
A NOTE ON THE DENSITY OF CURVATURES IN INTEGER APOLLONIAN CIRCLE
PACKINGS

ELENA FUCHS

ABSTRACT. Bounded Apollonian circle packings (ACP’s) are constructed by repeatedly inscribing

circles into the triangular interstices in a configuration of four mutually tangent circles, one of which

is internally tangent to the other three. An integer ACP is one in which all of the circles have integer

curvature. In this paper, we give a lower bound on κ(P,X), the number of integers less than X

occurring as curvatures in a bounded integer ACP P.

1. INTRODUCTION

Starting with three mutually tangent circles inscribed in a large circle as in the first picture in

Figure 1, one can inscribe a smaller circle into each of the curvilinear triangles between the circles

as in the second picture. By an old theorem of Apollonius of Perga (circa 200 BC), there is a unique

way of doing this – he discovered that to any three mutually tangent circles there are precisely two

other circles that are tangent to all three. We can continue packing circles in this way (see the third

picture in Figure refempty), creating smaller curvilinear triangles each time. This process continues

indefinitely, and we thus get an infinite packing of circles known as the Apollonian circle packing

(ACP). Since the radii of the circles in an ACP get extremely small after several iterations, it is

convenient to consider the circles’ curvatures, the reciprocals of the radii, instead.

            

FIGURE 1. Apollonian Circle Packings
1
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A remarkable feature of these packings is that, given a packing in which any four mutually

tangent circles have integer curvature, all of the circles in the packing will have integer curvature.

Such a packing is called an integer ACP and is illustrated in Figure 2 with the packing generated by

starting with circles of curvatures 1,2,2, and 3. In their paper [GLMWY], the five authors Graham,

Lagarias, Mallows, Wilks, and Yan address various natural number-theoretic questions associated

with integer ACP’s. They make considerable progress in treating the problem, and ask several

fundamental questions, many of which have been resolved recently in [F], [FS], [BF], and [KO].

One question Graham at al. ask in [GLMWY] is whether the integers represented as curvatures

in a given packing P make up a positive fraction of N. They prove that the number κ(P,X), the

number of such integers less than X , is bounded below by
√

X :

(1.1) κ(P,X) > c
√

X

where c > 0 is a constant depending on P. They remark, however, that this bound is fairly loose – in

fact, they conjecture that limX→∞
κ(P,X)

X > 0 for any integer packing P. Sarnak improves their bound

in [S2] by showing

(1.2) κ(P,X) >
cX√
logX

where c > 0 depends on P. In this paper, we use Sarnak’s approach in [S2] to refine the bound in

(1.2) in the following theorem.

Theorem 1.1. For a bounded integer Apollonian circle packing P, let κ(P,X) denote the number of

distinct integers up to X occurring as curvatures in the packing. Then we have

κ(P,X) >
cX

(logX)ε
,

where ε = 0.153 . . . and c > 0 depends on P.

This is not a positive fraction of all integers as conjectured in [GLMWY], but it is a promising

result in this direction and can likely be improved with a fine-tuning of the tools we use1.

It is important to note that this question is different from one recently addressed in [KO] by

Kontorovich and Oh about the number NP(x) of circles in a given packing P of curvature less

than X . This involves counting curvatures appearing in a packing with multiplicity, rather than

counting every integer which comes up exactly once. In fact, the results in [KO] suggest that the

integers occurring as curvatures in a given ACP arise with significant multiplicity. Specifically, they

1In a recent paper by the author and Bourgain [BF], the ideas in this paper are in fact fine-tuned to produce a positive
fraction of N.
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prove NP(X) is asymptotic to c ·Xδ , where δ = 1.30 . . . where c depends on P. Kontorovich and
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FIGURE 2. Apollonian Circle Packing (−1,2,2,3)

Oh’s techniques, however, do not extend in any obvious way to counting integers which arise as

curvatures in a packing without multiplicity.

Our approach for this is to count curvatures in different “subpackings” of an ACP. Namely, we

follow Sarnak’s method of fixing a circle C0 in [S2] to determine a set A0 of integers which occur

as curvatures of circles tangent to C0 in Section 2. Each integer a ∈A0 then corresponds to a circle

C tangent to C0. In Section 3 we repeat Sarnak’s method by fixing circles C of curvature a ∈A0 and

counting circles tangent to C. The difficulty with this is that we count many circles more than once

in this way, and current upper bounds on how many circles are counted twice are too crude to allow

us to do this indefinitely.

Acknowledgements: Many thanks to Peter Sarnak, Jean Bourgain, and Jeff Lagarias for intro-

ducing this problem to me, and for numerous insightful comments and conversations.

1.1. The Apollonian group. In 1643, Descartes discovered that the curvatures of any four exter-

nally cotangent circles of curvatures x1, x2, x3, and x4 satisfy the equation

(1.3) Q(x1,x2,x3,x4) = 2(x2
1 + x2

2 + x2
3 + x2

4)− (x1 + x2 + x3 + x4)2.
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This also holds for four mutually tangent circles when three of the circles are internally tangent (or

inscribed) to the fourth circle as in the case of ACP’s (see [Cx] for a proof). However, the curvature

of the outside circle must have a negative sign to satisfy the equation.

Note that Descartes’ theorem allows us to solve a quadratic equation for the curvatures of the

two circles tangent to three fixed mutually tangent circles. In this way, the formula in (1.3) in fact

generates all of the curvatures in a packing P. Specifically, if we assign to every set of 4 mutually

tangent circles in a packing P a vector v ∈ Z4 of the circles’ curvatures, the process of solving

Descartes’ equation for the fourth coordinate of v when three are known gives rise to a matrix

group action which generates all quadruples of mutually tangent circles in P. This group, called the

Apollonian group and denoted by A, was first discovered by Hirst in [H] is generated by the four

matrices

(1.4) S1 =


−1 2 2 2

0 1 0 0

0 0 1 0

0 0 0 1

 S2 =


1 0 0 0

2 −1 2 2

0 0 1 0

0 0 0 1



S3 =


1 0 0 0

0 1 0 0

2 2 −1 2

0 0 0 1

 S4 =


1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 −1

 ,

where S2
i = I for 1 ≤ i ≤ 4 and left multiplication of Si by a vector v = (v1,v2,v3,v4)T ∈ Z4 fixes

three of the coordinates of v. In [GLMWY], Graham et. al. describe an algorithm for generating

a root quadruple v of a packing P, which corresponds to the four largest circles in the packing and

is uniquely determined for any given ACP. From this point on, we assume the vector v is the root

quadruple of the packing in question, and that the packing P is primitive – the gcd of the coordinates

of v is 1.

With this notation, the orbit O = AvT represents all of the quadruples of mutually tangent circles2

in a packing P – the circles’ curvatures correspond to the maximum norm of the vectors in O .

Since the quadratic form in (1.3) is of signature (3,1) over R, we have that A is a subgroup of

O(3,1) and can be thought of as a subgroup of the group of motions of hyperbolic 3-space H3. In this

way A is a discrete algebraic group acting on H3 where the complement of three mutually tangent

hemispheres inside an infinite cylinder is the fundamental domain of the action. This fundamental

domain has infinite volume, which makes counting integers in the group’s orbit quite difficult. We

2Note that the curvatures in any packing are determined by the structure of the group A rather than the vector v itself, and
considering an ACP as an orbit of the group allows us to work with all ACP’s at once.
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note, however, that A contains Fuchsian triangle subgroups generated by any three of the Si above,

which are lattices in the corresponding O(2,1)’s. We use this fact extensively throughout this paper.

To this end, denote by Ai the subgroup of A generated by three of the four generators as follows:

Ai := ({S1,S2,S3,S4}−{Si}) .

This group is the Schottky group generated by reflections in the three circles intersecting the ith

circle in the root quadruple and perpendicular to the initial circles in the packing; in particular, the

ith circle is fixed under this action. The fundamental domain of Ai is then a triangle bounded by the

three circles, and has hyperbolic area π .

2. A PRELIMINARY LOWER BOUND

In this section, we follow [S2] in order to count integer points in an orbit of a subgroup Ai of

the Apollonian group as described in Section 1.1. This produces a preliminary lower bound on the

number κ(P,X) of integers less than X occurring as curvatures in an Apollonian packing P.

Proposition 2.1. For an integer Apollonian circle packing P, let κ(P,X) denote the number of

distinct integers less than X occurring as curvatures in the packing. Then we have

κ(P,X)� X√
logX

.

Proof. We fix a circle C0 of non-zero curvature a0 in the packing P, and count the integers which

occur as curvatures of circles tangent to C0 in P. This is identical to considering the orbit of A1

acting on a quadruple v of mutually tangent circles (a0,b,c,d), since A1 fixes the first coordinate of

v and its orbit represents all of the circles tangent to Ca. Note that A generates all possible Descartes

configurations in the packing P, and there can only be finitely many circles of curvature a0 in the

packing since the total area of all the inscribed circles is bounded by the area of the outside circle.

Therefore it is reasonable to count the circles represented in the orbit of A1, since they make up a

positive fraction of all of the circles in P tangent to a circle of curvature a0.

In this orbit, we have that the first coordinate a0 is fixed, and the other coordinates of points in

the orbit of A1 vary to satisfy

Q(a0,x2,x3,x4) = 2(a2
0 + x2

2 + x2
3 + x2

4)− (a0 + x2 + x3 + x4)2 = 0,

where Q is the Descartes form in (1.3). A change of variables y = (y2,y3,y4) = (x2,x3,x4) +

(a0,a0,a0) allows us to rewrite the equation above as

(2.1) g(y)+4a2
0 = 0,
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where g(y) = y2
2 + y2

3 + y2
4− 2y2y3− 2y2y4− 2y3y4 is the resulting ternary quadratic form. We can

thus conjugate the action of A1 on (a0,x2,x3,x4) to an action independent of a0 which preserves the

form g. This is the action of a group Γ on y, generated by

 −1 2 2

0 1 0

0 0 1

 ,

 1 0 0

2 −1 2

0 0 1

 ,

 1 0 0

0 1 0

2 2 −1

 .

Moreover, the action of Γ on

v′ = (b+a0,c+a0,d +a0)

is related to the action of A1 on v by

A1v = (a0,Γ [v′− (a0,a0,a0)]),

so we count the same number of curvatures occurring in the packing before and after this change of

variables. We change variables once again by letting

y2 = A, y3 = A+C−2B, y4 = C.

We note that (y2,y3,y4)∈Z3 implies that A,B, and C are integers, and the primitivity of the packing

is preserved as well – the gcd of A,B, and C is 1. With this change of variables, Γ is conjugated to

an action of a group Γ′ on (A,B,C) which is generated by

 1 −4 4

0 −1 2

0 0 1

 ,

 1 0 0

0 −1 0

0 0 1

 ,

 1 0 0

2 −1 0

4 −4 1

 .

Under this change of variables, the expression in (2.1) becomes

(2.2) 4(B2−AC) =−4a2
0.

Letting ∆(A,B,C) denote the discriminant of the binary quadratic form Ax2 + 2Bxy +Cy2, (2.2) is

simply

∆(A,B,C) = a2
0,

and thus Γ′ is a subgroup of O∆(Z), the orthogonal group preserving ∆. Let Γ̃ denote the intersection

Γ′∩SO∆(Z). The spin double cover of SO∆ is well known (see [EGM]) to be PGL2, and is obtained
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via the homomorphism

(2.3)

ρ : PGL2(Z) −→ SO∆(Z)(
α β

γ δ

)
ρ7−→ 1

αδ−βγ
·

 α2 2αγ γ2

αβ αδ +βγ γδ

β 2 2βδ γ2


written over Z as this is the situation we work with. It is natural to ask for the preimage of Γ̃ under

ρ which we determine in the following lemma.

Lemma 2.2. Let Γ̃ and ρ be as before. Let Λ(2) be the congruence 2-subgroup of PSL2(Z). Then

the preimage of Γ̃ in PGL2(Z) under ρ is Λ(2).

Proof. We can extract from the generators of Γ′ as well as the formula in (2.3) that the preimage of

Γ̃ under ρ contains (
1 0

−2 1

)
and

(
1 −2

0 1

)
,

and so Γ̃ contains the congruence subgroup Λ(2) of SL2(Z). Recall that the area of A1\H2 is π ,

and note that SO∆(Z)
⋂

Γ′ contains exactly those elements of Γ′ which have even word length when

written via the generators of Γ′, making up half of the whole group. Therefore the area of Γ̃\H2 is

2π , which is equal to the area of Λ(2)\H2, and hence the preimage of Γ̃ in PGL2(Z) is precisely

Λ(2) as desired. �

Recall that we would like to count the integer values of y2,y3, and y4 – in terms of the action of

Γ, we are interested in the set of values A,C, and A +C−2B above. Lemma 2.2 implies that these

values contain integers represented by the binary quadratic form

(2.4) fa0(ζ ,ν) = A0ζ
2 +2B0ζ ν +C0ν

2,

where (ζ ,ν) = 1, and the coefficients are derived from the change of variables above:

A0 = b+a0, C0 = d +a0, B0 =
b+d− c

2
.

We note that the discriminant of this form is not a square, since

(2.5) D( fa0) = (2B0)2−4A0C0 =−4a2
0

and a0 6= 0. Since the vectors in the orbit of A1 are of the form (a0,A−a0,A+C−2B−a0,C−a0),

they correspond to the integer values of

(2.6) fa0(x,y)−a0,
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where fa0 is as before. Therefore

(2.7) κ(P,X)� #{m ∈ Z |m > 0, fa0(x,y)−a0 = m for some x,y ∈ Z,(x,y) = 1}

and we need only to count the integers represented by fa0 in order to get a bound on the number of

curvatures in P. To this end we have the following lemma of Blomer from [B] regarding the number

of integers less than x represented by a binary quadratic form of discriminant D.

Lemma 2.3. (Blomer) Let f be a positive definite binary quadratic form over Z of discriminant

−D, where D is a positive integer. Let U f (X) be the number of positive integers not exceeding X

representable by f and let τ = log2. Then we have

U f (X)�ε

X
|D|ε

√
logX

uniformly in |D| ≤ (logX)τ−ε , and

U f (X)�ε

X
(logX)τ+ε

uniformly in |D| ≤ (logX)2τ−ε .

An analog of this was first proven for sums of two squares by Landau in [L2], and was generalized

to binary quadratic forms of non-square discriminant by James in [J]. We use Blomer’s result

because it explains how U f (X) depends on the size of the discriminant of f . Since the number of

integers represented by the form fa0 of discriminant D = −4a2 is a lower bound for the number of

integers occurring as curvatures in the orbit of A1, the value of U fa0
(x) as written in Blomer’s lemma

is a lower bound for our count, and we have

κ(P,X) >
cX√
logX

as desired. �

We use this preliminary lower bound several times to prove Theorem 1.1 in the next section.

3. PROOF OF THEOREM 1.1

In this section, we repeat the method in Section 2 to improve on the bound calculated in Propo-

sition 2.1. Recall that to prove Proposition 2.1, we counted only the circles tangent to some fixed

circle C0 in the packing. Denote the curvatures less than X found in this way by A0:

A0 = {a≤ X |a > 0,a = fa0(x,y)−a0 for some non-negative x,y ∈ Z}
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where fa0 is the binary quadratic form defined in (2.4) and each a∈A0 corresponds to the curvature

of a circle Ca in the packing P. To prove Theorem 1.1 we carry out the analysis in Section 2 several

times, fixing a different circle Ca to generate a new binary quadratic form fa− a for a ∈ A0 each

time. In this way, we obtain a set

Ha = {γ = fa(ζ ,ν)−a |γ ≤ X}

for each a ∈ A0 whose cardinality is given by Lemma 2.3. Since we seek to count curvatures of

circles without multiplicity, we must also keep track of how many integers we count twice. To do

this, it is important to note that the integers represented by fa and fa′ for a 6= a′ ∈ A0 are a subset

of integers which can be written as a sum of two squares since both forms have discriminant of

the form −δ 2. In fact, fa and fa′ represent practically the same integers – it is rather the shift of

each form fa by a in (2.6) that makes the resulting integers in Ha vary significantly and allows us to

compute an upper bound for

|Ha∩Ha′ |

using an old theorem of Rieger in [R].

3.1. Counting curvatures by fixing circles tangent to C0. We associate a circle Ca tangent to C0

to every a ∈A0 and produce a shifted binary quadratic form

(3.1) fa(ζ ,ν)−a

via an appropriate action of a Fuchsian subgroup Ai of A paired with the change of variables in

Section 2. Since the integers represented by this form once again make up a subset of integers

arising as curvatures of circles tangent to Ca, our goal is to count these integers without multiplicity.

To this end, we have the following lemma regarding integers represented by forms fa where a ≤
(logX)(log2)/2.

Lemma 3.1. Let fa be as before, let τ = log2 and let

Ha = {γ = fa(ζ ,ν)−a |γ ≤ X}

We have

∑
a∈A0

a≤(logX)
τ
2

|Ha|>
cX

(logX)ε
,

where ε = 1−τ

2 = 0.153 . . . and c depends on a0 only.
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Proof. Denote by ra(n) the number of times n is represented by the form in (3.1). Since the dis-

criminant D( fa)≤ (logX)τ for a≤ (logX)
τ

2 , there exists c′ > 0 such that

|Ha|= ∑
n≤X

r0
a(n) >

c′X√
logX

by Lemma 2.3. We also have

#{a ∈A0 |a≤ (logX)
τ

2 }>
c′′(logX)

c
2

√
log logX

for some c′′ > 0 by the same lemma. Therefore

∑
a∈A0

a≤(logX)
τ
2

|Ha| = #{a ∈A0 |a≤ (logX)
τ

2 } · |Ha|

>
c′′′ ·

√
2X

√
log logX(logX)

1−τ

2

>
cX

(logX)
1−τ

2
(3.2)

as desired. �

It remains to determine how many integers we counted more than once in this way.

3.2. Counting integers in the intersections. Since we must count the number of integers in the

union ⋃
a∈A0

a≤(logX)
τ
2

|Ha|

to prove Theorem 1.1, we must compute an upper bound on the size of the intersections

Ha∩Ha′

for a 6= a ∈A0, and a,a′ ≤ (logX)
τ

2 . We do this in the following lemma.

Lemma 3.2. Let A0 and Ha be as before. We have

∑
a6=a′∈A0

a,a′≤(logX)
τ
2

|Ha∩Ha′ | ≤
cX

log logX

where c depends on a0 only.
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Note that |Ha∩Ha′ | for a 6= a′ is bounded above by the number of times b = a′−a is represented

by the quaternary form

fa(x,y)− fa(x′,y′),

and that, since the discriminants of the fa’s we consider are all of the form δ 2, we have

Ha ⊂ {n ∈ Z |n = α
2 +β

2 for some α,β ∈ Z}

for any a ∈A0. Therefore we have that

|Ha∩Ha′ | ≤ |{n ∈ Z |n = α
2 +β

2 and n+b = α
′2 +β

′2 for some α,β ,α ′,β ′ ∈ Z}|

In the case of sums of two squares, bounds on the number of pairs of integers separated by a gap b

and representable as a sum of two squares is well known. In [I], Indlekofer calculates this for b = 1.

He proves that if B(X) is the set of integers less than X and representable as a sum of two squares

and

B1(X) := {n ∈ B(X)| n+1 ∈ B(X)},

then |B1(X)| is a constant multiple of X
logX . For our purposes, we are interested in pairs of integers

separated by an arbitrary gap b representable as sums of two squares, which we denote by

(3.3) Bb(X) = {n ∈ B(X)| n+b ∈ B(X)}.

In [R], Rieger proves the following lemma about |Bb(x)|:

Lemma 3.3. Let Bb(X) be as above. Then we have that

|Bb(X)| � X
logX ∏

p|b
p≡3 (4)

(
1+

1
p

)
.

Since the integers less than X represented by the forms fa are a subset of the integers in B(X)

above, we are able to use the upper bound in Rieger’s lemma to count the integers occurring in

Ha∩Ha′ .

Proof of Lemma 3.2:

As before, we note that for every n < X such that n∈ B(X) and n+(a′−a)∈ B(x) there is a point

(α,β ,α ′,β ′) such that

( fa′(α ′,β ′)−a′)− ( fa(α,β )−a) = fa′(α ′,β ′)− fa(α,β )− (a′−a) = 0

Thus we have

|Ha∩Ha′ | ≤ |Bb(X)|,
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where Bb(X) is as in (3.3). Lemma 3.3 implies

|Bb(X)� X
logX ∏

p|b
p≡3 (4)

(
1+

1
p

)

for b = |a′−a|. From (??), we have that the number of pairs ( fa, fa′) considered in Section 3.1 is at

most
(logx)τ

log logx
,

where τ = log2. We use this to compute the number of repeated integers counted in Step 2 below:

∑
a6=a′∈A0

a,a′≤(logX)
τ
2

|Ha∩Ha′ | � X
log logX

max
a6=a′∈A0

a,a′≤(logX)
τ
2

(
∏

p| |a−a′ |
p≡3(4)

(
1+

1
p

))

� X
log logX

as desired. �

Combined with Lemma 3.1, we have

κ(P,X) >
c′X

(logX)τ ′
− c′′X

log logX
∼ cX

(logX)τ ′

where τ ′ = 1−log2
2 = 0.153 . . . and c is a constant depending on P as desired.

While this method is promising in attempting to prove a result towards positive density, it would

require some careful analytic fine-tuning in each step in order to perhaps produce the result conjec-

tured in [GLMWY].

APPENDIX

In this section we follow [L1] to clarify which integers are represented by the binary quadratic

forms fa described in Section 2. This is meant to clarify why forms fa and fa′ represent approx-

imately the same integers less than X for a 6= a′ as in the previous sections. We begin by noting

that, given an integer γ represented by some symmetric binary quadratic form of determinant −δ 2,

if pr||γ and p is congruent to 3 mod 4, we must have that the maximal power r of p dividing γ is

even.

Lemma 3.4. Let fa(x,y) = Ax2 + 2Bxy + cy2, with the discriminant B2 −AC = −δ 2 for δ > 0.

Suppose n ∈ Z is represented by fa, and let p|n denote a prime not dividing δ , with p∼= 3 (4). Then

we have that n = n′p2v, where p 6 |n′ and v is an integer.
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Proof. We diagonalize the form fa′ to

F(x,y) = A′x2 +C′y2,

where we know A′C′ = a2. Let p be a prime as above. Since p 6 |δ , we have p does not divide either

A′ or C′. Now suppose

A′x2 +C′y2 ≡ 0 (pw),

for some pair of integers (x,y). If p|x and p|y, we have that w must be even, and we are done.

Suppose this is not the case. Then without loss of generality we have that p 6 |y, and there exists

an integer z such that

yz≡ 1 (pw),

and so we have

A′(xz)2 +C′(yz)2 ≡ 0 (pw),

or

A′(xz)2 ≡−C′ (pw).

Since p 6 |A′, there is an integer (A′)−1 such that (A′)−1A′ ≡ 1 (p), and we rewrite the equation above

as

(3.4) (xz)2 ≡−(A′)−1C′ (pw).

Since A′C′ = a2, we have that −(A′)−1C′ =−((A′)−1)2a2. This, together with (3.4), implies −1 is

a square modulo pw, and so w must be even. �

With Lemma 3.4 in mind, we now specify exactly which integers are represented by the form fa.

Proposition 3.5. Let fa be a binary quadratic form as before, with discriminant −δ 2. Then if

fa(x,y) = N for some integers x and y where N is relatively prime to a, we have that can be written

as N = v2n, where n is square free and has no prime divisors congruent to 3 modulo 4.

Proof. We begin, again, by diagonalizing our form to

F(x,y) = A′x2 +C′y2.

Since n has no prime divisors congruent to 3 mod 4, we know that
(−1

n

)
= 1. In particular, this

means that

−δ
2 ≡ w2 (n)
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for some integer w. We rewrite this as

nk−δ
2 = w2, or

nk−w2 = δ
2.

So the binary form F ′(x,y) = nx2 + wxy + ky2 has discriminant −δ 2, and is equivalent to F(x,y).

Since F ′ represents n in the obvious way, we have that F represents it as well. Thus F will represent

any integer of the form v2n above. �

Note that the integers represented by fa in Proposition 3.5 depend minimally on a – the only

constraint is that the integers represented by fa have to be relatively prime to a. Thus a binary

quadratic form of discriminant −a2 will represent almost the same integers as a binary quadratic

form of discriminant −a′2, the difference coming only from the prime divisors of a and a′, and we

have what we want.
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