proves the following in [52]:

THEOREM 0.2. (Weisfeiler, 1984): Let O be the ring of integers of a number field k, let V be the set

of non-archimedean non-equivalent valuations of k, and let kv denote the completion of k at a valuation

v ∈ V . Let Γ be a Zariski dense subgroup of an absolutely almost simple, simply connected algebraic

group G over k so that the subfield of k generated by 1 and the traces of Ad Γ is k itself. Then there

exists a finite subset S⊂V such that the closure of Γ in G(∏v 6∈S kv) is open.

In the context of integer ACP’s, the field k in Theorem 0.2 is Q(
√

-1), the ring of integers O =

Z(
√

-1), and Γ is a Zariski dense subgroup of G = SL2(k′) where k′ = C is the algebraic closure of

k. For this case Weisfeiler’s theorem implies that there is a finite set of primes P in O , so that Γ

projects onto SL2(Z(
√

-1)/p) for p 6∈P. This is precisely what we need to specify the structure of the

Apollonian group modulo p. In the following sections we will make this statement more precise for

our case and apply it in the context of orbits of A.

19
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1. The preimage Γ of A in SL2(C)

Since strong approximation does not hold in OQ(Z), we consider the mod p reduction of the preim-

age Γ of A∩SOQ(Z) in SL2(C) under the spin homomorphism ρ . Since strong approximation does

hold in SL2, it is the natural setting in which to ask this question – we then map back to A via the spin

homomorphism in order to complete the analysis of the orbits.

We recall from [15] that there is a 2-to-1 homomorphism ρ defined over Q from SL2(C) into the

special orthogonal group SO fixing a quadratic form Q̃:

(1.1) SL2
ρ→ SOQ̃,

The homomorphism ρ is defined explicitly in [15] for M in SL2(C)2:

(1.2) For M =

(
a0 +a1

√
-1 b0 +b1

√
-1

c0 + c1
√

-1 d0 +d1
√

-1

)
,

we have that ρ(M) is
a2
0+b2

0+c2
0+d2

0+a2
1+b2

1+c2
1+d2

1
2

-a2
0+b2

0-c2
0+d2

0 -a2
1+b2

1-c2
1+d2

1
2 -a0b0-d0c0-a1b1-c1d1 -a0b1+d0c1+a1b0-d1c0

-a2
0-b2

0+c2
0+d2

0 -a2
1-b2

1+c2
1+d2

1
2

a2
0-b2

0-c2
0+d2

0+a2
1-b2

1-c2
1+d2

1
2 a0b0-d0c0+a1b1-c1d1 a0b1+d0c1-a1b0-d1c0

-a0c0-d0b0-a1c1-b1d1 a0c0-d0b0+a1c1-b1d1 a0d0+c0b0+b1c1+a1d1 a0d1-d0a1-c1b0+b1c0

a0c1-d0b1-a1c0+b0d1 -a0c1-d0b1+a1c0+b0d1 -a0d1+a1d0-b0c1+b1c0 a0d0-b0c0+a1d1-b1c1

 .

In order to determine the preimage of A∩SOQ, we rewrite the Descartes form in a suitable way as

follows.

LEMMA 1.1. Let Q be the Descartes quadratic form as before, and let

Q̃(x1,x2,x3,x4) = x2
1− x2

2− x2
3− x2

4.

Then the orthogonal group OQ(Z[1
2 ]) preserving Q is isomorphic to OQ̃(Z[

1
2 ]) preserving Q̃. Under

this isomorphism, the Apollonian group A⊂ OQ(Z) is mapped to a group A′ ⊂ OQ̃(Z).

PROOF. Let Q′ be the form Q′(x1,x2,x3,x4) =−4x2
1 +4x2

2 +4x2
3 +4x2

4, with determinant d =−16.

It is equivalent to the Descartes form Q, since Q′ =CT QC, where

(1.3) C =


1 0 -1 1

1 0 -1 -1

0 0 1 0

2 2 -1 0

 .

The group OQ′(Z[1
2 ]) fixing Q′ is isomorphic to the group OQ̃(Z[

1
2 ]), where

(1.4) Q̃(x1,x2,x3,x4) = x2
1− x2

2− x2
3− x2

4.

2There is a small typo in the formula printed in [15]. It is corrected here.
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Since every element in A is congruent to the identity modulo 2, we have that A⊂ OQ(Z) is mapped to

a group A′ ⊂ OQ̃(Z) as desired. �

The Apollonian group A is thus isomorphic to a subgroup of OQ̃(Z) which we denote by A′. We

denote the isomorphism by s:

(1.5) A′ s−→A

and relate A′ to SL2(Z(i)) via the homomorphism ρ in 1.1. Specifically, we get

ρ(SL2(Z(i))) = A′∩SOQ̃(Z)

where the intersection A′ ∩SOQ̃(Z) consists of elements of A′ with positive determinant. It is known

(see [15]) that ρ is in fact a surjection from SL2(Z(i)) onto SO+
Q̃
(Z), a subgroup of index 2 in SOQ̃(Z)

consisting precisely of matrices of SOQ̃ with a positive entry in the upper left corner. It is easy to

check that every element of A′∩SOQ̃(Z) is in SO+
Q̃

, so we think of ρ as a homomorphism from Γ onto

A′∩SOQ̃(Z). Similarly, we have an onto homomorphism from Γ to A∩SOQ(Z) via the isomorphism

s:

Γ

s◦ρ

−−−−→A∩SOQ(Z),

so by considering Γ we simultaneously consider the Apollonian group A as well. The explicit formula

for ρ in 1.1 combined with the fact that A∩ SOQ(Z) is generated by S1S2,S2S3, and S2S4 and their

inverses, where Si are the generators of A defined in (4.9) allows us to determine exactly the generators

and relations of Γ. We describe this in the following lemma.

LEMMA 1.2. Let Γ be as before. It is a free group generated by ±γ1,±γ2,±γ3 and their inverses,

where γi are as below.

(1.6) γ1 =

(
2 -i

-i 0

)
, γ2 =

(
-2-2i -4-3i

i 2i

)
, γ3 =

(
1 -4i

0 1

)
.

This follows from applying the homomorphism ρ together with the map s to the generators. Note

that this group is a free subgroup of SL2 – since the elements S1S2,S2S3, and S2S4 have no relations

in A, the same holds for the elements γi ∈ Γ. In the next section we use Lemma 1.2 to determine the

reduction of Γ modulo ideals (d) where d is square free. We note, however, that to analyze A modulo

even integers it is not enough to consider the reduction of Γ modulo ideals (d) where d is even, since

the isomorphism in (1.5) is defined over Z(1/2). We deal with this separately in Section 4.

2. The reduction of Γ modulo square free (d)

Recall from Lemma 2.1 that A is Zariski dense in OQ, we have A∩SOQ is Zariski dense in SOQ,

and so the group Γ is also Zariski dense in SL2. We can also check that the subfield of k = Q(
√

-1)
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generated by 1 and the traces of the group Γ is in fact the whole field k. For example, the trace of

(2.1) γ1γ2γ3 =

(
-3-4i -22+6i

2i-2 12i+5

)
is 2+ 8i, and the field generated by this trace and 1 is indeed all of k. Thus by Theorem 0.2 we have

that outside a finite set of prime ideals P⊂Z(
√

-1) the projection of Γ into SL2/p is surjective for p 6∈P.

Our goal is to specify this set P and thus determine what the reduction of Γ is modulo arbitrary square

free d. Given the generators of Γ as well as Theorem 0.2, this is a question of elementary group theory.

We use a classification due to L.E. Dickson (Theorem 8.27 in [29]) of subgroups of PSL2 over finite

fields:

LEMMA 2.1. (Dickson, 1901): Let q be a power of a prime p≥ 5. Then the following are the only

possible proper subgroups of PSL2(Fq).

(1) Elementary abelian p-groups;

(2) Cyclic groups of order z where z|q±1
2 ;

(3) Dihedral groups of order q±1 and their subgroups;

(4) Semidirect products of elementary abelian groups of order pr and cyclic groups of order t

where t|pr−1 and t|q−1;

(5) A4, S4, or A5;

(6) PSL2(Fpr) where pr|q.

For q prime, the proper subgroups of PSL2(Fq) given by Lemma 2.1 are metabelian except for the

groups of small order in (5) (see [12] for a proof). This is also true for proper subgroups of PSL2(Fp2)

which properly contain PSL2(Fp) for p prime. We use this classification to prove the following propo-

sition regarding the reduction of Γ modulo square free d.

PROPOSITION 2.2. Let Γ and O be as before, let p denote a prime ideal in O , and let (d) denote an

ideal generated by d ∈ O . Denote by P the set of prime ideals in O containing (6). Let d > 1 be a

square free integer such that d = d1c, where c|6 and gcd(d1,6) = 1, we have

(2.2) Γ ↪→ Γc×SL2(O/(d1))

where Γc is the image of Γ in SL2(O/(c)), and Γ maps as a product group onto the second factor. Thus

the reduction of Γ modulo any prime p 6∈P is onto SL2(O/p).

PROOF. We first consider the reduction of Γ modulo prime ideals p∈O and then show that Γ maps

as a product group onto the second factor in (2.2). We split this up into three cases:

(1) p2 = (2);

(2) pp= (p) where p≡ 1 (mod 4); here p splits in O , and -1 is a square mod p, so the reduction

of Γ modulo (p) is mapped to SL2(Fp)×SL2(Fp);
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(3) p= (p) where p≡ 3 (mod 4); here p does not split in O , and -1 is not a square mod p, so the

reduction of Γ modulo (p) is mapped to SL2(Fp2).

Case 1:

Reducing Γ modulo (2) yields a group of order 2, which is clearly not all of SL2(O/(2)). Another

unpleasant feature of 2 in this context is that it is the only prime which ramifies in Q(i), since (2) =

(1+ i)2. We handle the other two cases separately, and note that we will not need to worry about

ramification in Q(i) there.

Case 2:

Let (p) = pp where p is the conjugate of the prime ideal p in O . We want to show that Γ reduces

onto each factor of SL2(O/p)× SL2(O/p) by first noting that both of these factors are isomorphic to

SL2(Fp) (we immediately note that the image of Γ in each factor is not trivial – for example, none of

the generators of Γ reduce to the identity I modulo p 6⊃ (2)). We prove this for Γp, the reduction of

Γ modulo p. The proof in the case of reduction modulo p is then the same argument applied to the

conjugate of Γ.

Note that Γ⊃ Z(SL2) contains the center of SL2 and consider Γ′ = Γ/Z ⊆ PSL2(C). If the reduction

Γ′p of Γ′ modulo p is a proper subgroup of PSL2(Fp), it is either metabelian or is one of the groups A4,

S4, or A5. We follow [20] to show that this would violate a girth bound for Γ′p for large enough primes

p = pp.

Let S = {γ1,γ
−1
1 ,γ2,γ

−1
2 ,γ3,γ

−1
3 }p be the set of generators of Γ′p. For example, the generators of

Γ′(2+i) are (
2 -2

-2 0

)
,

(
-1 0

2 -1

)
,

(
1 2

0 1

)
.

Consider the Cayley graph C(Γp,S), where the vertices correspond to elements of Γp, and two vertices

v,w are connected by an edge iff v = γw for some γ ∈ S. Define the girth c(Γp) of C(Γp,S) to be the

length of the shortest cycle in C(Γp,S). From [40] we have that

(2.3) c(Γp)≥ 2logα(p/2)−1

where

α := max
i
(||γi||).

Here we define the norm of a matrix γ as follows:

||γ|| := sup
x6=0

||γx||
||x||

and recall that

||γ||2 = ||γ∗γ||
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where γ∗ is the conjugate transpose of γ , and the norm of γ∗γ is its largest eigenvalue. Using this we

compute that in our case

α =

√
19+6

√
10 = 6.1623 . . .

Thus for pp= p large enough, Γ′p cannot be A4,S4, or A5 since these groups contain elements of small

order which violate the girth bound in (2.3). So if Γ′p is a proper subgroup of PSL2(Fp), it must be

metabelian – i.e., for any A,B,C,D ∈ Γp we have

(2.4) [[A,B], [C,D]] := (ABA−1B−1)(CDC−1D−1)(BAB−1A−1)(DCD−1C−1) = I

However, this yields a cycle of length 16 which also violates the girth bound for primes p > 2.57 ·107,

and so Γ′p = PSL2(Fp) for large enough primes p.

We are left with a finite number of cases which we handle using a program in Matlab. We check that

taking A = γ1,B = γ2,C = γ3, and D = γ1γ2γ3 where γi are as in (1.6) we have

(2.5) [[A,B], [C,D]] 6= I

in PSL2(Fp) for 2 < p < 2.57 · 107, and thus Γ′p is not metabelian in these cases. Similarly we check

that for p > 3 we have
∣∣Γ′p∣∣> 60, and so Γp 6= A4,A5, or S4. Thus Γ′p = PSL2(Fp) for all primes in this

case. Since no proper subgroup of SL2 maps onto PSL2 (see [49] for a proof), we have that Γ maps

onto SL2(O/p) and SL2(O/p) as desired.

Case 3:

In this case p = (p) where p ≡ 3 (mod 4) and we want to show that the reduction Γp = Γp of Γ

modulo p is onto SL2(Fp2). Note Γp 6⊂ SL2(Fp) – for example if γ1/p is the generator γ1 in Γp, we have
γ1/p 6∈ SL2(Fp) for any prime p≡ 3 (mod 4).

Again, consider Γ′ = Γ/Z as in Case 2. Since Γ′p properly contains PSL2(Fp), it is a proper subgroup

of PSL2(Fp2) iff it is one of the groups in parts (1) - (5) of Lemma 2.1 and is thus either metabelian or

one of the groups A4,A5, or S4.

The girth bounds calculated in Case 2 again imply that Γ′p cannot be metabelian for

p > 2.57 ·107

Similarly, Γ′p 6= A4,A5,or S5 for p in this range, and so Γ′p = PSL2(Fp2) for large enough p. As in Case

2, we check that if A = γ1,B = γ2,C = γ3, and D = γ1γ2γ3,

[[A,B], [C,D]] 6= I

in Γp for p≥ 3, and that |Γp|> 120 for p > 3. We also check that for p > 3 we have |Γp|> 120 and so

|Γ′p|> 60. Thus Γ maps onto SL2(Fp2) for p > 3.

If p = 3, however, Γ′p = A5 and so Γp is not the full SL2(F9).

It remains to show that Γ maps as a product group onto the second factor in Γc×SL2(O/(d1)). For

this we need the following lemma.
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LEMMA 2.3. (Goursat): Let G, G′ be groups, and let H be a subgroup of G×G′ such that the two

projections π1 : H → G and π2 : H → G′ are surjective. Let N be the kernel of π1, and let N′ be the

kernel of π2. Then the image of H in G/N×G′/N′ is the graph of an isomorphism G/N ∼= G′/N′.

We have shown above that Γ maps onto SL2(Fq2) where q > 3 is a prime congruent to 3 mod 4, and

onto SL2(Fp)×SL2(Fp) where p is a prime congruent to 1 mod 4. To verify the product structure of

Γ/(d1) in Proposition 2.2, we prove the following two lemmas.

LEMMA 2.4. Let Γ, d, c, and d1 be as in Proposition 2.2, let p denote a prime such that p ≡ 1(4),

and let q > 3 denote a prime such that q≡ 3(4). Write d1 = ∏p|d1 p∏q|d1 q, and let

Hq = SL2(Fq2), Gq = SL2(Fp)×SL2(Fp).

Then the projection

Γ(d) −→ Γ(c)×Γ(d1)

is surjective onto each factor, and the diagonal projection

(2.6) Γ(d1) −→∏
q|d1

Hq×∏
p|d1

Gp

is surjective onto each factor.

The centers Z(Hq) and Z(Gp) are finite, and the factor groups Hq/Z(Hq) and Gp/Z(Gp) are of the

form PSL2(Fp) which is simple for p > 4, so its composition factors consist of itself and the trivial

group. Therefore Hq and Gp have no composition factors in common for large enough primes p and q,

so Lemma 2.3 immediately implies Lemma 2.4. However, since every prime ideal (p) in the product

in 2.6 splits, we have that p = pp and we must still show that every Gp maps as a product onto its two

factors as in the next lemma.

LEMMA 2.5. Let O and Gp be as before, where (p) = pp and p is a prime ideal in O . Then the

diagonal projection

(2.7) Gp −→ SL2(O/p)×SL2(O/p)

is surjective onto each factor.

PROOF. In this case, Lemma 2.3 is not immediately applicable as it was in the proof of Lemma 2.4

since it is not the case that the groups in 2.7 have no composition factors in common. Suppose Gp does

not map as a product group onto SL2(O/p)×SL2(O/p). Then by Lemma 2.3 the projection of Gp onto

each factor is an isomorphism. In this case, we can write

Gp = {(x, f (x)) | x ∈ SL2(O/p)},

where f is an isomorphism from PSL2(O/p) to SL2(O/p). So identifying each of the factors of Gp

with the group H = SL2(Fp), every element of Gp is of the form (x,φ(x)), where x ∈ H, and φ is an
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automorphism of H. Since all automorphisms of H are inner, φ preserves the trace for every x ∈ H:

Tr(φ(x)) = Tr(x) for all x ∈ H.

However, we find an element in Gp whose trace is not in Q, and so the element’s trace in the first factor

is not the same as its trace in the second factor for any p:

(2.8)

(
-3−4i -22+6i

2i−2 12i+5

)
,

so we have a contradiction, and thus Gp maps as a product onto SL2(O/p)×SL2(O/p) as desired. �

Proposition 2.2 follows from Lemma 2.4, Lemma 2.5, and our case analysis above. �

Proposition 2.2 gives us a concrete description the reduction modulo square free d of the Apollonian

group itself via the spin-homomorphism ρ . It is desirable, however, to understand the structure of

A and its orbit under reduction modulo any d. To this end we specify the reduction of Γ modulo

powers of prime ideals pi in the next section and prove a concrete strong approximation theorem for

the Apollonian group.

3. The reduction of Γ modulo any ideal (d)

In Section 2 we proved that Γ has a multiplicative structure under reduction modulo square free

ideals (d) outside a finite set of primes. In this section, we extend this multiplicativity to reduction

modulo any (d) by considering the image of Γ modulo powers of primes p. An essential tool in this

consideration is a generalization of the following we recall a lemma of J.P. Serre (see [49] for a proof).

LEMMA 3.1. (Serre, 1968): Let p be a prime greater than 3. If X is a closed subgroup of SL2(Zp)

whose image in SL2(Fp) is SL2(Fp), we have X = SL2(Zp).

We extend this lemma to apply in the situation of Γ⊂ SL2(C) below.

LEMMA 3.2. Let O be the ring of integers in Q(i) as before. Let q 6= (1+ i) or (3) be a prime

ideal in O and let Oq denote the completion of O at q. Let G be a closed subgroup of SL2(Oq). If the

projection of G into SL2(Oq/q) is surjective, then G = SL2(Oq).

The proof of this follows the same argument as the proof of Lemma 3.1 in [49] – we outline a

modification of it in the special case of reduction modulo powers of (2) below. Since the projection

of Γ into SL2(Oq/q) is surjective for all but finitely many primes q by Proposition 2.2 we may use the

result in Lemma 3.2 to determine the reduction of Γ modulo powers of q. We first handle the reduction

modulo powers of prime ideals q contained in the ideals (2) and (3) in the following lemma and obtain

the complete picture in Theorem 3.5.
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LEMMA 3.3. Let Γ and O be as before. Let Kn(2) denote the kernel of the projection of SL2(O/(2n))

onto SL2(O/(2n−1)), and let Kn(3) denote the kernel of the projection of SL2(O/(3n)) onto SL2(O/(3n−1)).

Denoting the reduction of Γ modulo (d) by Γd , we have

(i) Γ2 = D1, the dihedral group containing 2 elements.

(ii) Γ4 is an abelian group of 8 elements.

(iii) Let τn denote the projection of Γ2n onto Γ2n−1 . The kernel of this projection is Kn(2) for n≥ 4.

(iv) Γ3/Z(Γ3) = A5.

(v) Let σn denote the projection of Γ3n onto Γ3n−1 . The kernel of this projection is Kn(3) for n≥ 2.

PROOF. The images of Γ modulo (2) and (4) are seen trivially from the generators of Γ, while the

image under reduction modulo (3) can be deduced from Lemma 2.1.

The number of elements in the kernels of τ3 and τ4 can be computed using a simple program in

Matlab, and we obtain

(3.1) |{γ ∈ Γ16 |τ4(γ) = I}|= 520 = |K4(2)|,

|{γ ∈ Γ9 |σ2(γ) = I}|= 738 = |K2(3)|.

Thus the kernel of τ4, respectively σ2, is the full kernel K4(2), respectively K2(3). We proceed as in

[49] to prove part (iii) of the Lemma for n ≥ 4. The proof of part (v) regarding the kernel of σn for

n≥ 2 is identical.

Let πn be the canonical homomorphism from SL2(O/(2n)) onto SL2(O/(2n−1)), and let φn be the pro-

jection from SL2(O/(2n)) onto Γ2n . The the following diagram commutes for n≥ 4:

(3.2) Γ2n−1 Γ2n
τn

oo

SL2(O/(2n−1))

φn

OO

SL2(O/(2n))

φn

OO

πn
oo

We want to show that ker(τn) = ker(πn) for n≥ 4. We prove this by induction on n.

From (3.1), this is true in the base case, n = 4. We suppose it is true for n, and show that it must also

be true for n+1. Let X denote the inverse limit of the groups Γ2i for i≥ 4:

X := lim←− Γ2i where i≥ 4

and denote by

SL2(O2) := lim←− SL2(O/(2i))

the inverse limit of the groups SL2(O/(2i)). We would like to show that for any γ ∈ SL2(O2) congruent

to the identity I modulo 2n, there is an element x ∈ X such that

x≡ γ (mod 2n+1).
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As in [49], we write

γ = I +2n
µ.

Since det(γ) = 1, we must have that Tr(µ)≡ 0 (mod 2). Thus µ can be written mod 2 as a sum of some

matrices µi such that µ2
i = 0, and so µ2 ≡ 0 (mod 2).

By the induction hypothesis, we have that there is an element β ∈ X such that

β = I +2n−1
µ +2n

δ ,

where δ has entries in Z2(i). Let x = β 2. That is, we have

x = I +2n
µ +2n+1

δ +22n−2
µ

2 +22n−1
µδ +22n−1

δ µ +22n
δ

2.

Since n≥ 5 and µ2 ≡ 0 mod 2, we have produced an element x ∈ X such that

x≡I +2n
µ (mod 2n+1)

as desired. The proof of part (v) regarding reduction mod 3 is identical. �

It remains to determine the image of Γ under reduction mod (c), where c = 2n3m. It turns out that

powers of (2) do not interact with powers of (3) at all in this context – namely, Γc is simply the product

of Γ2n and Γ3n .

LEMMA 3.4. Let Γ and c be as above. Then

Γc = Γ2n×Γ3m .

PROOF. It is easy to check that the groups Γ2n and Γ3m have no composition factors in common

for any n and m. The order of Γ2n is a power of 2, and the same is true of its composition factors. The

orders of the composition factors of Γ3n , however, are all divisible by a power of 3. Thus our claim

follows from Lemma 2.3. �

THEOREM 3.5. Let d = cd′, where c = 2n3m, and gcd(d′,c) = 1. Let

d′ = ∏
1≤i≤r

pai
i ∏

1≤ j≤s
qb j

j

be the prime factorization of d′, where pi≡ 1 mod 4 for all 1≤ i≤ r, and q j ≡ 3 mod 4 for all 1≤ j≤ s.

Then Γ maps as a product group onto

(3.3) Γc× ∏
1≤i≤r

(SL2(Z/pai
i )×SL2(Z/pai

i ))× ∏
1≤ j≤s

SL2(OZ/q
b j
j ),

where Γc is the image of Γ under reduction modulo c, as described in Lemma 3.4.

This theorem follows from Proposition 2.2, Lemma 3.3, and Lemma 3.4, as well as the discussion in

[49]. It describes completely the structure of A
⋂

SOQ(Z) modulo any integer d via the homomorphism

ρ together with s. In the next section, we use Theorem 3.5 to describe the orbit of A modulo square

free integers d.
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4. Congruence obstructions for the orbit

Since we are ultimately interested in the local structure of the orbit of A, we extend Theorem 3.5 to

the setting of the orbit P =P(P) = Av where v = vP is the root quadruple of a packing P. Throughout

this section, we consider the cone

(4.1) C = {v = (v1,v2,v3,v4) |v 6= 0,Q(v) = 0}

where Q is the Descartes quadratic form. Note that the Apollonian group A acts on C by mapping any

quadruple of mutually tangent circles represented by a point of C to another quadruple of mutually

tangent circles in the same packing. In other words, for α ∈ A we have

(a,b,c,d) α−→(a′,b′,c′,d′)

where (a,b,c,d) and (a′,b′,c′,d′) are Descartes quadruples in a packing P. We would like to elaborate

on how this action behaves under reduction modulo integers d > 1. Given the multiplicative property

of the group Γ in Section 0.28, this amounts to specifying how orbits of A modulo powers of primes sit

inside Cpr , defined recursively as follows:

• For p > 2,

Cp = {v ∈ Z/pZ | v 6≡ 0 (p),Q(v)≡ 0 (p)},(4.2)

Cpr = {v ∈ Z/prZ | v ∈Cpr−1 (pr−1),Q(v)≡ 0 (pr)}

for r > 1.

• For p = 2,

C2 = {v ∈ Z/2Z | v 6≡ 0 (2),Q(v)≡ 0 (2)},(4.3)

C2r = {v ∈ Z/2rZ | v ∈C2r−1 (2r−1),Q(v)≡ 0 (2r),∃w≡ v (2r) s.t. Q(w)≡ 0 (2r+1)}

for r > 1.

Note that we need to define C2r separately because it is not true in this case that every solution to

Q(v)≡ 0 (2r) lifts to some solution of the equation modulo 2r+1 – only half of the solutions modulo 2r

lift to solutions modulo higher powers, and every element of C2r as defined above has 8 elements lying

above it in C2r+1 . Furthermore, since the isomorphism in (1.5) is over Z[1/2], we cannot apply results

about Γ to reduction of the orbit modulo powers of 2 or modulo even integers. We thus consider the

reduction of A modulo odd integers first, and complete the picture with an analysis of reduction modulo

powers of 2 in Lemmas 4.3 and 4.4.

Recall that A acts on C by mapping any quadruple of mutually tangent circles represented by a point

of C to another quadruple of mutually tangent circles in the same packing. Similarly, the group Γ acts

on the cone C via the spin homomorphism ρ and the change of variables map s in (1.5). Namely, for
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any γ ∈ Γ, we have the action

(4.4) (a,b,c,d)
s(ρ(γ))
−−−−→(a′,b′,c′,d′)

of γ on a quadruple (a,b,c,d) in the packing P. Since s(ρ(γ))∈A∩SOQ(Z), this action does not depict

the whole action of the Apollonian group, but rather only the action of elements of even word length in

the four generators of A. However, we can easily relate it to the action of all of A by multiplying on the

left by the generator S1.

LEMMA 4.1. Let Ã = A∩SOQ(Z), and let S1 ∈ A be as before. Then

A = Ã∪S1 Ã.

In general, we have

OQ(Z) = SOQ(Z)∪S1 SOQ(Z).

Since we can view the action of the Apollonian group on the cone as the action of Γ in this way,

we apply Theorem 3.5 to obtain the desired structure of the orbit of A modulo odd integers d in the

following lemma.

LEMMA 4.2. Let C and Cpr be as above, let P be an orbit of A acting on a root quadruple v = vP

of a packing P and let Pd be the reduction of this orbit modulo an odd integer d > 1. Write d = d1d2

with (d2,3) = 1 and d1 = 3m where m≥ 0 is an integer. Then

(i) If m≥ 1, the natural projection Pd −→Pd1×Pd2 is surjective.

(ii) If m≥ 1, let π : Cd1 →C3 be the natural projection. Then Pd1 = π−1(P3).

(iii) The natural projection Pd2 −→∏pr||d2 Ppr is surjective and Ppr =Cpr .

Proof: We derive (i) directly from Lemma 4.4 and the product group structure of Γ in Theorem 3.5.

This structure translates to the orbit setting via the action in (4.4) of Γd on the cone. For simplicity,

we refer to this action as ρ(γ) as opposed to s(ρ(γ)) above. Using the notation of (3.3) and assuming

d1 > 1, for v = vP we have

ρ(Γd)(v) = ρ

(
Γd1× ∏

1≤i≤r
SL2(Z/pai

i )×SL2(Z/pai
i )× ∏

1≤ j≤s
SL2(O/q

b j
j )

)
(v) =(4.5)

ρ(Γd1)(v)× ∏
1≤i≤r

ρ(SL2(Z/pai
i ))(v)× ∏

1≤ j≤s
ρ(SL2(O/q

b j
j ))(v) =

ρ(Γd1)(v)×∏
pr|d2

SOQ(Z/(prZ))(v)
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Combining this with the multiplication of S1 by ρ(Γd)(v) in Lemma 4.1 we get

Pd = S1 ·ρ(Γd)(v)∪ρ(Γd)(v) =
(

S1 ·ρ(Γd1)(v)∪ρ(Γd1)(v)
)
×∏

pr|d2

Cpr =

Pd1×∏
pr|d2

Cpr

as desired.

We prove (ii) in a similar way, using the characterization of Γc in Lemma 3.4. To realize the structure

of ρ(Γ3m)(v), note that the following diagram, where τm and τ ′m are the natural projections obtained by

reduction mod 3m, is commutative:

(4.6) Ã3m Ã3m+1

τ ′m
oo

Γ3m

ρ

OO

Γ3m+1

ρ

OO

τm
oo

We recall from Lemma 3.4 that ker(τm) = Km(3) for m≥ 2, where Km(3) is the kernel of the projection

SL2(O/3m+1)
πn−→SL2(O/3m).

We would like to relate this to ker(τ ′(m)). For this we note that the elements in Γ lying above the

identity in Ã are ±I, where I is the identity in Γ. However, it is easy to check that none of the groups

Γ3m will contain −I, so the only element of Γ3m lying over the identity in Ã3m is in fact I. Thus

ker(τ ′m) = ρ(ker(τ(m))) = ρ(Km(3)).

Let π ′m be the projection from SOQ(Z/3mZ) onto SOQ(Z/3m−1Z), and let K′m(3) be the kernel of π ′m.

Since the diagram

(4.7) SOQ(Z/3mZ) SOQ(Z/3m−1Z)
π ′m

oo

SL2(O/3m)

ρ

OO

SL2(O/3m−1)

ρ

OO

πm
oo

also commutes, we have that ρ(Km(3)) = K′m(3) for m≥ 2. Finally, we note that the diagram

(4.8) C3m C3m+1oo

P3m

OO

P3m+1

OO

oo

commutes for m ≥ 2. Combined with our analysis of the kernel of τ ′m above, we have that every

v ∈C3m+1 lying above a vector v ∈P3m is also in P3m+1 . Thus P3m = π−1(P3) as desired. �

It remains to extend Lemma 4.2 to all integers d. We first prove an analog of part (ii) of Lemma 4.2

for powers of 2.
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LEMMA 4.3. Let P be a primitive integer orbit of the Apollonian group, and let P2n denote the

reduction of P mod 2n. Let C2n be as in (4.3) and let πn be the natural projection

πn : C2n −→C2n−1 .

With this notation, we have

P2n = π
−1
n (P2n−1)

for n≥ 4. In particular, if π : C2n −→C8 is the natural projection where n≥ 4, then P2n = π−1(P8).

PROOF. To prove this, we produce elements of A which effectively lift points in P2n−1 to all pos-

sible points in C2n . Let S1,S2,S3, and S4 be the generators of the Apollonian group as before, and

let X0 = S2S1S3, Y0 = S1S2S4, Z0 = S1S3. For integers n ≥ 4, let X(n) = X2n−3

0 ,Y (n) = Y 2n−3

0 , and

Z(n) = Z2n−3

0 . We have

(4.9) X(n)≡


1 2n−1 2n−1 0

2n−1 1 2n−1 0

2n−1 2n−1 1 0

0 0 0 1

 (mod 2n), Y (n)≡


1 2n−1 0 2n−1

2n−1 1 0 2n−1

0 0 1 0

2n−1 2n−1 0 1

 (mod 2n),

Z(n)≡


2n−2 +1 2n−2 -2n−2 2n−2

0 1 0 0

2n−2 -2n−2 1-2n−2 -2n−2

0 0 0 1

 (mod 2n).

Let Hn be the abelian group of order 16 generated by X(n),Y (n), and Z(n) modulo 2n. Note that

any primitive orbit P of A modulo 2 consists of one vector, where two coordinates are 1’s, and two

coordinates are 0’s (this follows from the unique nontrivial solution to the Descartes equation mod 2),

and that we can arrange the vector to be (1,0,0,1) and re-order coordinates of all the vectors in the

orbit accordingly. With this in mind, let n≥ 4, and let r ∈P be the vector

r = (a+2n−1k1,b+2n−1k2,c+2n−1k3,d +2n−1k4)
T

which is (a,b,c,d)T mod 2n−1. Here 0 ≤ a,b,c,d < 2n−1 are integers such that a and d are odd and

b and c are even. Since Hn is a subgroup of A, we have that the orbit Hnr mod 2n sits inside P2n . In

particular, given that

• v≡ (1,0,0,1)T (mod 2),

• v1 + v2 + v3 + v4 ≡ 0 (mod 2),

• v1 + v2 + v3 + v4 ≡ 0 (mod 4)
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for every v = (v1,v2,v3,v4)
T ∈P , we have

I · r ≡ r

Y (n) · r ≡ r + (2n−1,0,0,2n−1)T

Z(n) · r ≡ r + (2n−1,0,0,0)T

X(n)Z(n) · r ≡ r + (2n−1,2n−1,2n−1,0)T

Y (n)Z(n) · r ≡ r + (0,0,0,2n−1)T

X(n)Y (n)Z(n) · r ≡ r + (0,2n−1,2n−1,2n−1)T

X(n) · r ≡ r + (0,2n−1,2n−1,0)T

X(n)Y (n) · r ≡ r + (2n−1,2n−1,2n−1,2n−1)T

mod 2n. This is in fact the full list of points in C2n lying above r, as desired. �

Finally, we show a multiplicative structure for orbits of the Apollonian group modulo even integers

in the following lemma:

LEMMA 4.4. Let δ = 2n be any positive power of 2 and let P be as before. Let c be an odd integer,

and let d = δc. Then the projection

Pd −→Pδ ×Pc

is surjective.

PROOF. Let c= 3mc′, where gcd(c′,3)= 1 and m≥ 0. For Ã=A∩SOQ, let Ãd denote the reduction

of Ã mod d. From the proof of Lemma 4.2, we have that Ãc maps as a product group onto

(4.10) Ã3m× ∏
pr||c′

SOQ(Z/prZ)

if m ≥ 1, or as a product group onto the second factor in (4.10). Assume m ≥ 1, and note that the

projection Ãd to

(4.11) Ãδ × Ã3m× ∏
pr||c′

SOQ(Z/prZ)

is onto each factor by the proof of Lemma 4.2. By Goursat’s Lemma 2.3, note that the groups in (4.10)

have no composition factors in common. Furthermore, the order of Ãδ is a power of 2, and so all of its

composition factors also have order a power of 2. However, this is not true of any of the composition

factors of Ã3m or SOQ(Z/prZ), so by Goursat’s lemma we have that Ãd does indeed map as a product

group onto the expression in (4.11). As in Lemma 4.2, we consider the orbit

Ãdv = (Ãδ × Ã3m×∏
pr|c′

SOQ(Z/(prZ))(v)(4.12)
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and combine this with the multiplication of S1 as described in Lemma 4.1 to get

Pd = (S1 · Ãd)(v)∪ Ãdv = Aδ v×P3m×∏
pr|c′

Cpr =

Pδ ×Pc

as desired. The proof in the case of m = 0 is identical (the factor of P3m is simply ommited). �

With this description of the orbits of A modulo even integers, we are now able to give a complete

description of orbits of the Apollonian group modulo integers d > 1 below.

THEOREM 4.5. Let P be an orbit of A acting on a root quadruple vP of a packing P and let Pd be

the reduction of this orbit modulo an integer d > 1. Let C = {v 6= 0 |Q(v) = 0} denote the cone without

the origin, and let Cpr be as before. Write d = d1d2 with (d2,6) = 1 and d1 = 2n3m where n,m≥ 0.

(i) If d1 6= 1, the natural projection Pd −→Pd1×Pd2 is surjective.

(ii) The natural projection Pd2 −→∏pr||d2 Ppr is surjective and Ppr =Cpr .

(iii) If m,n≥ 1, the natural projection Pd1 −→P2n×P3m is surjective.

(iv) If n≥ 4, let π : C2n →C8 be the natural projection. Then P2n = π−1(P8).

(v) If m≥ 2, let φ : C3m →C3 be the natural projection. Then P3m = φ−1(P3).

Theorem 4.5 follows directly from Lemmas 4.2, 4.3, and 4.4. It implies the following improvement

of Graham et.al.’s Theorem 1.5.

COROLLARY 4.6. Let P be a primitive integral Apollonian circle packing, and let d > 1 be a square

free integer such that gcd(d,6)= 1. The curvatures of circles in P cover all possible congruence classes

modulo d.

PROOF. We wish to show that for any residue class k modulo d, k is a coordinate of some vector

v ∈P . Suppose k 6= 0. Note that Q(0,0,k,k) = 0 for any k 6= 0 where Q is the Descartes form, and so

(0,0,k,k) ∈Cd for all d ∈ N. Since Pd = Cd for d relatively prime to 6 by Theorem 3, we have that

(0,0,k,k) ∈Pd as well, and so we have what we want. If k = 0, then we easily produce a vector with

coordinate 0 in Pd – again, (0,0,a,a) ∈Pd for any a 6= 0. �

The description in Theorem 4.5 of the arithmetic structure of P is crucial to applying the affine

linear sieve as described in [7] to diophantine problems on the orbit of A. In [19] the analysis in this

paper is used to verify the sieve conditions and determine the density function for the sieve in order to

count prime and almost prime points in P . Furthermore, Theorem 4.5 is one of the ingredient in the

conjectured local to global principle for ACP’s which is described and motivated in [19]:

CONJECTURE 4.7. (Fuchs, Sanden): Let P be an integral ACP and let P24 be the set of residue

classes mod 24 of curvatures in P. Then there exists XP ∈ Z such that any integer x > XP whose residue

mod 24 lies in P24 is in fact a curvature of a circle in P.



4. CONGRUENCE OBSTRUCTIONS FOR THE ORBIT 35

This conjecture would suggest that the orbit in this case mimics the full cone C outside of a congru-

ence obstruction modulo 24. Proving this, however, appears rather difficult at this time.





CHAPTER 3

Sieving

1. The affine sieve and the importance of expanders

The analysis of the orbit of A modulo d in Chapter 2 provides an analog of the Chinese remainder

theorem in the context of ACP’s which allows us to sieve over the curvatures in a packing. The setup

of such a sieve in general can be found in [7] and we specify its construction in relation to ACP’s here.

Let P be a bounded Apollonian circle packing, and let an be the number of circles at generation T of

curvature n in P. We denote the sequence of such an’s by A := {an}. Note that there is a finite number

of circles of curvature n in any bounded packing P since all circles in the packing are contained in a

circle of fixed radius r (thus an ≤ r2n2). With this in mind, denote

X := ∑
n

an.

Since we consider the problem of counting circles of prime curvature in P in Section 4, we summarize

the setup of the sieve we use there. Let z be a small power of X and denote by Pz the product

Pz := ∏
p≤z

p,

for p prime. Our goal is then to estimate the sum

S(A ,Pz) = ∑
(n,Pz)=1

an

which essentially approximates the total number of circles of prime curvature at generation T . Let d

be a square free integer such that 1 < d < Xα for some small power α . In order to compute S(A ,Pz),

we estimate the sums of an for which n ≡ 0 mod d. To this end we note that there is a multiplicative

density function 0≤ β (d)≤ 1 such that

(1.1) ∑
n≡0(d)

an = β (d)X +R(A ,d)

where the remainder term R(A ,d) is small comparing to X (See (4.11) for a concrete definition of

β (d)). The requirement that R(A ,d) be small turns out to be quite subtle when sieving over an orbit

of a group G (the Apollonian group in our case) rather than over the integers. Specifically, to carry

out a sieve over Z one considers integers belonging to a large interval which occur in some arithmetic

progression with difference d. Over the integers, the size of the boundary of such an interval, as well

as the arithmetic progression is trivially small compared to the size of the whole interval. In the setting

of groups, however, this is generally not true. Consider all those points in an orbit of an arbitrary group

37
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acting on Rn which lie in a large ball B(x,r) of radius r centered at x, which is the analog of an interval

in Z. Naively, one might propose sifting out all points on the boundaries of balls B(x,r′) centered at x,

whose radii r′ are in an arithmetic progression of difference d. However, in this setting the points on the

boundary may in fact be most of the points in B. In order to ensure this does not happen (equivalently,

to make sure that the remainder R(A ,d) is small), it is necessary for G to satisfy some combinatorial

properties. Namely, let {α1, ...,αk} be the generators of G. We can then think of G in terms of its

associated Cayley graph (G ,S) where S = {α1,α
−1
1 , ...,αk,α

−1
k }, the vertices correspond to elements

of G, and two vertices x and y are connected by an edge iff αx = y for some α ∈ S. In this way, we

associate with G a 2k-regular tree. This association is crucial in controlling the remainder term in (1.1)

in the orbit setting – namely, if one imposes some conditions (see [7]) on the Cayley graphs Gp which

arise from the reduction of G modulo primes p, it is possible to carry out the sieve.

Specifically, for any graph G with a finite number of vertices |G |we can define a |G |×|G | adjacency

matrix A(G ) whose rows and columns are indexed by vertices vi of G , such that

Ai j =

{
1 iff vi and v j are adjacent

0 otherwise

In the context of the Apollonian group and in other cases one might consider, the graphs which come up

are 2k-regular graphs on n vertices (once we reduce G modulo p its Cayley graph is of course finite). For

such a graph, the adjacency matrix A(Gn,2k) is an n×n symmetric matrix with n eigenvalues between

−2k and 2k which we arrange in decreasing order:

2k = λ0 ≥ λ1 ≥ ...≥ λn−1 ≥−2k,

where λ0 > λ1 if the graph is connected, which we assume for our applications. With this in mind, we

would like the graphs arising from the groups Gp to satisfy the following expander property (see [7]

for a detailed discussion).

DEFINITION 1.1. Let Gn,2k be a connected, 2k-regular graph on n vertices as before, and let A(Gn,2k)

be its adjacency matrix. Let λi be the eigenvalues of A, and denote by λ (A(G )) an eigenvalue of A such

that

|λ (A(G ))|= max({|λi| where −2k < λi < 2k}.

Then the graphs Gn,2k form a family of absolute expanders if we have that

limsup
n→∞

|λ (A(Gn,2k))|< 2k.

It is precisely this expander property which guarantees that the remainder R(A ,d) in the sieve is

small, and it turns out that the sieve can be carried out for orbits of groups which satisfy this property.

The following theorem from [7] implies that the Apollonian group A is in fact such a group.

THEOREM 1.2. (Bourgain, Gamburd, Sarnak): Let G be a non-elementary subgroup of G̃= SL2(Z(
√

-1))

such that G is Zariski dense in G̃, and such that the traces of elements of G generate the field Q(
√

-1).
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Then as (d) varies over square free ideals in Z(
√

-1), the Cayley graphs (SL2(Z(
√

-1))/(d),S), where S is

a fixed symmetric generating set of generators of G, is a family of absolute expanders.

This theorem applies to the analysis of curvatures of circles in ACP’s since we have seen in Chapter 2

that the preimage of A in the spin-double cover of the orthogonal group SOQ is precisely a Zariski dense

subgroup of SL2(Z(
√

-1)) with the set of generators S as in 1.6, and that the traces of the matrices in Γ

do in fact generate Q(
√

-1). Thus the Cayley graphs arising from reduction mod d in the case of ACP’s

satisfy the expander property by Theorem 1.2, and so we can construct a combinatorial sieve to count

curvatures in a packing P. In [7], the authors discuss how such a sieve can give upper bounds towards

the analog of a prime number theorem in the orbit of an algebraic group – we explore this question in

the context of curvatures of circles born at generation T in a packing P in Section 4.2.

Another question which has many variants over the integers that one can also extend to a group orbit

setting such as ACP’s concerns the infinitude of points in the orbit whose coordinates have few prime

factors. For example, given an integer-valued polynomial f (x) over Z, are there infinitely many primes

which can be expressed as f (a) for some a∈Z? To phrase this question for affine space it is convenient

to consider r-almost primes, or integers s > 0 with at most r distinct prime factors, rather than primes

alone, as the problem of counting primes is much more difficult in this case.

Consider a linear algebraic group G generated by linear transformations which take Zn to Zn, and let

O be the orbit of G acting on b ∈ Zn. Let f ∈ Q[x1, ...,xn] be a polynomial which takes integer values

on O. We let

Or = {x ∈ O| f (x) has at most r prime factors},

which we refer to as the set of r-almost prime points. We ask whether there is an r ∈ Z such that there

are “many" points x ∈ O for which f (x) has at most r prime factors. In particular, we are interested in

finding an r such that the set Or is Zariski dense in the Zariski closure Zcl(O) of O. Note that if Or is

dense in Zcl(O) for some r ∈ Z, then Or′ is dense in Zcl(O) for r′ ≥ r as well. If such an r exists and is

finite, we call the minimum r for which Or is dense in O the saturation number, denoted by r0(O, f ),

and say that the pair (O, f ) saturates.

Note that this question is best considered in the case that there are no local obstructions for the pair

(O, f ). For example, for an integer q ≥ 2, if there is no point x ∈ O for which ( f (x),q) = 1, we have

that f (x) is divisible by some factor of q for every x ∈ O. Thus r0 will be larger than what one might

expect from the arithmetic properties of O alone, which is ultimately what interests us. For this reason,

we demand that the pair (O, f ) to be primitive, meaning that for every q≥ 2 we have at least one point

x ∈O for which ( f (x),q) = 1. We could also allow a finite set B of primes q for which q| f (x) for every

x ∈ O. In this case, the number of primes in B is absorbed into r0. We state the result for saturation of

the orbit in the primitive case here:

THEOREM 1.3. (Bourgain, Gamburd, Sarnak): Let G be as in Theorem 1.2, and let O be an orbit

of G acting on a vector b ∈ Zn as before. Let f be as above, and suppose (O, f ) is primitive. Then
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the pair (O, f ) saturates, and the saturation number r0(O, f ) can be explicitly given in terms of the

spectral gap in the expander family.

So, in particular, Theorem 1.2 implies that the saturation number r0 exists and is finite in the setting

of orbits P of A. In the next two sections, we give an upper bound for the saturation number r0(P, f )

where f (x1,x2,x3,x4) = x1x2x3x4.

Note that since the Apollonian group A is Zariski dense in the orthogonal group OQ fixing the

Descartes form Q, the Zariski closure Zcl(P) of P is the affine cone

C = {x = (x1,x2,x3,x4) 6= 0 |Q(x) = 0}

where Q is the Descartes form. Therefore r0 is the smallest integer for which Pr0 is Zariski dense

in the cone C. In the next section we elaborate on which primes are considered bad in the sense of

primitivity for the Apollonian orbit and compute an explicit upper bound for r0 in Section 3.2. We

cannot, however, use the full strength of the methods developed in [7] in determining r0. For this

one would need to explicitly determine the discrete spectrum of the Laplacian of A\H3 and since the

fundamental domain of this quotient has infinite volume usual integration techniques do not apply.

In fact, the only eigenvalue known in this case is the first eigenvalue λ0 = δ (2− δ ), where δ is the

Hausdorff dimension of the limit set of any ACP. Beyond this, it is shown in [7] that there is a spectral

gap for the Apollonian case. However, this gap is currently difficult to verify even by using approximate

calculations on a computer, and until one can say something explicit about the discrete spectra of infinite

volume quotients of H3 one cannot use the affine linear sieve in order to determine r. On the other hand,

A has many subgroups generated by unipotent elements which allow us to obtain a bound on r0 using

only a classical sieve over Z which does not require the spectral theory discussed here.

2. Bad primes

In Chapter 2 we proved that the mod p reduction of the Apollonian group A for p> 3 can be extracted

from the group SL2(Z/pZ). In particular, the orbit P of A acting on a root quadruple v can be realized

as follows:

(2.1) P(Z/pZ) = s◦ρ(Γp)v = s◦ρ(SL2(Fp))v,

where Γ is the preimage of A under the spin homomorphism ρ , and s is the change of variables defined

in (1.5). Let

(2.2) f (x) := x1x2x3x4.

In order to specify the saturation number r0(P, f ) in Theorem 1.3 in this context, we first determine

the finite set of primes B for which the primitivity condition is not satisfied. Namely, we check when

the reduction modulo p in (2.1) reduces the orbit to a set of points (x1,x2,x3,x4) in which at least one

coordinate of every point is 0 mod p – in other words, f (x)≡ 0(mod p) for all x ∈P . We will call the
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primes p in such cases bad, since the question of saturation is not interesting if they are included. To

make this notion of badness precise, denote

(2.3) P0(Z/pZ) := {y ∈P| f (y) = y1y2y3y4 ≡ 0 (p)}

We say a prime p is bad if

(2.4) P(Z/pZ) = P0(Z/pZ).

With this in mind, we show the following:

THEOREM 2.1. Let P(Z/pZ) and P0(Z/pZ) be as before. We have

P(Z/pZ) 6= P0(Z/pZ)

for all primes p > 3.

Proof:

To prove Theorem 2.1 we again consider the preimage Γ of A under the spin homomorphism and

also check for bad primes via computations in the orthogonal group itself. Liu and Sarnak do this for

ternary quadratic forms in [38], and we develop their argument to fit our situation below. Recall that

the Descartes quadratic form is equivalent to Q̃(x) = x2
1− x2

2 + x2
3 + x2

4. Let

(2.5) Vp :=V (Z/pZ) = {x ∈ (Z/pZ)4 |x 6= 0,x2
1− x2

2 + x2
3 + x2

4 ≡ 0 (p)}

and

(2.6) V 0
p :=V 0(Z/pZ) = {x ∈Vp |x1x2x3x4 ≡ 0 (p)}.

In this notation, a prime is considered bad if |Vp|= |V 0
p |. The following lemma specifies which primes

are bad in this sense.

LEMMA 2.2. Let Vp and V 0
p be as before. We have

|Vp|> |V 0
p |

for all primes p > 3.

PROOF. We note that the discriminant of Q̃ is −1, which has no prime factors and thus will not

contribute to any local obstructions. We count points in Vp and V 0
p using the Gauss sum

S(m, p) =
p−1

∑
x=0

ep(mx2),

where ep(z) = e
2πiz

p . It is known that

(2.7) S(1, p) =
p−1

∑
x=1

(
x
p

)
ep(x2) =

{ √
p if p≡ 1 (4)

i
√

p if p≡ 3 (4)
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where
(x

p

)
above denotes the Legendre symbol. Also, if p is odd and p 6 |m, we can express S(m, p) in

terms of S(1, p):

S(m, p) =
(

m
p

)
S(1, p)

We write |Vp| and |V 0
P | in terms of these Gauss sums and evaluate them below using (2.7).

|Vp| =
1
p

p−1

∑
m=0

S(m, p)3S(−m, p)

= p3 +

(
−1
p

)
S(1, p)4

p

p−1

∑
m=1

(
m
p

)4

(2.8)

=

{
p3 + p(p−1) if p≡ 1 (4)

p3− p(p−1) if p≡ 3 (4)

where the second equality is obtained by isolating the m = 0 term. To calculate |V 0
p |, let Sa := S(am, p)

and define the function

σ(m, p) := S1S-1S1S1− (S1−1)3(S-1−1)

= 3S2
1S-1−3S1S-1 +S-1 +S3

1−3S2
1 +3S1−1.

In terms of σ(m, p) we have

|V 0
p | =

1
p

p−1

∑
m=0

σ(m, p)

=
1
p

(
p−1

∑
m=0

3S2
1S-1 +

p−1

∑
m=0

S3
1−

p−1

∑
m=0

3S1S-1−
p−1

∑
m=0

3S2
1 +

p−1

∑
m=0

3S1 +
p−1

∑
m=0

S-1−
p−1

∑
m=0

1

)

=

{
3p2 + p2−3(2p−1)−3(2p−1)+3+1−1 if p≡ 1 (4)

3p2 + p2−3(2p−1)−3+3+1−1 if p≡ 3 (4)

=

{
4p2−12p+9 if p≡ 1 (4)

4p2−6p+3 if p≡ 3 (4)
(2.9)

Therefore we have

|Vp|− |V 0
p |=

{
p3−3p2 +11p−9 if p≡ 1 (4)

p3−5p2 +7p−3 if p≡ 3 (4)

The expression above is positive whenever p≥ 5 as desired. �

To complete the proof of Theorem 2.1, we consider mod p orbits of A for p > 3 using the fact that

Γp = SL2 as shown in Chapter 2. This analysis yields the following lemma.

LEMMA 2.3. Let P(Z/pZ) and P0(Z/pZ) be as before. For p≥ 11 we have

|P(Z/pZ)|> |P0(Z/pZ)| .
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PROOF. Let Vp be as in (2.8), and let Q̃ be the quadratic form in (1.4) equivalent to the Descartes

form Q. Suppose p 6= 2,3, and let p≡ 1(mod 4) – i.e. −1 is a square mod p. The proof in case where

−1 is not a square mod p is identical. Since the discriminant of Q̃ is d(Q) = −1, we have that p 6 |d,

and the action over Fp of Γp = SL2(Fp)×SL2(Fp) on Vp(Q̃) is defined via the morphism

(2.10)

(
α β

γ δ

)
τ→


α2+β 2+γ2+δ 2

2
−α2+β 2−γ2+δ 2

2 -αβ -γδ 0
−α2−β 2+γ2+δ 2

2
α2−β 2−γ2+δ 2

2 αβ -γδ 0

-αγ-βδ αγ-βδ αδ +βγ 0

0 0 0 αδ -βγ


The orbits of τ(G(Z/pZ)) on Vp(Q′) can be described as follows:

(2.11) (0,0,0,0), (1,1,0,0)τ(G(Z/pZ)), (r,r,0,0)τ(G(Z/pZ)),

where r is a quadratic non-residue mod p. It is clear that (1,1,0,0) and (r,r,0,0) are in distinct orbits.

To see that these are in fact all of the orbits, note that the stabilizer of (1,1,0,0) and (r,r,0,0) in

G(Z/pZ)) is
+
−

{(
1 ξ

0 1

)∣∣∣ξ ∈ Fp

}
,

of order 2p. It is now elementary to compute the cardinality of each of these orbits:

|P(1,1,0,0)|= |P(r,r,0,0)|=
p(p−1)(p+1)

2p
=

p2−1
2

Since |Vp(Q̃)| = p2, the set of orbits in (2.11 is complete. To see which of these points belong to

P0(Z/pZ), let L1,L2,L3,L4 be linearly independent linear forms over Fp, with(
4⋃

j=1

ker(L j)

)
∩P(Z/pZ) = P0(Z/pZ).

For every j, we have from above that ∣∣ker(L j)∩Vp(Q̃)
∣∣≤ 2p.

In fact, since P(r,r,0,0)(Z/pZ) = rP(1,1,0,0)(Z/pZ), and ker(L j)∩Vp(Q̃) is invariant under multiplica-

tion by a nonzero scalar, we have that∣∣ker(L j)∩P(Z/pZ)
∣∣≤ p.

Thus we get

|P0(Z/pZ)|=

∣∣∣∣∣
(

4⋃
j=1

ker(L j)

)
∩P(Z/pZ)

∣∣∣∣∣≤ 4p.

For p≥ 11, we have

|P(Z/pZ)|= p2−1
2

> 4p = |P0(Z/pZ)| .

This completes the proof of Lemma 2.3. �
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We check experimentally that the primes 5 and 7 are not bad in the sense that one can always find

a point x in the orbit of A for which f (x) 6≡ 0 mod 5 or 7. Thus the only bad primes are 2 and 3 as

desired.

We have shown that the pair (P, f ) where f is as in (2.2) is primitive for all primes p≥ 5. In the next

section, we use this to prove that the saturation number r0(P, f )≤ 28.

3. 28-almost prime points

Recall that for x ∈ R4 we defined f (x) = x1x2x3x4, and that P denotes an integer orbit of the

Apollonian group A. Theorem 1.3 states that there is a positive integer r0 such that the set points

x ∈P for which f (x) has at most r0 prime factors is Zariski dense in Zcl(P) =C. To specify this r0,

one would need to apply the affine sieve developed in [7] – in particular, one would need to input the

spectral gap which comes from the expander property of the group as described in Theorem 1.2. One

way to realize this expander property is by analyzing the discrete spectrum of the Laplacian of A\H3,

which is difficult as we mentioned before.

Luckily for us, the Apollonian group has some nice properties which are characteristic of most

Schottky groups that allow us to compute an upper bound for r0(P, f ) by studying the question for

orbits of subgroups generated by a unipotent element. This problem reduces to sieving for polynomials

in Z[x] and does not require the sophisticated tools developed in [7].

We are able to prove a stronger statement regarding the saturation number if we consider f (x)/12

as opposed to just f (x). Specifically, it is known (see [19]) that every point in any primitive orbit of A

contains two even coordinates and two odd coordinates. Also, we can see from the diagrams of possible

Apollonian orbits mod 3 in Figures 3 and 4 that f (x)≡ 0 mod 3 for any x in a primitive orbit of A (this

is not true mod 9). With this in mind, we have the following.

THEOREM 3.1. For x = (x1,x2,x3,x4) ∈P let f (x) = x1x2x3x4, and let P28 denote those points

x ∈P for which f (x)/12 has at most 28 prime factors. Then P28 is Zariski dense in Zcl(P).

Proof: Note that the product of any two of the group generators S1,S2,S3, and S4 is a unipotent

element – for example,

(S1S2)
k =


2k+1 −2k 2k(2k+1) 2k(2k+1)

2k 1−2k 2k(2k−1) 2k(2k−1)

0 0 1 0

0 0 0 1

 .

Taking kth powers of these unipotent elements associates every ordered pair (i, j) where 1 ≤ i, j ≤ 4

and i 6= j with a map φi j from Z into the Apollonian group A:

Z
φi j−→ A

k 7−→ (SiS j)
k.
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Denote by Ui j the group generated by SiS j and its inverse. Recall that the orbits of A and thus the orbits

of Ui j lie on the affine cone C defined in (1.2). In particular, for v ∈ C the Zariski closure Zcl(Ui jv)
of the orbit Ui jv is a curve on C, and the collection of all such curves associated with the orbits of Ui j

make up a Zariski dense subset of C.

We first prove that the set of integer points x on a curve associated with a group Ui j for which

f (x)/12 has at most 28 prime factors is Zariski dense in the curve. The fact that r0(P, f ) = 28 then

follows from the fact that the curves associated with the subgroups Ui j are dense on the cone.

We write

n = P12
r

if n/12 has at most r prime factors. With this notation we have the following lemma.

LEMMA 3.2. Let Ui j be the group generated by SiS j and its inverse, and let v = (−1,2,2,3). Denote

the orbit of Ui j acting on v by O(i, j), and define O28(i, j) as follows:

O28(i, j) = {(x1,x2,x3,x4) ∈ O(i, j)|x1x2x3x4 = P12
28 }.

Then the Zariski closure of O28 is Zcl(O(i, j)).

We use a standard setup of a 4-dimensional sieve (see [25], for example) to prove Lemma 3.2. Let

x= (x1,x2,x3,x4) be a point in the orbit O(i, j) of one of our subgroups Ui j. For T > 10, let FT :R4→R
be a family of smooth functions depending only on the Euclidean norm |x| of x, such that

(i) 0≤ FT (x)≤ 1;

(ii) FT (x) = 1 if |x| ≤ T/c0;

(iii) FT (x) = 0 if |x| ≥ c0T .

where c0 is a positive constant that depends on i and j. With FT as above, for n≥ 0 we define

(3.1) an(T ) := ∑
x∈O(i, j)

x1x2x3x4=n

FT (x),

and denote the sequence by A := {an}. Let

(3.2) X = ∑
n≥1

an(T ).

Note that X counts the number of points of the orbit in a ball of radius T . Our aim is to compute the

following sum over r-almost prime n:

∑
n=P12

r

an(T ).

To estimate this sum, we restrict the sum in (3.2) to n ≡ 0 mod d for a square free integer 1 < d < D

where D is taken to be a small power of T . We write

Ad = {an ∈A |n≡ 0( mod d)}
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for d ∈ Z−{0} and define

(3.3) ω(d) := #{x ∈ O(i, j) |x1x2x3x4 ≡ 0(mod d)}.

Note that ω(d) is a nonnegative multiplicative function and that if B = {2,3} is the finite set of bad

primes in Theorem 2.1 and p denotes a prime, we have

(3.4)


ω(1) = 1;

0≤ ω(p)< p, if p 6∈ B;

ω(p) = p, if p ∈ B;

We prove the following condition on ω(d) which is necessary to carry out the sieve in this context (see

[25] for further explanation of this condition).

LEMMA 3.3. Let ω(d), X, and Ad be as above, and let p denote a prime.

(i) There are fixed constants κ > 1 and A≥ 2 such that for any z1 and z with 2≤ z1 < z we have

(3.5) ∏
z1≤p<z

(
1− ω(p)

p

)−1

≤
(

logz
logz1

)κ(
1+

A
logz1

)
.

(ii) If Rd denotes the error term

Rd := |Ad |−
ω(d)

d
X ,

then there exist some constants τ with 0 < τ < 1, A1 ≥ 1, and A2 ≥ 2 such that

(3.6) ∑
d<Xτ log−A1 X
(d,P)=1

µ
2(d)4ν(d)|Rd | ≤ A2

X
(logX)κ+1 ,

where ν(d) denotes the number of prime factors of d.

PROOF. Since the groups Ui j are generated by two of generators of the Apollonian group which

fix two of the coordinates of the root quadruple v, we have that two of the xi in (3.4) remain constant

throughout the orbit O(i, j). Therefore n≥ c1T 2 for some constant c1.

The elements of the orbits O(i, j) can be summarized as follows:

O(1,2) = (20s2 +4s−1,20s2−16s+2,2,3),

O(1,3) = (20s2 +4s−1,2,20s2−16s+2,3),

O(1,4) = (16s2−1,2,2,16s2−16s+3),

O(2,3) = (−1,8s2 +4s+2,8s2−4s+2,3),

O(2,4) = (−1,4s2 +2,2,4s2−4s+3),

O(3,4) = (−1,2,4s2 +2,4s2−4s+3).

for nonnegative s ∈ Z. Also, for our purposes the orbits (SiS j)
kv and (S jSi)

kv are equivalent, since the

two differ by a permutation of coordinates and changing the sign of s above.
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As in the statement of Lemma 3.2, we consider products of the coordinates of points in the O(i, j)

above, which yields four different possible polynomials:

(3.7)

p1(s) = 2400s4−1440s3−264s2 +144s−12,

p2(s) = 1024s4−1024s3 +128s2 +64s−12,

p3(s) =−192s4−48s2−12, and

p4(s) =−32s4 +32s3−40s2 +16s−12.

for nonnegative s ∈ Z. Each of these polynomials gives rise to a different ω(d). Namely, let

Vdi := {s ∈ Z/dZ | pi(s)≡ 0(mod d)}

denote the set of values of s modulo d for which pi(s)≡ 0 mod d and let

ωi(d) := |Vdi |

denote the cardinality of this set. Clearly, ω(d) is multiplicative, and for all but a finite set of primes

we have
ω1(p)

p =
|Vp1 |

p =

{
4
p if 6 is a square mod p

0 otherwise
ω2(p)

p =
|Vp2 |

p = 3
p

ω3(p)
p =

|Vp3 |
p =

{
4
p if −3 is a square mod p

0 otherwise

ω4(p)
p =

|Vp4 |
p =

{
4
p if −2 is a square mod p

0 otherwise

Note that for every 1≤ i≤ 4 we have that

∏
z1≤p<z

(
1− ωi(p)

p

)−1

≤ ∏
z1≤p<z

(
1− 4

p

)−1

So, by Merten’s theorem, there is a constant A≥ 2 such that

(3.8) ∏
z1≤p<z

(
1− ωi(p)

p

)−1

≤
(

logz
logz1

)4(
1+

A
logz1

)
for 2≤ z1 < z,

establishing (3.5) with

κ = 4.

We also have that for every 1≤ i≤ 4

(3.9) |Ad |= ∑
n≡0 (mod d)

an(T ) =
ωi(d)

d
X +Rd(T )

where the error term is

Rd(T )� cT 1/2

for some constant c, as desired. �
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Denote by µ a constant for which

(3.10) max
an∈A

n≤ Xτµ .

Since 1≤ n� T 2 for an ∈A , we have that (3.10) holds with

(3.11) τµ = 2.

To prove Lemma 3.2, we recall the following lemmas from [25], using the same notation as above.

LEMMA 3.4. Let κ > 1 be given, and let σκ(u) be the continuous solution of the differential differ-

ence problem{
u−κσ(u) = A−1

κ , for 0 < u < 2,Aκ = (2eγ)κΓ(κ +1),

(u−κσ(u))′ =−κu−κ−1σ(u−2), for 2 < u;

where γ denotes the Euler contant. Then there exist numbers ακ and βκ , satisfying

ακ ≥ βκ ≥ 2

such that the simultaneous differential-difference system

(3.12)


F(u) = 1/σκ(u), for 0 < u≤ ακ ,

f (u) = 0, for 0 < u≤ βκ ,

(uκF(u))′ = κuκ−1 f (u−1), for u > ακ ,

(uκ f (u))′ = κuκ−1F(u−1), for u > βκ ,

has continuous solutions Fκ(u) and fκ(u) such that

(3.13) Fκ(u) = 1+O(e−u), fκ(u) = 1+O(e−u),

and that Fκ(u) and fκ(u), respectively, decreases and increases monotonically towards 1 as u ap-

proaches infinity.

LEMMA 3.5. Let A , B, ω , Fκ , fκ , τ , and ν be as above. Then, for any two real numbers u and v

satisfying
1
τ
< u≤ v, βκ < τν ,

we have

(3.14) ∑
n∈P12

r

an� X ∏
p<X1/ν

(
1− ω(p)

p

)
only when

(3.15) r > τµu−1+
κ

fκ(τν)

∫
ν/u

1
Fκ(τν− s)

(
1− u

ν
s
) ds

s
.

Using this setup, we proceed to prove Lemma 3.2.
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PROOF OF LEMMA 3.2: According to Lemma 3.5, we have

(3.16) ∑
n=P12

r

an(T )� X ∏
p<X1/v

(
1− ω(p)

p

)
provided that

(3.17) r > 4u−1+
4

f4(τv)

∫ v/u

1
F3(τv− s)

(
1− u

v
s
) ds

s
.

While we do not compute F4(u) and f4(u) explicitly, we can use estimates for τu and τv:

τu = 1+ξ − ξ

βκ

, τv =
βκ

ξ
+βκ −1,

where 0 < τ ≤ 1 and κ > 1, with 0 < ξ < βκ . In our case, κ = 4 and τ = 1
4 −

7
128 is the closest value

to the Selberg conjecture.

So, our estimate for possible r is

r > µ +ξ µ− ξ µ

β4
−1+(4+ξ ) log

β4

ξ
−4− 4ξ

β4

= (1+ξ µ)−1+(4+ξ ) log
β4

ξ
−4−ξ

µ−4
β4

.(3.18)

From the table of β ’s in [25], we have that

β4 = 9.0722,

and it remains to find the minimum of the function in (3.18). A simple program in Matlab yields that

the minimum is just under 28. We combine 3.8 and 3.16 to get

∑
n=P12

28

an(T )� ∑
p<X1/v

p6∈B

(
1− 4

p
+O

(
1
p2

))
� X

(logX)4 .

Therefore O28 is Zariski dense in Zcl(O(i, j)), as desired (see [38] for a discussion). �

The proof of Theorem 3.1 is now straightforward:

PROOF. Since each of the curves Zcl(O(i, j)) we analyzed are Zariski dense in the cone C, and

since the corresponding subgroups span all of A, Lemma 3.2 extends to the points on the whole cone.

�

It is worthwhile to note that, while we avoid dealing with the spectral analysis of A in this case by

utilizing the unipotent elements in the group, it is still an important problem to determine the spectrum

of the Laplacian on its fundamental domain both in this case and in the general case of groups acting on

hyperbolic space with infinite volume fundamental domain. However, even in computing this spectrum,

we would likely make use of the nice structure and the presence of unipotent elements in the group in

question.
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4. A prime number theorem

Another natural application of the affine sieve is counting points with prime coordinates in an orbit

of the group. In [35], the authors use the sieve to give an upper bound on the number πP(X) of circles of

prime curvature less than X in a given packing P (see Theorem 1.7). Combining this with the analysis in

Chapter 2 of this thesis, one obtains heuristic asymptotics for πP(X) which are computed and checked

in [19]. The same can be done in the case of counting circles of prime curvature at generation T , rather

than according to their size. In this section, we give a heuristic for a prime number theorem for ACP’s

in the generation case (an upper bound has been computed in [7]). Our heuristic argument suggests the

following conjecture.

CONJECTURE 4.1. Let πP
gen(T ) denote the number of circles of prime curvature in a primitive pack-

ing P which are born at generation T . Then

π
P
gen(T )∼

N(T ) ·L(2,χ4)

γT
,

where γ = 0.9149 . . . , N(T ) = 4 ·3T−1 is the number of circles born at generation T in the packing P,

and L(2,χ4) = 0.91597 . . . is the value of the Dirichlet L-function at 2 with character

χ4(p) =

1 if p≡ 1 (mod 4)

−1 if p≡ 3 (mod 4)

The value γ in the conjecture above is the Lyapunov exponent in the case of a random walk on

the generators Si of A (see Lemma 4.3). Since γT is meant to be a good estimate for most values

log(a(CT )), where CT is a circle at generation T and a(C) is its curvature, Conjecture 4.1 has the same

flavor as the classical prime number theorem over the integers.

In support of this, we give a heuristic argument based on the assumption that the Moebius function

µ is random which yields Conjecture 4.2 below, in which we consider the problem of counting circles

of prime curvature p with a weight of log p. At the end of this section we show that Conjecture 4.2

implies Conjecture 4.1 and test the conjectures in the cases T ≤ 14 using a program in Matlab.

CONJECTURE 4.2. Let p denote a prime, let CT denote a circle born at generation T , and let a(CT )

denote its curvature. Given a primitive packing P, let

ψ
P
gen(T ) = ∑

CT
a(CT )=p

log p

Then we have

(4.1) ψ
P
gen(T )∼ N(T ) ·L(2,χ4)

where N(T ) and L(2,χ4) are as before.
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Remarkably, the heuristic obtained in [19] for ψP(X), the weighted count of circles with prime

curvature less than X , is nearly identical to our Conjecture 4.2.

The main difficulty in counting primes using a combinatorial norm (generation) as we do here is that

one doesn’t immediately know how large the curvatures of circles born at generation T are with respect

to T . Graham et.al. conjecture in [24] that this depends only on the generation and on the Hausdorff

dimension δ = 1.3056 . . . of the residual set of the packing. Specifically, they predict

(4.2) lim
T→∞

1
T

logMT =
log3

δ
= 0.8415 . . .

where MT denotes the median of the curvatures of circles born at generation T . However, this prediction

appears to be slightly inaccurate for most packings. It is more natural to consider the expectation

of (loga(CT ))/T over curvatures a(CT ) of all circles CT born at generation T instead of the value

(logMT )/T . In this case it is known that there exists a constant γ known as the Lyapunov exponent so

that

(4.3) lim
T→∞

E
(

1
T

loga(CT )

)
= γ

It is possible that γ does in fact depend on the Hausdorff dimension δ . However, since it is very difficult

to determine γ explicitly, we can only approximate it experimentally and its dependence on δ is unclear.

The existence of a Lyapunov exponent for ACP’s comes from a version of the Furstenburg-Kesten

theorem regarding random walks on Markovian sequences of matrices. The original Furstenburg-

Kesten theorem concerns sequences of independent, identically distributed matrices; since we are in-

terested in chains of matrices of length T comprised of the four generators {S1,S2,S3,S4} of A which

cannot be reduced via the relation

(4.4) S2
i = I for 1≤ i≤ 4

the original theorem does not quite apply, and we refer to [1] and [50] for generalizations. We first

introduce the notion of word length of a vector in an orbit of A. For x ∈P , write

(4.5) x =
k

∏
j=1

S( j)v

where S( j)∈{S1,S2,S3,S4}, the set of generators of the Apollonian group. Denote by w(x) the smallest

possible k in (4.5) and call w(x) the word length of x. A word of length T in these matrices is reduced

if it is of the shortest length in the class of words equivalent up to (4.4). With this in mind, we have

the following lemma which has been proven in various degrees of generality by Furstenburg, Kesten,

Oseledec, and others.

LEMMA 4.3. Let S = {S1,S2,S3,S4} be the set of generators of the Apollonian group as before and

let v be the root quadruple of a packing. For S(i) ∈ S, let vT = ∏
T
i=1 S(i)v denote a vector of reduced

word length T .
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(i) There exists a constant γ , called the Lyapunov exponent, such that

(4.6) lim
T→∞

log ||vT ||
T

= γ,

where ||x||= maxi(xi) for a 4-dimensional vector x = (x1,x2,x3,x4).

(ii) Let E(X) denote the expectation of X. There is a constant α such that

(4.7) lim
T→∞

E
(
(log ||vT ||− γT )2

T

)
∼ αT +o(T )

(iii) Let P(X) denote the probability of X. We have P
(
(log||vT ||−γT )2

T ≥ T 1−ε

)
≤ α/T 1−ε

(iv) P
(
(log||vT ||−γT )4

T 2 ≥ T 2−ε

)
≤ 720 ·α2/T 2−ε

For our purposes, Lemma 4.3 implies that if a(CT ) denotes the curvature of a circle CT born at

generation T , then (loga(CT ))/T is close to a constant γ for large T . Moreover, part (ii) of Lemma 4.3

implies that the distribution of (loga(CT ))/T is Gaussian for T large, and that the variance of this

distribution is very small (meaning that the curvatures of circles born at generation T are mostly of the

same size if T is large). Parts (iii) and (iv) are essentially Chebyshev inequalities for the second and

fourth moments of (log ||vT ||−γT )/
√

T . We rely on this in estimating the magnitude of a(CT ) in order

to predict the number of primes born at generation T .

In practice one can prove that the Lyapunov exponent γ exists, but there is currently no algorithm to

determine what γ should be, given a set of generators {Si}. We approximate γ as well as the constant

α in Lemma 4.3 by running a computer program to evaluate log(a(CT ))/T for various ACP’s and

10≤ T ≤ 100. The data suggests that

(4.8) γ ≈ 0.9149, α ≈ 0.065.

Lemma 4.3 then predicts that for circles CT born at a large generation T , we expect 95 percent of

the values of log(a(CT ))/T to be within the interval [0.8325,0.9875]. In Figures 1 and 2, we show

histograms of the values of log(a(C))/100, where C denotes a circle born at generation 100 in two

different packings. The curves depicted in these figures are the Gaussian curves of mean γ and variation

6.4 ·10−4.

With this relationship between the generation of circles and the magnitude of their curvatures, we

are able to give a heuristic for the number of circles with prime curvature at generation T .

We first count circles of prime curvature p with a weight of log p using Selberg’s upper bound

sieve in the affine setting – we calculate this by assuming that the Moebius µ function is random, and

Lemma 4.3 does not play a significant role in this calculation. It is crucial, however, when we proceed

to remove the weights of log p at the end, as well as in checking that the number of circles of curvature

pi for i > 1 is small compared to the number of prime circles.

Unlike our approach to proving Theorem 3.2, where we used unipotent elements in the Apollonian

group A to reduce the problem to a sieve simply over the integers, the sieve here is over the orbit of A,

and we rely heavily on Theorem 1.2 to control the remainder term in the sieve.
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FIGURE 1. Histogram for the packing (−1,2,2,3) at generation 100
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FIGURE 2. Histogram for packing (−6,11,14,15) at generation 100

As before we have a finite sequence A := {an} where

an = (logn) ·#{circles of curvature n born at generation T}

for n≥ 1. Let X denote the sum

∑
n

an = X ,

and let z be a small power of X (note that both X and z are very large if we consider a large enough

generation T ). Let B′ := {2,3} and define P(z) to be the product of all primes p 6∈ B′ that are less than

z:

P(z) = ∏
p≤z

p6∈B′

p.

With this notation, the expression we need for the heuristic in Conjecture 4.2 is the sum

(4.9) S(A ,P(z)) = ∑
(n,P(z))=1

an.
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We evaluate this sum by considering sums over congruence classes n≡ 0 (mod d). We first check that

the following sieve conditions hold.

(1) For square free 1 < d < X , let

Xd := ∑
d|n

an.

Then there is a multiplicative function β (d) so that

(4.10) β (p)≤ 1− 1
c1

for a fixed c1

where p is prime, and

Xd = β (d)X +R(A ,d).

We assume as before that the main term β (d)X is a good approximation to Xd , so that the error

term R(A ,d) is very small in comparison.

(2) A has level distribution D(X)< X– that is,

∑
d≤D
|r(d,A)| � X1−α0 for some α0 > 0.

(3) A has sieve dimension t > 0, so that for a fixed C we have that∣∣∣∣∣∣∣ ∑
w≤p≤z
p6∈B′

ρ(p) log p− t log
z
w

∣∣∣∣∣∣∣≤C

for 2≤ w≤ z.

To check (1), define β (d) := βT (d) as follows:

(4.11) βT (d) =
#{vT ∈P(v)/d | ||vT || ≡ 0(mod d)}

#{vT ∈P(v)/d}
,

where v denotes a root quadruple, Pv is the orbit of A acting on v, and vT is a vector of word length

T . We also define

β
i
T (d) =

#{vT ∈P(v)/d | ||vT ||= vT (i)≡ 0(mod d)}
#{vT ∈P(v)/d | ||vT ||= vT (i)}

,

where vT (i) denotes the ith coordinate of vT . From the multiplicativity of the orbit P modulo d in

Theorem 3.5 we have the following lemma:

LEMMA 4.4. Let d = ∏ pi be the prime factorization of a square free integer d > 1 and let βT (d) be

as above. Then

(i) β
j

T (d) = ∏β
j

T (pi) for T ≥ 1 and 1≤ j ≤ 4.

(ii) β i
T (d) = β

j
T (d) for 1≤ i, j ≤ 4.

(iii) For any orbit P of A there exist two coordinates, i and j, such that

β
i
T (2) = β

j
T (2) = 1,

β
k
T (2) = 0 for k 6= i, j.
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for any generation T > 1. We say that the ith and jth coordinates are even throughout the orbit,

while the other two coordinates are odd throughout the orbit.

(iv) For p 6= 2, let βT (p) = β i
T (p) for 1≤ i≤ 4. Then

(4.12) βT (p) =

{
1

p+1 for p≡ 1 (4)
p+1
p2+1 for p≡ 3 (4)

for large enough T .

PROOF. The statements in (i) and (ii) follow from Theorem 4.5. Let v be the root quadruple

(the quadruple of the smallest curvatures) of the packing P. To show (iii), note that any quadruple in a

primitive integral ACP consists of two even and two odd curvatures (see [19] for a discussion). Without

loss of generality, assume v = (1,1,0,0) mod 2, so i = 1 and j = 2 in this case. Since the Apollonian

group is trivial modulo 2, we have that every vector in the orbit is of the form (1,1,0,0) mod 2, so we

have what we want.

To prove (iv), we recall from Theorem 4.5 that the reduction Pp of P mod p is the cone Cp for

p > 3. Thus the numerator of β
j

T (p) for T large is

#{vT ∈Pp |vT ( j) = 0}= #{(v1,v2,v3) ∈ F3
p−{0}|Q(v1,v2,v3,0) = 0}

where Q is the Descartes quadratic form and p > 3. So the numerator counts the number of nontrivial

solutions to the ternary quadratic form obtained by setting one of the vi in the Descartes form Q(v) to

0. Similarly we have that the denominator of β
j

T (p) is

#{vT ∈Pp}= #{v = (v1,v2,v3,v4) ∈ F4
p−{0}|Q(v) = 0}

where p > 3. So the denominator counts the number of nontrivial solutions to the Descartes form.

The number of nontrivial solutions to ternary and quaternary quadratic forms over finite fields is well

known (see [9], for example). Namely,

(4.13) #{v = (v1,v2,v3,v4) ∈ F4
p−{0}|Q(v) = 0}=

{
p3 + p2− p−1 for p≡ 1 (4)

p3− p2 + p−1 for p≡ 3 (4)

for p > 3, and

(4.14) #{(v1,v2,v3) ∈ F3
p−{0}|Q(v1,v2,v3,0) = 0}= p2−1 for all odd primes p.

Combining (4.13) and (4.14), we obtain the expression in (4.12) for p > 3. For p = 3, we compute

Pp explicitly and find that there are two possible orbits of A modulo 3 which are illustrated via finite

graphs in Fig. 3 and Fig. 4. Both of these orbits consist of 10 vectors v ∈ Z4. In both orbits, 4 of the

vectors vT have vT (i) = 0 for any 1≤ i≤ 4. Thus β (3) = 2
5 as desired. �
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Condition (2) is checked in [7] – it is proven using Theorem 1.2 and we have

(4.15) D = X (1−τ)/dimG,

where G in our case is SO(3,1) of dimension 6, and

τ =
log
(

κ+
√

κ2−4r
2

)
logr

< 1.

This can be seen from the fact that κ < 4 since the Cayley graph associated with A/d is a 4-regular

graph, and r = 3.

Recall that

X = ∑
a(C)

w(C)=T

log(a(C)),

where a(C) denotes the curvature of a circle C in the packing, and w(C) is the generation of C. We can

evaluate this using the Lyapunov exponent in Lemma 4.3:

X = N(T )γT +O(
√

T ),

where N(T ) = 4 ·3T−1 is the number of circles born at generation T . Therefore we have

(4.16) D≤ (3T
γT )

1−τ

6 � 3α0T

where α0 is a small positive constant. Condition 3 follows quickly from the level distribution.

With the conditions of the sieve satisfied, we may now use it to obtain a heuristic for the number of

circles of prime curvature born at generation T . In the notation above, we wish to compute

(4.17) ∑
a(C) prime
w(C)=T

log(a(C)),

where C is a circle in the packing, a(C) is the curvature of the circle, and w(C) is the generation in

which it is born. With this in mind, let

Λ(n) =

{
log p if n = pl

0 otherwise

for which it is well known that Λ(n) =−∑d|n µ(d) logd.

In this notation, we compute ψP
gen(T ) as follows.

LEMMA 4.5. Let vT , ψP
gen(T ), and P be as before. Denote by ψ i

P(T ) denote the sum of log(p) over

circles born at generation T which have curvature pi for p prime and i > 1:

ψ
i
P(T ) = ∑

i>1
∑

w(x)=T
||vT ||=pi

log p.
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Then we have

(4.18) ψ
P
gen(T ) =− ∑

vT ∈P
v∗i≤x

Λ(||vT ||)−ψ
i
P(T )

We first compute the sum in (4.18) and then show that ψ i
P(T ) is of a smaller order of magnitude. Let

D be the level distribution from Condition (2) of the sieve. To compute (4.18) we use the expression

for Λ(n) in terms of d|n for moduli 1 < d ≤ D. Note that the number of vectors vT whose maximal

coordinate is the ith coordinate vT (i) is the same as the number of vectors vT whose maximal coordinate

is in the jth coordinate vT ( j) for any 1≤ i, j ≤ 4:

#{vT ∈P | ||vT ||= vT (i)}= #{vT ∈P | ||vT ||= vT ( j)}

Combined with Lemma 4.5, this gives us

− ∑
1≤i≤4

∑
vT ∈P

||vT ||=vT (i)

∑
d|vT (i)

µ(d) logd

= − ∑
1≤i≤4

∑
vT ∈P

||vT ||=vT (i)

∑
d≤D

µ(d) logd ∑
vT (i)≡0 (d)

1

− ∑
1≤i≤4

∑
vT ∈P

||vT ||=vT (i)

∑
d>D

µ(d) logd ∑
vT (i)≡0 (d)

1(4.19)

Assuming that the Moebius function µ(d) above becomes random as d grows, the sum over d > D in

(4.19) is negligible, and we omit it below. We proceed by rewriting the sum over d ≤D in (4.19) using

the density function βT (d) in (4.11). Recall that the analysis in [7] gives us that

∑
n≡0(d)

an = βT (d) ·N(T )+ r(A,d)

where r(A,d) is small on average. In particular,

∑
d≤D

r(A,d) = O(X1−α0)

for some α0 > 0. Paired with the assumption that µ is random, this evaluation of the remainder term

allows us to rewrite (4.19) as follows:

− ∑
1≤i≤4

N(T )
4 ∑

d≤D
β

i
T (d)µ(d) logd +O(X1−α0)

= −N(T )
4 ∑

1≤i≤4
∑

d≤D
β

i
T (d)µ(d) logd +O(X1−α0)(4.20)

To compute the innermost sum in the final expression above, note that

(4.21) ∑
d≤D

β
i
T (d)µ(d) logd = ∑

d>0
β

i
T (d)µ(d) logd− ∑

d>D
β

i
T (d)µ(d) logd.
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Assuming once again that the sum over d > D is insignificant due to the conjectured randomness of the

Moebius function, we have that the sum over d ≤ D in (4.21) can be approximated by the sum over all

d. With this in mind, the following lemma yields the heuristic in Conjecture 4.2.

LEMMA 4.6. Let β i
T (d) be as before. We have

∑
1≤i≤4

∑
d>0

β
i
T (d)µ(d) logd = 4 ·L(2,χ4)

where L(2,χ4) = 0.91597 . . . is the value of the Dirichlet L-function at 2 with character

χ4(p) =

1 if p≡ 1 (mod 4)

−1 if p≡ 3 (mod 4)

PROOF. We introduce a function

f (s) = ∑
d

β
i
T (d)µ(d)d

−s,

and note that its derivative at 0 is precisely what we want:

f ′(0) =−∑
d

β
i
T (d)µ(d) logd.

Since the functions β , µ , and ds are all multiplicative, we may rewrite f (s) as an Euler product and

obtain

f (s) = ∏
p

(
1−β

i
T (p)p−s)

= ∏
p
(1− p−s−1) · 1−βi(p)p−s

1− p−s−1

= ζ
−1(s+1) ·∏

p

1−βi(p)p−s

1− p−s−1

= ζ
−1(s+1) ·H(s),

where H(s) = ∏p(1− βi(p)p−s)(1− p−s−1)−1 is holomorphic in ℜ(s) > 1/2. Differentiating, we

obtain

f ′(0) =−ζ
′(1)ζ−2(1) ·H(0)+ζ

−1(1) ·H ′(0) = H(0)

since −ζ ′(1)ζ−2(1) = 1 and ζ−1(1) = 0. Thus it remains to compute

H(0) = ∏
p

1−βi(p)
1− p−1 .
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Part (iii) of Lemma 4.4 says β i
T (2) = β

j
T (2) = 1 for two coordinates 1≤ i, j ≤ 4. For these two coordi-

nates 1−β i
T (2) = 0 and so H(0) = 0. Otherwise β i

T (2) = 0 and we have

H(0) =
1

1− 1
2

· ∏
p≡1(4)

(
1− 1

p+1

)
1

1− p−1 ∏
p≡3(4)

(
1− p+1

p2 +1

)
1

1− p−1

= 2 · ∏
p≡1(4)

p2

p2−1 ∏
p≡3(4)

p2

p2 +1

= 2 ·L(2,χ4).

Thus the sum we wish to compute is 4 ·L(2,χ4), as desired. �

Lemma 4.6 implies that the contribution of the two of the coordinates that are even throughout the

orbit to the sum in (4.20) is 0, and the contribution for the other two coordinates is

N(T )
4
·4 ·L(2,χ4) = NP(x) ·L(2,χ4),

yielding the predicted result in Conjecture 4.2.

Determining the contribution from powers of primes:

We now use Selberg’s upper bound sieve again to put a crude upper bound on ψ i
P(T ). Define the

sequence a′n to be the sequence of logs of curvatures at level T which are primes or powers of primes:

a′n := logn′ ·#{circles of curvature n at generation T}

for n = pi where i≥ 1 and p denotes a prime. We say a′n is 0 otherwise. So we have

X ′ = ∑
n

a′n,

where X ′ is approximated by ψP
gen(T ) above. We would like to compute this sum after removing all

of the residue classes for which n is not a square mod d (this will count the curvatures which are even

powers of primes). To this end, let Ωd be the set of residue classes modulo d such that ν ∈ Ωd is a

square mod d, and compute an upper bound for

S(A,Ω) = ∑
p<z′

∑
n∈Ωp

a′n,

where z′ is the sieving limit for this sieve. Selberg’s method is to bound this by S+(A,Ω), where

(4.22) S+(A,Ω) = ∑
n

a′n( ∑
d

n∈Ωp
for every p|d

λd)
2,

for any real numbers λd for d|P′, and λ1 = 1, where

P′ = ∏
p<z′

p.
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Expanding the expression in 4.22, we have

(4.23) S+(A,Ω) = ∑
d1

∑
d2

λd1λd2Alcm(d1,d2)(Ω),

where

Ad(Ω) = ∑
ν∈Ωd

∑
n≡ν (d)

an.

Again, in order to carry out the sieve, we must check that the afore-mentioned sieve conditions hold.

This follows once again from [7], and we get that

Ad(Ω) = ρ(d)X ′+ r(d,Ω),

with level distribution is
√

D, where D is the level of our first sieve in (4.16). One aspect of Selberg’s

idea is the optimization of the λd’s chosen in expression (4.23). This is done in [?], yielding

S+(A,Ω) = GX ′+R,

where G = J−1, with

J = ∑
d≤
√

D,d|P′
h(d),

where h(d) is the multiplicative function

h(p) =
ρ(p)

1−ρ(p)
,

where ρ is the density function for Ω in our orbit. This gives a crude estimate

J ≈
√

D,

and so

ψ
2i
T (P)� 2N(T )L(2,χ4)

3
α0T

2

� O(3α ′T )

where α ′ > 0 is small. Computing bounds for ψ
2i+1
T (P) in the case of odd powers is identical. This

gives us

ψ
i
T (P)� O(3α ′T ),

and

(4.24) ψ
P
gen(T ) = N(T ) ·L(2,χ4)+O(3α ′T )

which yields the heuristic in Conjecture 4.2. Now we have only to deduce from this a formula for

πP
gen(T ), which counts prime curvatures without a weight of log.

LEMMA 4.7. Conjecture 4.2 implies Conjecture 4.1.
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PROOF. Note that part (iv) of Lemma 4.3 implies

ψP
gen(T )
N(T )

= ∑
|a(CT )−eγT |<T 1−ε ′

a(CT )=p

log p
N(T )

+ ∑
|a(CT )−eγT |≥T 1−ε ′

a(CT )=p

log p
N(T )

≤ ∑
a(CT )=p

γT
N(T )

+
720 ·α2

T 2−ε

≤
γT ·πP

gen(T )
N(T )

+o(T )

Therefore

(4.25) liminf
T→∞

π
P
gen(T )≥

N(T ) ·L(2,χ4)

γT
−o(T ).

On the other hand, let

(4.26) ψ
P
gen(T )

+ := ∑
a(CT )=p

a(CT )≥eγT/2

log p

π
P
gen(T )

− := ∑
a(CT )=p

a(CT )<eγT/2

1.

Since each log p≥ γT for every p in the sum in (4.26), we have

(4.27) ψ
P
gen(T )

+ ≥
(
π

P
gen(T )−π

P
gen(T )

−) · γT

Note that if V is the area of the outermost circle in the packing (this constant is fixed for any given P),

there are at most V · eγT circles of curvature eγT/2. Combined with Conjecture 4.2 this implies

limsup
T→∞

ψ
+
P (T )+π

−
P (T ) · γT

N(T )
≤ L(2,χ4)+ limsup

T→∞

V · eγT · γT
N(T )

Combined with (4.27) this gives us

L(2,χ4)+ limsup
T→∞

eγT · γT
N(T )

≥ limsup
T→∞

πP
gen(T ) · γT

N(T )

Since N(T )> 3T , the limsup on the left is 0, and so

(4.28) limsup
T→∞

π
P
gen(T )≤

N(T ) ·L(2,χ4)

γT
.

Together with (4.25), this implies that

π
P
gen(T )∼

N(T ) ·L(2,χ4)

γT
,

as desired. �
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Conjecture 4.1 is supported by experimental data – Figure 5 depicts a dotted graph of our heuristic

for πP
gen(T )
N(T ) and the graph of the true πP

gen(T )
N(T ) for the first 14 generations for the packing generated by

(−1,2,2,3).

We note that this process of determining a prime number theorem conjecture can be mimicked for

any orbit of a group satisfying the conditions of [7], for which a Lyapunov exponent can be experimen-

tally determined.
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CHAPTER 4

Density of Curvatures (joint with Jean Bourgain)

So far we have seen that the integers that come up in any given ACP behave very similarly to all of

Z in general – there are very few local obstructions which we have defined completely in Chapter 2,

there are infinitely many prime numbers in any packing, and the conjectured prime number theorem in

the case of ACP’s mimics the classical prime number theorem over the integers. This suggests that the

curvatures in a given packing have positive density in N, as conjectured by Graham et.al. in [24].

Ultimately, one would like to show that if

κ(P,X) := #{a ∈ N |a≤ X , a is a curvature of a circle in P}

is the number of integers less than X counted without multiplicity which appear as curvatures in a given

packing P, the limit below exists and is positive:

lim
X→∞

κ(P,X)

X
> 0.

The local to global conjecture for ACP’s as phrased in [19] predicts that this limit always exists and

that

lim
X→∞

κ(P,X)

X
=

1
4

or
1
3
,

depending on the packing P. In this chapter, we make progress towards Graham et.al. exploit the

existence of unipotent elements of A in [24] to establish the lower bound below for the number κ(P,X)

of distinct curvatures less than X of circles in an integer packing P:

(0.29) κ(P,X)�P
√

X

where we recall the notation

y�β z or y�β z

is taken to mean that there exists a constant c > 0 depending only on β such that

y≥ cz or, respectively y≤ cz.

Graham et.al. conjectured that the integers represented as curvatures in a given ACP actually make up a

positive fraction of the positive integers N, and in [47] Sarnak uses the existence of arithmetic Fuchsian

subgroups of A to get a bound of

(0.30) κ(P,X)�P
X√

logX

65
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towards Graham.et.al.’s positive density conjecture. This method, which we summarize in Section 1,

was further improved to yield a bound of

κ(P,X)� X
(logX)α

where α = 0.150 . . . in [18].

In this chapter, written jointly with Jean Bourgain, we settle the positive density question of Graham

et.al. in the following theorem:

THEOREM 0.8. For an integer Apollonian circle packing P, let κ(P,X) denote the number of distinct

integers up to X occurring as curvatures in the packing. Then for X large we have

κ(P,X)�P X

where the implied constant depends on the packing P.

We treat this question by counting curvatures in different “subpackings" of an ACP. Namely, we

fix a circle C0 of curvature a0 and investigate which integers occur as curvatures of circles tangent to

C0. This gives the preliminary lower bound in (0.30) which was first proven by Sarnak in [47]. The

essential observation which leads to this lower bound is that the set of integers appearing as curvatures

of circles tangent to C0 contain the integers represented by an inhomogeneous binary quadratic form

fa0(x,y)−a0

of discriminant −4a2
0. Our approach in Section 2 is to repeat this method for a subset of the circles

which we find are tangent to C0 in this way. For every circle C of curvature a tangent to C0, we can

produce a shifted binary quadratic form

fa(x,y)−a

where fa has discriminant−4a2 and consider the integers represented by fa. We consider a in a suitably

reduced subset of [(logX)2,(logX)3] and count the integers represented by fa−a for a in this subset. It

is important to note that the integers represented by fa and fa′ for a 6= a′ are a subset of integers which

can be written as a sum of two squares since both forms have discriminant of the form −δ 2. In fact, fa

and fa′ represent practically the same integers (see the Appendix for a more detailed discussion). It is

rather the shift of each form fa by a that makes the integers found in this way vary significantly. Our

final step is to give an upper bound on the number of integers in the intersection

{m represented by fa−a}∩{m′ represented by fa′−a′}

In obtaining this upper bound, we count integers with multiplicity, which is a sacrifice we can afford to

make for our purposes. This method leads to a proof of the conjecture of Graham et.al. that the integers

appearing as curvatures in a given integer ACP make up a positive fraction of all integers.

Since the Descartes quadratic form in (1.1) is of signature (3,1) over R, we have that A is a subgroup

of O(3,1) and can be thought of as a subgroup of the group of motions of hyperbolic 3-space H3. In this
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way A is a discrete group acting on H3 where the complement of three mutually tangent hemispheres

inside an infinite cylinder is the fundamental domain of the action. This fundamental domain has

infinite volume, which makes counting integers in the group’s orbit quite difficult. We note, however,

that A contains Fuchsian triangle subgroups generated by any three of the Si above, which are lattices

in the corresponding O(2,1)’s. We use this fact extensively throughout this paper.

To this end, denote by Ai the subgroup of A generated by three of the four generators as follows:

Ai := ({S1,S2,S3,S4}−{Si}) .

This group is the Schottky group generated by reflections in the three circles intersecting the ith circle

in the root quadruple and perpendicular to the initial circles in the packing; in particular, the ith circle

is fixed under this action. The fundamental domain of Ai is then a triangle bounded by the three circles,

and has hyperbolic area π .

1. A preliminary lower bound

In this section, we follow [47] in order to count integer points in an orbit of a subgroup Ai of the

Apollonian group as described in Section 2.1. This produces a preliminary lower bound on the number

κ(P,X) of integers less than X occurring as curvatures in an Apollonian packing P.

PROPOSITION 1.1. For an integer Apollonian circle packing P, let κ(P,X) denote the number of

distinct integers less than X occurring as curvatures in the packing. Then we have

κ(P,X)�P
X√

logX
.

PROOF. We fix a circle C0 of non-zero curvature a0 in the packing P, and count the integers which

occur as curvatures of circles tangent to C0 in P. This is identical to considering the orbit of A1 acting on

a quadruple v of mutually tangent circles (a0,b,c,d), since A1 fixes the first coordinate of v and its orbit

represents all of the circles tangent to Ca. Note that A generates all possible Descartes configurations in

the packing P, and there can only be finitely many circles of curvature a0 in the packing since the total

area of all the inscribed circles is bounded by the area of the outside circle. Therefore it is reasonable

to count the circles represented in the orbit of A1, since they make up a positive fraction of all of the

circles in P tangent to a circle of curvature a0.

In this orbit, we have that the first coordinate a0 is fixed, and the other coordinates of points in the

orbit of A1 vary to satisfy

Q(a0,x2,x3,x4) = 2(a2
0 + x2

2 + x2
3 + x2

4)− (a0 + x2 + x3 + x4)
2 = 0,

where Q is the Descartes form in (1.1). A change of variables y = (y2,y3,y4) = (x2,x3,x4)+(a0,a0,a0)

allows us to rewrite the equation above as

(1.1) g(y)+4a2
0 = 0,
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where g(y) = y2
2 + y2

3 + y2
4−2y2y3−2y2y4−2y3y4 is the resulting ternary quadratic form. We can thus

conjugate the action of A1 on (a0,x2,x3,x4) to an action independent of a0 which preserves the form g.

This is the action of a group Γ on y, generated by -1 2 2

0 1 0

0 0 1

 ,

 1 0 0

2 -1 2

0 0 1

 ,

 1 0 0

0 1 0

2 2 -1

 .

Moreover, the action of Γ on

v′ = (b+a0,c+a0,d +a0)

is related to the action of A1 on v by

A1v = (a0,Γ [v′− (a0,a0,a0)]),

so we count the same number of curvatures occurring in the packing before and after this change of

variables. We change variables once again by letting

y2 = A, y3 = A+C−2B, y4 =C.

We note that (y2,y3,y4) ∈ Z3 implies that A,B, and C are integers, and the primitivity of the packing

is preserved as well – the gcd of A,B, and C is 1. With this change of variables, Γ is conjugated to an

action of a group Γ′ on (A,B,C) which is generated by 1 -4 4

0 -1 2

0 0 1

 ,

 1 0 0

0 -1 0

0 0 1

 ,

 1 0 0

2 -1 0

4 -4 1

 .

Under this change of variables, the expression in (1.1) becomes

(1.2) 4(B2−AC) =−4a2
0.

Letting ∆(A,B,C) denote the discriminant of the binary quadratic form Ax2 + 2Bxy +Cy2, (1.2) is

simply

∆(A,B,C) = a2
0,

and thus Γ′ is a subgroup of O∆(Z), the orthogonal group preserving ∆. Let Γ̃ denote the intersection

Γ′∩SO∆(Z). The spin double cover of SO∆ is well known (see [15]) to be SL2, and is obtained via the

homomorphism

(1.3)

ρ : SL2(Z) −→ SO∆(Z)(
α β

γ δ

)
ρ7−→ 1

αδ−βγ
·

 α2 2αγ γ2

αβ αδ +βγ γδ

β 2 2βδ γ2


written here over Z as this is the situation we work with. It is natural to ask for the preimage of Γ̃ under

ρ which we determine in the following lemma.
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LEMMA 1.2. Let Γ̃ and ρ be as before. Let Λ(2) be the congruence 2-subgroup of PSL2(Z). Then

the preimage of Γ̃ in SL2(Z) under ρ is Λ(2).

PROOF. We can extract from the generators of Γ′ as well as the formula in (1.3) that the preimage

of Γ̃ under ρ contains (
1 0

−2 1

)
and

(
1 −2

0 1

)
,

and so Γ̃ contains the principle congruence subgroup Λ(2) of PSL2(Z). Recall that the area of A1\H2

is π , and note that SO∆(Z)
⋂

Γ′ contains exactly those elements of Γ′ which have even word length

when written via the generators of Γ′, making up half of the whole group. Therefore the area of Γ̃\H2

is 2π , which is equal to the area of Λ(2)\H2, and hence the preimage of Γ̃ in SL2(Z) is precisely Λ(2)

as desired. �

Recall that we would like to count the integer values of y2,y3, and y4 – in terms of the action of Γ,

we are interested in the set of values A,C, and A+C−2B above. Lemma 1.2 implies that these values

contain integers represented by the binary quadratic form

(1.4) fa0(ζ ,ν) = A0ζ
2 +2B0ζ ν +C0ν

2,

where (ζ ,ν) = 1, and the coefficients are derived from the change of variables above:

(1.5) A0 = b+a0, C0 = d +a0, B0 =
b+d− c

2
.

We note that the discriminant of this form is not a square, since

(1.6) (2B0)
2−4A0C0 =−4a2

0

and a0 6= 0. Since the vectors in the orbit of A1 are of the form (a0,A− a0,A+C− 2B− a0,C− a0),

they correspond to the integer values of

(1.7) fa0(x,y)−a0,

where fa0 is as before. Therefore

(1.8) κ(P,X)� #{m ∈ Z |m > 0, fa0(x,y)−a0 = m for some x,y ∈ Z,(x,y) = 1}

and we need only to count the integers represented by fa0 in order to get a bound on the number of

curvatures in P. This is done both in [2] and [33], from which we have the following:

LEMMA 1.3. (James): Let f be a positive definite binary quadratic form over Z of discriminant−D,

where D is a positive integer. Denote by BD(X) the number of integers less than X represented by f .

Then

BD(X) =
c ·X√
logX

+O
(

X
logX

)
,
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where

πc2 = ∏
q≡3 (4)
q6|D

(
1− 1

q2

)−1

∏
p|D

(
1− 1

p

)
∞

∑
n=1

(
−D
n

)
n−1.

Lemma 1.3 paired with (1.8) implies that

κ(P,X)� X√
logX

as desired. �

2. Counting in several subpackings at once

In this section we sharpen the bound in Proposition 1.1 in order to answer the question posed by

Graham et.al. in [24] and prove that the integers appearing as curvatures in any integer ACP make

up a positive fraction of all positive integers. Our computation in Section 1 reflects only those circles

which are tangent to a fixed circle in P. It is thus natural to count some of the omitted curvatures here.

Specifically, we repeat the method from Section 1 several times, fixing a different circle C each time

and counting the integers occuring as curvatures of circles tangent to C.

Recall that to prove Proposition 1.1 we fixed a circle of curvature a0, and associated curvatures of

circles tangent to it with the set of integers (without multiplicity) represented by fa0(x,y)− a0. We

denote the set of these integers that are less than X by A0:

A0 = {a ∈ N |a≤ X , fa0(x,y)−a0 = a for some integers x,y≥ 0}

For every a ∈A0 we use the method in Section 1 to produce another shifted binary quadratic form

fa(x,y)−a

of discriminant −D = −4a2. As in Section 1, we wish to count the integers represented by these new

forms. For each a ∈A0, let Sa denote the set of integers less than X represented by fa−a:

Sa = {n ∈ N |n≤ X ,n = fa(x,y)−a for some relatively prime integers x,y≥ 0}

Note that the sets Sa depend only on a0, the curvature of C0. One important consideration in counting

the integers represented by the forms fa is that their discriminants can be very large with respect to

X , and thus many of the represented integers may be > X . In particular, the count in Lemma 1.3 is

not uniform in D so we use more recent results of Blomer and Granville in [4] which specify how

the number of integers less than X represented by a binary quadratic form depends on the size of the

discriminant of the form2.

2The results of Blomer and Granville concern quadratic forms of square free determinant, but the authors note in section 9.3
of [4] that the same can be done for binary quadratic forms of non-fundamental determinant as well.
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With this notation, the bounds in [4] yield a lower bound on ∑a |Sa| for the a’s we consider. We also

compute an upper bound on ∑a,a′ |Sa∩Sa′ | for a 6= a′ so that

∑
a
|Sa|−∑

a,a′
|Sa∩Sa′ |

gives a lower bound for κ(P,X). A crucial ingredient to computing this and proving Theorem 0.8 (that

the integers appearing as curvatures in a given ACP make up a positive fraction of N) is the balance

between these lower and upper bounds – for example, the more sets Sa we choose to include in our

count, the bigger the lower bound on ∑a |Sa|. However, choosing too many such sets will also increase

the upper bound on the second sum ∑a,a′ |Sa ∩ Sa′ |. In fact, it is possible to choose so many sets Sa

that the upper bound on the intersections outweighs the lower bound on the sizes of Sa. In Section 2.1

we specify how we choose the a’s used in our computation, and compute the first sum, ∑a |Sa|. In

Section 2.2, we compute an upper bound on ∑a,a′ |Sa∩Sa′ | for a 6= a′ to prove Theorem 0.8.

2.1. Integers represented by multiple binary quadratic forms. In this section, we evaluate the

sum ∑a |Sa|, choosing a’s in a subset of A0 in order to ensure that we obtain a positive fraction of X in

our final count. Specifically, we consider a ∈A0 such that

(logX)2 ≤ a≤ (logX)3

This interval is chosen to give us the desired lower bounds in conjunction with results in [4] – this will

become clear in the computations preceding (2.9). We would like to further reduce the set of a’s we

consider so that the bounds on the size of the intersections of sets Sa are not too large. To do this, we

first partition the interval [(logX)2,(logX)3] into dyadic ranges [2k,2k+1] and select a’s within these

ranges.

Namely, we consider A0 ∩ [2k,2k+1] where (logX)2 ≤ 2k,2k+1 ≤ (logX)3. The size of this set de-

pends only on a0, the curvature of the original circle we fixed. By Lemma 1.3, we have

(2.1)
∣∣A0∩ [2k,2k+1]

∣∣� 2k
√

k

where the implied constant depends on a0. We partition each dyadic interval [2k,2k+1] into intervals

[2k+n ·η 2k
√

k
,2k+(n+1) ·η 2k

√
k
] of length η

2k
√

k
, where 0< η < 1 is a fixed parameter whose importance

will become apparent in Proposition 2.3. We note that the average over 0≤ n≤
√

kη−1 of cardinalities

of the corresponding subsets of A0 is

(2.2) En

(∣∣∣A0∩ [2k +n ·η 2k
√

k
,2k +(n+1) ·η 2k

√
k
]
∣∣∣)� η

2k

k

by (2.1). Thus for every value of k there exists an 0 ≤ n ≤
√

kη−1 for which the intersection in (2.2)

contains� η
2k

k integers. For simplicity of notation, we assume without loss of generality1 that n = 0,

1One can in fact extend Lemma 1.3 to show that this holds for every n. Friedlander and Iwaniec do this for a0 = 1 in Theorem
14.4 of [17]. However, it is not necessary here.
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and define A (k) to be

(2.3) A (k) = A0∩ [2k,2k +η
2k
√

k
]

where we have

(2.4) |A (k)| � η
2k

k

up to a constant which depends only on a0. Denote the union of these subsets by A :

(2.5) A =
⋃

A (k)

The results in [4] imply the following lemma regarding the integers represented by quadratic forms

associated with a ∈A .

LEMMA 2.1. Let A and fa be as before. Then we have

∑
a∈A
|Sa| � ηX

To prove Lemma 2.1, we recall the notation and relevant theorem from [4]. Let f be a binary

quadratic form of discriminant −D, and let r f (n) be the number of representations of n by f :

(2.6) r f (n) = #{(m1,m2) ∈ Z2−{0}| gcd(m1,m2) = 1, f (m1,m2) = n}

Let U0
f (X) = ∑n≤X r f (n)0, the number of integers less than X represented by f , counting without

multiplicity. In [4], Blomer and Granville compute bounds for U0
f (X) for D in three ranges between 0

and X . These ranges are defined in terms of the class number h of the binary quadratic form f and by

g, the number of genera. Letting `= `−D = L(1,χ−D)(φ(D)/D), they create a parameter

κ =
log(h/g)

(log2)(log(`−D logX))

where h/g = D
1
2+o(1). Their bounds for U0

f (X) are then uniform in D for each range below (see

Lemma 2.2):

• 0≤ κ ≤ 1
2

• 1
2 < κ < 1

• 1≤ κ � logD
log logD

In the first and last range, they are able to compute both an upper and lower bound on U . However they

prove only an upper bound for U0
f (X) in the case that D is in the middle range, which is not suitable for

our purposes. The lower bound for U0
f (X) for a form f of discriminant −D where D is in the smallest

range is essentially James’ result in Lemma 1.3, and is used to show that

κ(P,X)� X
(logX)α
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in [18]. Our results and the statement in Lemma 2.1 depend on Blomer and Granville’s lower bound for

U0
f (X) where f is of dicriminant −D and D is in the third range above. Specifically, we use Theorem

2 from [4], which is summarized in the lemma below.

LEMMA 2.2. (Blomer, Granville): Let f be a binary quadratic form of discriminant −D, and let

U0
f (X) be as before. Let G be the group of genera of binary quadratic forms of discriminant −D.

Denote by s the smallest positive integer that is represented by f , and by u the smallest positive integer

represented by some form in the coset f G . Then

(2.7) U0
f (X) = π ·

(
1− 1

2u

)
· X√

D
+E0(X ,D)

where

(2.8) E0(X ,D)�
√

X
s
+ τ(D) ·

(
X logX

D
+

X

D
3
4

)
where τ(D) is the number of prime divisors of D, and the implied constant does not depend on D.

With this in mind we are ready to prove Lemma 2.1.

Proof of Lemma 2.1:

We use Lemma 2.2 to count the integers less than X represented by forms of discriminant−D where

D is a power of logX in our case. Recall that

fa(x,y) = αx2 +2βxy+ γy2

is of discriminant −D =−4a2. In particular, since (logX)2 ≤ a≤ (logX)3, we have that

(logX)4 ≤ D≤ (logX)6

and the number of prime divisors of D is

τ(D)� log logX ,

and so

E0(X ,D)� X
(logX)3 +(logD) · X

D
3
4

Thus we have that the error E0(X ,D)� X

D
3
4−ε

for any ε > 0, and thus Lemma 2.2 implies

(2.9) U0
f (X)� X√

D
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where the implied constant does not depend on D. Since D = −4a2, it follows from (2.9) that the

number of distinct values less than X represented by fa is� X
a and we have

∑
a∈A
|Sa| � ∑

a∈A

X
a

� η ·X ·∑
2k<(logX)3

2k>(logX)2

1
k

� η ·X(2.10)

as desired. �

The sum in Lemma 2.1 is the lower bound on the number of integers we count by considering the

quadratic forms associated with a ∈A . In order to prove Theorem 0.8, we obtain an upper bound on

the number of integers we have counted twice in this way in the next section.

2.2. Integers in the intersections. To prove Theorem 0.8 we would like to show

(2.11)

∣∣∣∣∣ ⋃
a∈A

Sa

∣∣∣∣∣� X

since this union is a subset of all curvatures less than X in the packing P. By Lemma 2.1, we may

estimate the size of this union as follows:∣∣∣∣∣ ⋃
a∈A

Sa

∣∣∣∣∣ ≥ ∑
a∈A
|Sa|− ∑

a6=a′∈A
|Sa∩Sa′ |

� ηX− ∑
a6=a′∈A

|Sa∩Sa′ |(2.12)

We need only to determine an upper bound for the last sum above. We do this by counting points

(x,y,x′y′) in a box on the quadric

fa(x,y)− fa′(x′,y′) = a′−a

for each a 6= a′ ∈ A . The region in which we count these points is induced by the condition that

fa(x,y)< X . Namely, rewriting the binary form fa as

(2.13) fa(x,y) =
(αx+βy)2 +4a2y2

α

we can define a region

(2.14) Ba = {(x,y) ∈ R2 s.t. |αx+βy| �
√
|α| and |y| �

√
|α|
a
}

so that fa(x,y)� 1 for (x,y) ∈ Ba, and fa(x,y)� X for every (x,y) ∈
√

X Ba as desired. Therefore, the

region in R4 over which we consider the forms fa− fa′ will be

Ba,a′ = (
√

XBa×
√

XBa′)∩Z4
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With this notation, we are ready to prove the following proposition.

PROPOSITION 2.3. Let A , Sa, Sa′ , η , and X be as before. Then there exists c > 0 depending only

on a0 such that

(2.15) ∑
a6=a′∈A

|Sa∩Sa′ | ≤ cη
2X

Note that, since we chose 0 < η < 1, we have η2 < η , and so this upper bound on the size of the

intersection of the sets Sa−a is small compared to the count in Lemma 2.1.

PROOF. We note that the expression inside the sum has an upper bound

|Sa∩Sa′ |(2.16)

≤ |{(x,y,x′,y′) ∈Ba,a′ | fa(x,y)− fa′(x′,y′) = a−a′}|

Although bounding (2.15) in this way involves counting the integers in Sa ∩ Sa′ with multiplicity, our

analysis shows that this sacrifice is in fact not too expensive to our final count. We thus consider the

quaternary quadratic form

F(x,y,x′,y′) = fa(x,y)− fa′(x′,y′)

with discriminant ∆ = (β 2−αγ)(β ′2−α ′γ ′) = 16a2(a′)2. To obtain an upper bound on the number of

points in x ∈Ba,a′ for which F(x) = a′− a, one can use the well developed circle method following

Kloosterman in [34] and Esterman in [16] or modular forms (see [13]). Both methods would yield

what we want – the latter would give the best results but is not as flexible as the former for our purposes

since we wish to vary the parameters a and a′ which is more straightforward in the circle method.

Heath-Brown’s Theorem 4 in [26] and Niedermowwe’s Theorem 5.6 in [42] determine representation

numbers of a fixed indefinite quadratic form3. Since our a,a′ are all a small power of logX , the proofs

of these theorems can be manipulated slightly to yield the following lemma regarding representation

numbers of all the indefinite quaternary quadratic forms we consider:

LEMMA 2.4. Let F be as before, and let (logX)2 ≤ a,a′ ≤ (logX)3. Let χa,a′ denote the character-

istic function on the region Ba,a′ , and let

Rχa,a′ (a−a′) = ∑
x∈Z4

F(x)=a−a′

χa,a′(x).

Let ∆ be as above. Then we have

Rχa,a′ (a−a′)

= |Iχa,a′ (a−a′)| · |S(a−a′)|+O
(

X ·∆100

(logX)λ

)
(2.17)

3Note that in [26] one considers representations of an integer m by F where m is asymptotic to the scaling factor P of the
unscaled domain B (in our case B = Ba×Ba′ and P =

√
X), while in [42] m is any nonzero integer.
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where the first factor is the singular integral

(2.18) Iχa,a′ =
∫

∞

−∞

[∫
R4

χa,a′(x)e(z(F(x)−a+a′))dx

]
dz

and the second factor is the singular series

(2.19) S(a−a′) = ∏
p

σp

where

(2.20) σp = lim
k→∞

p−3k ·#{x ∈ (
Z
pZ

)4 s.t. F(x)≡ a−a′ (pk)}

and e(z) = e2πiz.

In the error term in (2.17), λ is an arbitrary large fixed constant. With more effort we can in fact get a

power saving here by using modular forms – while this would yield the best result, the methods in [26]

and [42] suffice. In particular, the argument in [42] lends itself well to our consideration of the quadratic

form F , which has a discriminant of size (logX)k. The error term in Niedermowwe’s Theorem 5.6

consists of a power saving in X , and a careful examination of the proof shows that the dependency

on the discriminant of the form is absorbed into the error term since it is only logarithmically large –

this is reflected in (2.17) via a power of the discriminant ∆ of F . It is similarly important here that the

distorsion of Ba and Ba′ with respect to the standard cube discussed in [26] and [42] is logarithmic in

X .

To prove Proposition 2.3 it remains to evaluate the singular integral and singular series in (2.18) and

(2.19). For a set P⊂ R4, let V(P) denote the measure of P. From the definition of fa and Ba in (2.13)

and (2.14), we have

Iχa,a′ � lim
ε→0

1
ε
·V
(
{(x,y,x′,y′) ∈

√
XBa×

√
XBa′ | | fa(x,y)− fa′(x′,y′)−a+a′|< ε}

)
� lim

ε→0

1
ε
· ε√
|α|X

·
√
|α|X
a
·

√
X
|α ′|
·
√
|α ′|X
a′

� X
aa′

(2.21)

To evaluate the singular series S(a−a′) we prove the following lemma.

LEMMA 2.5. Let S(a−a′) be the singular series defined in (2.19). We have

S(a−a′)� ∏
p|aa′(a−a′)
p6|(a,a′)

(
1+

1
p

)
·2ω((a,a′))

PROOF. We compute an upper bound for the expression in the limit in (2.20) by letting k = 1 since

the expression in the limit decreases with k. Note that if p|(a,a′), we have F is not degenerate modulo
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p by the primitivity of the packing and the definition of the coefficients of fa in (1.5). Therefore

σp < p−3 ·#{x ∈ (
Z
pZ

)4 s.t. F(x)≡ 0 (p)},

and over Fp, the number of nontrivial representations of 0 by F is bounded above by 2p3 (see [9],

for example), so σp is bounded above by 2 in this case. In the other cases, we use exponential sum

estimates. Taking k = 1 as before, we have

σp =
1
p

p−1

∑
r=0

[
∑
x,y

ep(r fa(x,y))
][

∑
x′,y′

ep(−r fa′(x′,y′))
]
ep(r(a−a′))

where ep(z) = exp(2πiz
p ). There are several cases to consider:

Case 1: p does not divide aa′(a−a′):

If we diagonalize fa and fa′ , we obtain

σp = p3 +
1
p

p−1

∑
r=1

(
α̃r
p

)2(
α̃ ′r
p

)2

p2ep(r(a−a′)) = p3 +o(p)

since (a−a′, p) = 1.

Case 2: p|a−a′ and does not divide aa′:

In this case we have σp < p3 +o(p2).

Case 3: p|a and p 6 |a′:

Diagonalizing fa′ , we obtain

σp = p3 +
1
p

p−1

∑
r=1

(
αr
p

)
p
√

p · p · ep(r(a−a′))< p3 +o(p2)

From these bounds and Lemma 2.7, we obtain the desired result in Lemma 2.5. �

Combining our computation of the singular integral in (2.21) and the bound on the singular series in

Lemma 2.5, the result of Niedermowwe in Lemma 2.4 yields

(2.22) |Sa∩Sa′ | �
X

aa′
· ∏

p|aa′(a−a′)
p6|(a,a′)

(
1+

1
p

)
·2ω((a,a′))

where ω(n) is the number of distinct prime factors of n. Thus to evaluate the last sum in (2.12), we

count the number of a ∈ A in progressions a ≡ r mod q. To this end, we recall Theorem 14.5 from

[17] of Friedlander and Iwaniec regarding sums of squares in progressions in the following lemma4.

4Note that the set of integers in the interval [2k,2k +η
2k
√

k
] which can be written as sums of two squares contains the a ∈A (k)

in progressions a ≡ r (q), since A (k) is a set of integers represented by a binary quadratic form of discriminant −δ 2. This
count is therefore an upper bound on what we want.
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LEMMA 2.6. (Friedlander, Iwaniec): Let b(n) be a characteristic function defined as

b(n) =

{
1 if n = s2 + t2 for some s, t ∈ Z
0 otherwise

and let

B(x,q,a) = ∑
n≤x

n≡a(q)

b(n)

For 2≤ q≤ x, (a,q = 1), and a≡ 1 mod (4,q) we have

B(x,q,a) =
cq

q
· x√

logx

[
1+O

[(
logq
logx

) 1
7
)]

where the implied constant is absolute and cq� log logq is a positive constant.

We note that the statement in Lemma 2.6 is much stronger than what we need – we require only

an upper bound on B(x,q,a), which could be proven using an upper bound sieve. Since our set A

is obtained via the fixed quadratic form of discriminant −4a2
0 from Section 1, such an upper bound

implies the following in our case.

LEMMA 2.7. Let A , X, and η be as before. Then we have

∑
a∈A

a≡r (q)

1
a
� log logq

q
·η

where 1 < q < logX is a square free integer.

PROOF. With the definition of A (k) in (2.3), we may bound above the sum in Lemma 2.7 as a sum

over k for which (logX)2 ≤ 2k,2k+1 ≤ (logX)3:

(2.23) ∑
k

1
2k ∑

a∈A0

a∈[2k,2k+η
2k√

k
]

a≡r (q)

1

By Lemma 2.6, the inner sum is bounded above (up to a constant) by

η
cq

q
2k

k

[
1+O

((
logq

log logq

) 1
7
)]

Since cq� log logq, substituting this into (2.23) we have

∑
k

η
cq

qk

[
1+O

((
logq

log logq

) 1
7
)]
� η

log logq
q

as desired. �
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With this in mind, we may evaluate the sum in (2.22) as follows.

∑
a6=a′∈A

|Sa∩Sa′ | � X · ∑
a6=a′∈A

1
aa′

2ω((a,a′))
∏

p|aa′(a−a′)
p6|(a,a′)

(
1+

1
p

)
(2.24)

� X · ∑
q0,q1,q′1,q2

2ω(q2)

q1q′1q2
∑

q0q1 |a
q0q′1|a′
q2 |a−a′

1
aa′

(2.25)

where q0,q1,q′1,q2 are square free and relatively prime. We may restrict to primes p < (logX)
1

100 in the

product in (2.24), we may restrict in (2.25) the summation to q0,q1,q′1,q2 < (logX)
1
10 . We bound the

sum

∑
q0q1 |a

q0q′1|a′
q2 |a−a′

1
aa′

using Lemma 2.7. First fix a and sum over a′ subject to the restrictions q0q′1|a′ and a ≡ a′ mod q2.

From Lemma 2.7, we have

∑
a′∈A

q0q′1|a′
q2 |a−a′

1
a′
� log log(q0q′1q2)

q0q′1q2
·η

and

∑
q0q1|a

1
a
� log(q0q1)

q0q1
·η

so

(2.26) ∑
q0q1 |a

q0q′1|a′
q2|a−a′

1
aa′
� (log log(q0 +q1 +q′1 +q2))

2

q2
0q1q′1q2

·η2

Substituting (2.26) into (2.25) gives the desired bound

∑
a6=a′∈A

|Sa∩Sa′ | � η
2X ∑

q0,q1,q′1,q2

2ω(q2) · (log log(q0 +q1 +q′1 +q2))
2

(q0q1q′1q2)2

< cη
2X(2.27)

�

Note that η−η2 > 0 since 0 < η < 1.We may take η small enough so that (2.12) and (2.10) imply∣∣∣∣∣ ⋃
a∈A

Sa

∣∣∣∣∣� (η− cη
2)X � X

as desired. �



80 4. DENSITY OF CURVATURES (JOINT WITH JEAN BOURGAIN)

The local to global conjecture, as well as the data in the case of several different integral ACP’s in

[19] suggest that κ(P,X) is in fact either X
3 or X

4 , depending on the mod 24 reduction of the packing P.

It would be of great interest to prove this is true.

Finally, we note that the methods used here are easily generalizable to many discrete linear algebraic

groups acting on H3 with an integral orbit. If the group contains several Fuchsian subgroups as in the

case of the Apollonian group, we may restrict to the orbits of these subgroups as in Section 1. We

would again utilize the subgroup’s preimage in the spin double cover of SO to relate the problem to

integers represented by a binary quadratic form. This would yield a comparable lower bound on the

number of integers less than X in the orbit of the group. One might ask in what general case one would

be able to prove a positive density statement using the techniques used in this chapter – the answer

would probably include a rather wide range of algebraic groups.



CHAPTER 5

Appendix

In this section we clarify why the two binary quadratic forms fa and fa′ described in Chapter 1.3

represent approximately the same integers up to x. We begin by pointing out that, no matter what the

form, primes congruent to 3 mod 4 can only divide the represented integers in even powers.

PROPOSITION 0.8. Let fa(x,y) = Ax2 +2Bxy+ cy2, with B2−AC =−a2 as before. Suppose n ∈ Z
is represented by fa, and let p|n denote a prime not dividing a, with p ∼= 3 (4). Then we have that

n = n′p2v, where p 6 |n′ and v is an integer.

PROOF. We diagonalize the form fa′ to

F(x,y) = A′x2 +C′y2,

where we know A′C′ = a2. Let p be a prime as above. Then, since p 6 |a, p does not divide either A′ or

C′. Now suppose we have that

A′x2 +C′y2 ≡ 0 (pw),

for some pair of integers (x,y). If p|x and p|y, we have that w must be even, and we are done.

Suppose this is not the case. Then, wlog, we have that p 6 |y, and there exists an integer z such that

yz≡ 1 (pw),

and so we have that

A′(xz)2 +C′(yz)2 ≡ 0 (pw),

or

A′(xz)2 ≡−C′ (pw).

Since p 6 |A′, there is an integer (A′)−1 such that (A′)−1A′ ≡ 1 (p), and we can rewrite the equation

above as

(0.28) (xz)2 ≡−(A′)−1C′ (pw).

Since A′C′ = a2, we have that −(A′)−1C′ = −((A′)−1)2a2. This, together with 0.28, implies −1 is a

square modulo pw, and so w must be even. �

With this in mind, we can now specify exactly which integers are represented by our forms.

81
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PROPOSITION 0.9. Let fa be a binary quadratic form as before, with discriminant −a2. Then if

fa(x,y) = N for some integers x and y where N is relatively prime to a, we have that can be written as

N = v2n, where n is square free and has no prime divisors congruent to 3 modulo 4.

PROOF. We begin, again, by diagonalizing our form to

F(x,y) = A′x2 +C′y2.

Since n has no prime divisors congruent to 3 mod 4, we know that
(−1

n

)
= 1. In particular, this means

that

−a2 ≡ w2 (n)

for some integer w. We rewrite this as

nk−a2 = w2, or

nk−w2 = a2.

So the binary form F ′(x,y) = nx2 +wxy+ky2 has discriminant −a2, and is equivalent to F(x,y). Since

F ′ represents n in the obvious way, we have that F represents it as well. Thus F will represent any

integer of the form v2n above. �

So we see that a binary quadratic form of discriminant −a2 will represent almost the same integers

as a binary quadratic form of discriminant −a′2, the difference coming only from the prime divisors of

a and a′.
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