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ABSTRACT. An Apollonian circle packing (ACP) is an ancient Greek construction which is made by

repeatedly inscribing circles into the triangular interstices in a Descartes configuration of four mutually

tangent circles. Remarkably, if the original four circles have integer curvature, all of the circles in the

packing will have integer curvature as well. In this paper, we compute a lower bound for the number

κ(P,X) of integers less than X occurring as curvatures in a bounded integer ACP P, and prove a con-

jecture of Graham, Lagarias, Mallows, Wilkes, and Yan that the ratio κ(P,X)/X is greater than 0 for X

tending to infinity.

1. INTRODUCTION

In the first picture in Figure 1 there are three mutually tangent circles packed in a large circle on

the outside, with four curvilinear triangles in-between – such a configuration of circles is called a

Descartes configuration, and is the starting point for a bounded Apollonian circle packing (ACP).

One may also consider is an unbounded Apollonian circle packing in which the original Descartes

configuration consists of four circles which are all externally tangent to each other, or where one or

two of the circles are in fact straight lines. One such configuration is depicted in the first picture

of Figure 2 – the two parallel lines can be thought of as circles of infinite radius tangent at infinity.

This is the only kind of unbounded packing we consider. Once a Descartes configuration is given,

one constructs an ACP by inscribing a circle into each of the four triangular interstices in the original

Descartes configuration as in the second picture of both Figure 1 and Figure 2. This results in 12 new

triangular interstices which are in turn filled with circles. An ACP is then a packing of infinitely many

circles obtained by continuing this process indefinitely.

We note that this construction is well defined once the original four circles are given. An old

theorem (circa 200 BC) of Apollonius of Perga states that there are precisely two circles tangent to all

of the circles in a triple of mutually tangent circles or lines. It follows that each triangular interstice

arising in the construction above can be packed with precisely one circle.

Key words and phrases. Apollonian packings, number theory, quadratic forms, sieve methods, circle method.
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!           Generation 1                     Generation 2    Generation 3

FIGURE 1. Bounded Apollonian circle packing

! !            !              Generation 1                                                                                               Generation 2

FIGURE 2. Unbounded Apollonian circle packing

A remarkable feature of these packings, believed to be noted first by Nobel Prize Laureate F. Soddy

in 1936, is that if any quadruple of mutually tangent circles in an ACP have integer curvature (recipro-

cal of the radius), all of the circles in the packing will have integer curvature as well. Such a packing

is called an integer ACP, and a primitive integer ACP is one in which the curvatures of the circles in

the packing do not all share a factor greater than 1. One such primitive ACP, generated by starting

with circles of curvatures 1,2,2, and 3, is illustrated in Figure 3. We recall the following theorem

from [GLMWY] regarding unbounded integer ACP’s:

Theorem 1.1 (Graham, Lagarias, Malows, Wilks, Yan 2004). The only unbounded primitive integer

ACP is the packing depicted in Figure 4, generated by starting with circles of curvatures 0,0,1,1.

The packings in Figures 3 and 4 are in fact two of infinitely many primitive integer ACP’s (see

[F], section 1.2 for an explanation), and it is thus natural and interesting to consider several number-

theoretic questions related to such packings.

The various problems associated to the diophantine properties of integer ACP’s were first addressed

in [GLMWY] by the five authors Graham, Lagarias, Mallows, Wilks, and Yan. They make consid-

erable progress in treating these problems and ask several fundamental questions many of which are

now solved and discussed further in [S1], [F], [FS], and [KO].

In all of these papers, ACP’s are studied using a convenient representation of the curvatures appear-

ing in an ACP as maximum-norms of vectors in an orbit of a specific subgroup A of the orthogonal

group O(3,1). We introduce this group in Section 1.1 and will use it throughout. In regards to counting

the number of integers represented in a given ACP, Graham et. al. exploit the existence of unipotent

elements of A in [GLMWY] to establish the lower bound below for the number κ(P,X) of distinct
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FIGURE 3. Apollonian Circle Packing (−1,2,2,3)

FIGURE 4. Apollonian Circle Packing (0,0,1,1)

curvatures less than X of circles in an integer packing P:

(1.1) κ(P,X)�c1

√
X

where the notation

y�c z or y�c z

in this paper is taken to mean that there exists a constant c > 0 such that

y≥ cz or, respectively y≤ cz,

Graham et. al. suggest in [GLMWY] that the lower bound in (1.1) can be improved. In fact, they

conjecture that the integers represented as curvatures in a given ACP actually make up a positive

fraction of the positive integers N and provide experimental data in support of this.
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It is important to note that this question is different from one recently addressed in [KO] by Kon-

torovich and Oh about the number NP(X) of circles in a given packing P of curvature less than X .

This involves counting curvatures appearing in a packing with multiplicity, rather than counting every

integer which comes up exactly once as we do in this paper. In fact, the results in [KO] suggest that

the integers occurring as curvatures in a given ACP arise with significant multiplicity. Specifically,

Kontorovich and Oh find that NP(X) is asymptotic to c · xδ , where δ = 1.3056 . . . is the Hausdorff

dimension of the limit set of any Apollonian circle packing (see [?] for a discussion of the Hausdorff

dimension of ACP’s). Kontorovich and Oh’s techniques, however, do not appear to extend in any ob-

vious way to proving that the integers represented by curvatures in an ACP make up a positive fraction

in N.

As far as counting integers without multiplicity is concerned, in his unpublished letter to Lagarias

([S1]), Sarnak uses the existence of arithmetic Fuchsian subgroups of A to get a bound of

(1.2) κ(P,X)�c2

X√
logX

towards Graham.et.al.’s positive density conjecture. This method is the crucial starting point to the

argument in this paper, and we give a detailed exposition of it in Section 2. It was further improved to

yield a bound of

κ(P,X)�c3

X
(logX)ε

where ε = 0.150 . . . by the second author in a preprint [F1].

In this paper, we refine this Fuchsian subgroup method in a number of ways and settle the positive

density question of Graham et.al. in the following theorem:

Theorem 1.2. For an integer Apollonian circle packing P, let κ(P,X) denote the number of distinct

integers up to X occurring as curvatures in the packing. Then for X large there exists a constant c > 0

depending on P such that

κ(P,X)�c X

We treat this question by counting curvatures in different subpackings of a given ACP. Namely, we

fix a circle Ca0 of curvature a0 and investigate which integers occur as curvatures of circles tangent to

Ca0 . This gives the preliminary lower bound in (1.2) which was first proven by Sarnak in [S1]. The

essential observation which leads to this lower bound is that the set of integers appearing as curvatures

of circles tangent to Ca0 contain the integers represented by a shifted binary quadratic form

fa0(x,y)−a0

where fa0 has discriminant−4a2
0, which we introduce in (2.8) – its coefficients depend only on a0 and

the curvatures of the largest three circles tangent to Ca0 . This specific relationship between ACP’s and
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binary quadratic forms was also observed by Graham et. al. in Theorem 4.2 of [GLMWY], where

they note that primitive root quadruples1 (see (v) of Theorem 1.4) of Apollonian packings are in one-

to-one correspondence with a certain family of positive definite binary quadratic forms. They use this

relationship to analyze the number of primitive root quadruples whose smallest (negative) coordinate

is n – this is a different question from the one addressed in this paper. The binary forms of their

Theorem 4.2 are precisely the binary forms fa0 in this paper.

Our approach in Section 3 is to repeat the method for a subset of the circles which we find are

tangent to Ca0 in this way. Namely, denoting by

A0 = {a ∈ N | a≤ X , a = fa0(x,y)−a0 for some integers x,y},

we have that for every a ∈ A0 there is a circle of curvature a tangent to Ca0 . Fixing a circle Ca of

curvature a obtained in this way we count circles tangent to it by using the process above: we produce

a shifted binary quadratic form

fa(x,y)−a

whose coefficients again depend only on a and the curvatures of the largest four circles tangent to C

(see (3.1)). Notably, the discriminant of fa is −4a2 and so we can obtain a family of binary quadratic

forms of discriminant depending only on a, where a varies over A0. Our strategy is to count integers

represented by several forms in this family: we consider fa − a for a ∈ A0 in a suitably reduced

subset of [(logX)2,(logX)3] and count the integers ≤ X represented by fa−a for a in this subset (the

importance of taking this subset of A0 will become apparent in Section 3).

It is important to note that the integers represented by fa and fa′ for a 6= a′ are a subset of integers

which can be written as a sum of two squares since both forms have discriminant of the form −λ 2. In

fact, fa and fa′ represent practically the same integers (see [F1] for a more detailed discussion). It is

rather the shift of each form fa by a that makes the integers found in this way vary significantly. Our

final step is to give an upper bound on the number of integers in the intersection

{m represented by fa−a}∩{m′ represented by fa′ −a′}

In obtaining this upper bound, we count integers with multiplicity, which is a sacrifice we can afford to

make for the purpose of proving Theorem 1.2. We note that while this method proves that the integers

appearing as curvatures in a given integer ACP make up a positive fraction of all integers, we do not

strive to compute or optimize the fraction itself. There are conjectures as to what this fraction should

be (see the discussion on the local to global principle in ACP’s in [FS]), and proving a result towards

such conjectures would be very interesting.

1For a detailed discussion of root quadruples, see [GLMWY]. A root quadruple of a packing is essentially the quadruple of
curvatures of the four largest circles in the packing
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1.1. The Apollonian group. We recall an old theorem of Descartes which gives a relationship be-

tween the curvatures of four mutually tangent circles:

Theorem 1.3 (Descartes, 1643). Given four externally tangent circles of curvatures x1, x2, x3, and x4,

we have

(1.3) Q(x1,x2,x3,x4) = 2(x2
1 + x2

2 + x2
3 + x2

4)− (x1 + x2 + x3 + x4)
2 = 0

A proof of this can be found in [Cx]. This equation also holds for four mutually tangent circles

when three of the circles are internally tangent (or inscribed) to the fourth circle as in the case of

ACP’s. However, because the outside circle is internally tangent to the other three, we assign to it a

negative curvature in order for the equation to hold (see [GLMWY1] for a discussion of this). Note

that fixing three of the curvatures (say x2,x3,x4) above yields a quadratic equation which has two

solutions x1 = x+1 ,x
−
1 such that

x+1 + x−1 = 2(x2 + x3 + x4).

In fact, the circles Cx+1
and Cx−1

of curvatures x+1 and x−1 , respectively, are precisely the two circles

tangent to all three of the mutually tangent circles of curvature x2,x3, and x4.

Therefore, if we assign to every set of 4 mutually tangent circles in a packing P a vector v ∈ Z4 of

the circles’ curvatures, we can use Descartes’ equation to express any ACP as an orbit of the group A

generated by

(1.4) S1 =


-1 2 2 2

0 1 0 0

0 0 1 0

0 0 0 1

 S2 =


1 0 0 0

2 -1 2 2

0 0 1 0

0 0 0 1



S3 =


1 0 0 0

0 1 0 0

2 2 -1 2

0 0 0 1

 S4 =


1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 -1

 ,

acting on v. This group, called the Apollonian group, was introduced by Hirst in 1967 (see [H]). We

summarize the relevant properties of this group in the following theorem:

Theorem 1.4. Let A be the group generated by S1,S2,S3,S4 in (1.4), and let Q be as in (1.3).

(i) For 1≤ i≤ 4, we have S2
i = I, the identity.
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(ii) A is an infinite-index subgroup of the orthogonal group OQ(Z) fixing Q.

(iii) Q is of signature (3,1), so we have A ⊂ OR(3,1), the group of isometries of hyperbolic 3-

space H3. The group A can thus be realized as a group acting on H3.

(iv) Let (a,b,c,d) be the curvatures of some quadruple of mutually tangent circles in a packing

P. Then any quadruple (x1,x2,x3,x4) of curvatures of mutually tangent circles in the packing

is an element of the orbit A(a,b,c,d)t .

(v) A quadruple of curvatures of mutually tangent circles v = (a,b,c,d) with a+ b+ c+ d > 0

is defined to be a root quadruple if a ≤ 0 ≤ b ≤ c ≤ d and a+ b+ c ≥ d. Every ACP has a

unique root quadruple v.

The statements in (ii),(iii), and (iv) are proven in [F]. The notion of the root quadruple in (v) was

developed in [GLMWY], and its uniqueness for a given ACP is proven there as well.

From this point on, we denote by vP the root quadruple of the packing P, and assume that P is

primitive – the gcd of the coordinates of any w ∈ Avt
P in the orbit is 1.

We briefly discuss the action of A on hyperbolic 3-space here. We summarize the insightful de-

scription of this action from Section 2.2 of [KO]. We consider the model

H3 = {(x,y,z) ∈ R3 | z > 0}

with measure hich is bounded by C∪∞. In this model, we consider an ACP lying in C, and the action

of A is realized as follows.

For any triple of mutually tangent circles (C1,C2,C3) there is a unique dual circle or line which

passes through the tangency points of the three. The generators of A are precisely reflections in dual

circles of the packing P. Four such dual circles are drawn in dotted lines for the first generation of

a circle packing in Figure 5. The shaded circle on the inside is the image of the outside circle under

reflection through the smallest of the dual circles. The action of A on H3 is then realized as reflections

through the hemispheres lying above the dual circles (which are embedded in the boundary C∪∞

of H3) of the packing, and a fundamental domain for this action is the union of the exteriors of the

hemispheres lying above to the dual circles corresponding to the root quadruple of the packing. This

is further discussed in Section 2.2 of [KO]. This fundamental domain has infinite volume (see [F]),

which makes counting integers in the group’s orbit quite difficult.

We note, however, that A contains Fuchsian triangle subgroups generated by any three of the Si

above, which can be conjugated to subgroups of corresponding O(2,1)’s as we show in Section 2. To

this end, denote by Ai the subgroup of A generated by three of the four generators as follows:

(1.5) Ai := ({S1,S2,S3,S4}−{Si})
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FIGURE 5. Dual circles in an Apollonian circle packing

This group is generated by reflections in the three dual circles intersecting the ith circle in the root

quadruple and perpendicular to the initial circles in the packing; in particular, the ith circle Ci is fixed

under this action. In Section 2 we conjugate the action of A1 on H3 to the action of a lattice subgroup

Γ of OR(2,1) on H. In the context of the fundamental domain of A described above, Γ is acting on H
which is realized as the disk bounded by the fixed circle Ci sitting in C as above and its fundamental

domain is then a triangle bounded by the three dual circles intersecting Ci; since this is a hyperbolic

triangle in which all angles are 0, by the Gauss-Bonnet formula it has hyperbolic area π (see Theorem

1.4.2 of [K]).

2. A PRELIMINARY LOWER BOUND

In this section, we recall the method used in [S1] to count integers appearing in a given integer orbit

of the group Ai in (1.5). This produces a preliminary lower bound on the number κ(P,X) of integers

less than X occurring as curvatures in an Apollonian packing P.

Lemma 2.1. Let vP be the root quadruple of the packing P, and let Ai be as in (1.5). For X ∈ N, let

Ki(P) = {n ∈ N | n≤ X , n = |x j| for some 1≤ j ≤ 4, for some x = (x1,x2,x3,x4)
t ∈ Aivt

P}

be the set of positive integers appearing in the orbit Aivt
P.

(1) If P is bounded, write vP = (a0,b,c,d), and let Ca0 denote the circle of curvature a0 in this

quadruple.

(2) If P is unbounded, write vP = (b,c,d,a0) and let Ca0 denote the circle of curvature a0 in this

quadruple.
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Let fa0(ζ ,ν) = A0ζ 2 +2B0ζ ν +C0ν2, where

(2.1) A0 = b+a0,B0 =
a0 +b+d− c

2
,C0 = d +a0

and let

(2.2) A0 = {a ∈ N | a≤ X , a = fa0(ζ ,ν)−a0 for some ζ ,ν ∈ Z,gcd(ζ ,ν) = 1}

If P is as in (1), we have

A0 ⊂ K1(P).

If P is as in (2), we have

A0 ⊂ K4(P).

Proof. For P bounded we have that the first coordinate a0 of vP is fixed throughout the orbit A1vt
P.

The other coordinates of points in the orbit of A1 vary to satisfy

(2.3) Q(a0,x2,x3,x4) = 2(a2
0 + x2

2 + x2
3 + x2

4)− (a0 + x2 + x3 + x4)
2 = 0,

where Q is the Descartes form in (1.3). In the case of an unbounded packing P, the fourth coordinate a0

is fixed throughout the orbit A4vt
P, and the other coordinates then vary to satisfy Q(x1,x2,x3,a0) = 0.

To prove Lemma 2.1, we note that A1, respectively A4 in the unbounded case, is isomorphic to a

subgroup of OR(2,1). We show this by conjugating A1 (or A4) to a group Γ which is obviously

isomorphic to a subgroup of OR(2,1). We do this in detail for the case of the bounded packing below,

and note that the proof is identical in the unbounded case.

A change of variables y = (y2,y3,y4) = (x2,x3,x4)+ (a0,a0,a0) allows us to rewrite the equation

in (2.3) as

(2.4) g(y)+4a2
0 = 0,

where g(y) = y2
2+y2

3+y2
4−2y2y3−2y2y4−2y3y4. In the context of the orbit, this change of variables

is equivalent to conjugating the group A1 to A′1 =W−1A1W where

W =


1 0 0 0

-1 1 0 0

-1 0 1 0

-1 0 0 1


The group A′1 is isomorphic to the group Γ⊂ GL3 generated by -1 2 2

0 1 0

0 0 1

 ,

 1 0 0

2 -1 2

0 0 1

 ,

 1 0 0

0 1 0

2 2 -1

 .
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The group Γ fixes g in (2.4), so Γ⊂ Og(Z), the orthogonal group fixing g. Note that the orbit A1vt
P is

related to the orbit Γ(v′)t where

v′ = (b+a0,c+a0,d +a0)

by

A1vt
P = (a0, [v′− (a0,a0,a0)]Γ

t)t

where Γt = {γ t | γ ∈ Γ}, so the number of integers appearing in the orbit of A1 is the same as the

number of integers in the orbit of Γ. We change variables once again by letting

y2 = A, y3 = A+C−2B, y4 =C.

Claim: In the notation above, A,B,C ∈ Z and gcd(A,B,C)=1.

Proof. We first prove the integrality: since a0,x2,x3,x4 ∈ Z, we have yi = xi + a0 ∈ Z for 2 ≤ i ≤ 4.

Therefore A,C,2B ∈ Z. To see that B ∈ Z, note that Q(x1,x2,x3,x4) = 0 and gcd(x1,x2,x3,x4) = 1

implies that exactly two of the xi must be even (see [S] for a detailed proof). Therefore we must have

that exactly one of y2,y3,y4 is even, and so 2B = y2 + y4− y3 is even as well, giving B ∈ Z.

To prove primitivity, recall that gcd(a0,x2,x3,x4) = 1. Suppose gcd(y2,y3,y4) = q > 1. So

(a0,x2,x3,x4) = (a0,y′2q−a0,y′3q−a0,y′4q−a0) for some y′2,y
′
3,y
′
4 ∈ Z

If q|a0, we have a contradiction to the primitivity of the packing. Suppose q 6 |a0. Then we have

Q(a0,x2,x3,x4)≡ 4a2
0 6≡ 0 (mod q)

and so we have a contradiction to (2.3). Therefore gcd(y2,y3,y4) = 1, and so gcd(A,B,C) = 1 as

well. �

In this way, the action of Γ on v′ is related to the action of a group Γ′ on (A0,B0,C0)
t where

A0 = b+a0,B0 =
a0 +b+d− c

2
,C0 = d +a0

and Γ′ is generated by

s1 =

 1 -4 4

0 -1 2

0 0 1

 ,s2 =

 1 0 0

0 -1 0

0 0 1

 ,s3 =

 1 0 0

2 -1 0

4 -4 1

 .

Under this change of variables, the expression in (2.4) becomes

(2.5) ∆(A,B,C) = 4(B2−AC) =−4a2
0

and thus Γ′ is a subgroup of O∆(Z), the orthogonal group preserving ∆. Let Γ̃ denote the intersection

Γ′∩SO∆(Z). The spin double cover of SO∆ is well known (see [EGM]) to be SL2, and is obtained via
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the homomorphism

(2.6)

ρ : SL2(Z) −→ SO∆(Z)(
α β

γ δ

)
ρ7−→ 1

αδ−βγ
·


α2 2αγ γ2

αβ αδ +βγ γδ

β 2 2βδ δ 2


written here over Z as this is the situation we work with.

Claim: Let Γ̃ and ρ be as before. Let I denote the identity matrix, and let

Λ(2) = {M =

(
a b

c d

)
| ad−bc = 1, M ≡ I (mod 2)}

be the principal congruence 2-subgroup of SL2(Z). Then the preimage of Γ̃ in SL2(Z) under ρ is

Λ(2).

Proof. Note that Λ(2) is generated by

M1 =

(
1 0

-2 1

)
and M2 =

(
1 -2

0 1

)
Since ρ(M1) = s2s1, and ρ(M2) = s2s3 where s1,s2,s3 are the generators of Γ′ above, we have that

(2.7) Λ(2)⊂ ρ
−1(Γ̃)

Recall that since the fundamental domain of A1 acting on H is a hyperbolic triangle where all the

angles are 0, the hyperbolic area of A1\H is π . Since SO∆(Z)
⋂

Γ′ contains exactly those elements of

Γ′ which have even word length when written via the generators of Γ′, the group Γ̃ is of index 2 in Γ′.

Therefore the hyperbolic area of Γ̃\H is 2π , which is also known to be the hyperbolic area of Λ(2)\H
(see [K]). Combining this with (2.7), we have that the preimage of Γ̃ in SL2(Z) is precisely Λ(2) as

desired. �

Recall that we would like to count the integer values of y2,y3, and y4 – in terms of the action of Γ′,

we are interested in the set of values A,C, and A+C− 2B above. By the claim above, we have that

the ρ−1(Γ̃) consists of matrices in SL2 of the form(
2k+1 2l

2m 2n+1

)
and under the spin homomorphism in (2.6) we have that the values of A,A+C−2B, and C respectively

are of the form

• A0(2k+1)2 +2B0(2k+1)(2m)+C0(2m)2
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• A0(2k+1−2l)2 +2B0(2k+1−2l)(2m−2n−1)+C0(2m−2n−1)2

• A0(2l)2 +2B0(2l)(2n+1)+C0(2n+1)2

Note that the collection of all three of these is precisely the set of integers represented primitively by

the binary quadratic form

(2.8) fa0(ζ ,ν) = A0ζ
2 +2B0ζ ν +C0ν

2,

where (ζ ,ν) = 1, and A0,B0,C0 are as in (2.1). The vectors in the orbit of A1 are of the form (a0,A−
a0,A+C−2B−a0,C−a0), and so the integers appearing as coordinates of these vectors are at least

those which can be written in the form

(2.9) fa0(ζ ,ν)−a0,

where fa0 is as in (2.8), so for a bounded packing P we have A0 ⊂ K1(P) as desired. The proof in the

case of an unbounded packing P that A0 ⊂ K3(P) runs identically. �

By Lemma 2.1, we have

(2.10) κ(P,X)� #{m ∈ N | fa0(x,y)−a0 = m for some x,y ∈ Z,(x,y) = 1}

and we need only to count the integers represented by fa0 in order to get a bound on κ(P,X). We note

that the discriminant of the form fa0 is

(2.11) D( fa0) = (2B0)
2−4A0C0 =−4a2

0

and for a0 6= 0 this is not a square. The problem of counting integers represented by a binary quadratic

form of discriminant −D < 0 is classical. For example, we have the following theorem from [Be]:

Theorem 2.2 (Bernays, 1912). Let f be a positive definite binary quadratic form over Z of dis-

criminant −D, where D is a positive integer. Denote by BD(X) the number of integers less than X

represented by f . Then

BD(X) =
c′ ·X√
logX

+O
(

X
logX

)
,

where

πc′2 = ∏
q≡3 (4)

q6|D

(
1− 1

q2

)−1

∏
p|D

(
1− 1

p

)
∞

∑
n=1

(
−D
n

)
n−1

where
( ·
·
)

is the Jacobi-Kronecker symbol.

Note that Theorem 2.2 paired with (2.10) immediately yields the preliminary lower bound on

κ(P,X) from [S1]:
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Proposition 2.3 (Sarnak, 2007). For an integer Apollonian circle packing P, let κ(P,X) denote the

number of distinct integers less than X occurring as curvatures in the packing. Then for some c2 > 0

we have

κ(P,X)�c2

X√
logX

.

3. PROOF OF THEOREM 1.2

Our computation in Section 2 concerns only those integers which occur as curvatures of circles

which are tangent to a fixed circle Ca0 in P. It is thus natural to count some of the omitted curvatures

here. Specifically, we repeat the method from Section 2 several times, fixing a different circle C each

time and counting the integers occurring as curvatures of circles tangent to C.

Recall that to prove Proposition 2.3 we fixed a circle of curvature a0, and associated curvatures of

circles tangent to it with the set A0 of integers represented by fa0(x,y)− a0. Let a ∈ A0 such that

a 6= 0. By Lemma 2.1, there is a circle Ca of curvature a which is tangent to Ca0 , and, without loss of

generality2, there is a vector va = (a,b′,c′,d′) such that vt
a ∈ Avt

P.

Lemma 3.1. Let a ∈A0, a 6= 0, and let P, Ca, and va be as above. Let

(3.1) fa(x,y) = A′0x2 +2B′0y2 +C′0z2

where

A′0 = b′+a,B′0 =
a+b′+d′− c′

2
,C′0 = d′+a

and let Sa denote the set of integers less than X represented by fa−a:

(3.2) Sa = {n ∈ N |n≤ X ,n = fa(x,y)−a, x,y≥ 0, gcd(x,y) = 1}

Then the set of integers ≤ X which occur as curvatures of circles tangent to Ca in the packing P are at

least those which are in the set Sa.

This can be seen immediately by replacing the root quadruple vP in Lemma 2.1 by va.

Note that the discriminant of fa is−D =−4a2 and that the sets Sa depend only on a0, the curvature

of the original circle Ca0 which we fixed. One important consideration in counting the integers ≤ X

represented by the forms fa (i.e. computing |Sa|) is that their discriminants can be very large with

respect to X , and thus many of the represented integers may be > X . In particular, the count in

Theorem 2.2 is not uniform in D so we use more recent results of Blomer and Granville in [BG]

2a may not be in the first coordinate of a vector in the orbit of A. However, if it appears in the ith coordinate where i 6= 1 we
simply consider orbits Aivt

a in what follows rather than A1vt
a and the argument runs analogously.
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which specify how the number of integers less than X represented by a binary quadratic form depends

on the size of the discriminant of the form3.

By Lemma 3.1, we have that

(3.3) κ(P,X)�

∣∣∣∣∣ ⋃
a∈A0

Sa

∣∣∣∣∣
We wish to compute this bound using the first step of inclusion-exclusion:∣∣∣∣∣ ⋃

a∈A0

Sa

∣∣∣∣∣≥∑
a
|Sa|−∑

a,a′
|Sa∩Sa′ |

In Section 3.1, we use the results in [BG] to produce a lower bound on ∑a |Sa| for the a’s we consider.

We also compute an upper bound on ∑a,a′ |Sa ∩ Sa′ | for a 6= a′ in Section 3.2, and thus get a lower

bound for κ(P,X) from (3.3).

A crucial ingredient to computing this and proving Theorem 1.2 (that the integers appearing as

curvatures in a given ACP make up a positive fraction of N) is the balance between these lower and

upper bounds – for example, the more sets Sa we choose to include in our count, the bigger the lower

bound on ∑a |Sa|. However, choosing too many such sets will also increase the upper bound on the

second sum ∑a,a′ |Sa∩Sa′ |. In fact, it is possible to choose so many sets Sa that the upper bound on the

intersections outweighs the lower bound on the sizes of Sa. In Section 3.1 we specify how we choose

the a’s used in our computation, and compute the first sum, ∑a |Sa|. In Section 3.2, we compute an

upper bound on ∑a,a′ |Sa∩Sa′ | for a 6= a′ to prove Theorem 1.2.

3.1. Integers represented by multiple binary quadratic forms. In this section, we evaluate the

sum ∑a |Sa|, choosing a’s in a subset of A0 in order to ensure that we obtain a positive fraction of X

in our final count. Specifically, we consider a ∈A0 such that

(logX)2 ≤ a≤ (logX)3

This interval is chosen to give us the desired lower bounds in conjunction with results in [BG] – this

will become clear in the computations preceding (3.13). We would like to further reduce the set of

a’s we consider so that the bounds on the size of the intersections of sets Sa are not too large. To

do this, we first partition the interval [(logX)2,(logX)3] into dyadic ranges [2k,2k+1] and select a’s

within these ranges.

3The results of Blomer and Granville concern quadratic forms of square-free determinant, but the authors note in section 9.3 of
[BG] that the same can be done for binary quadratic forms of non-fundamental determinant as well.
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Namely, we consider A0 ∩ [2k,2k+1] where (logX)2 ≤ 2k,2k+1 ≤ (logX)3. The size of this set

depends only on a0, the curvature of the original circle we fixed. By Theorem 2.2, we have

(3.4)
∣∣∣A0∩ [2k,2k+1]

∣∣∣� 2k
√

k

where the implied constant depends on a0. We partition each dyadic interval [2k,2k+1] into intervals

[2k + n ·η 2k
√

k
,2k +(n+ 1) ·η 2k

√
k
] of length η

2k
√

k
, where 0 < η < 1 is a fixed parameter whose im-

portance will become apparent in Proposition 3.4. We note that the average over 0 ≤ n ≤
√

kη−1 of

cardinalities of the corresponding subsets of A0 is

(3.5) En

(∣∣∣A0∩ [2k +n ·η 2k
√

k
,2k +(n+1) ·η 2k

√
k
]
∣∣∣)� η

2k

k

by (3.4). Thus for every value of k there exists an 0≤ n≤
√

kη−1 for which the intersection in (3.5)

contains� η
2k

k integers. For simplicity of notation, we assume without loss of generality4 that n = 0,

and define A (k) to be

(3.6) A (k) = A0∩ [2k,2k +η
2k
√

k
]

where we have

(3.7) |A (k)| � η
2k

k

up to a constant which depends only on a0. Denote the union of these subsets by A :

(3.8) A =
⋃

A (k)

The results in [BG] imply the following lemma regarding the integers represented by quadratic forms

associated with a ∈A .

Lemma 3.2. Let A be as in (3.8) and Sa be as in (3.2). Then we have

∑
a∈A
|Sa| � ηX

To prove Lemma 3.2, we recall the notation and relevant theorem from [BG]. Let f be a binary

quadratic form of discriminant −D, and let r′f (n) be the number of representations5 of n by f :

(3.9) r′f (n) = #{(m1,m2) ∈ Z2−{0}| gcd(m1,m2) = 1, f (m1,m2) = n}

4One can in fact extend Theorem 2.2 to show that this holds for every n. Friedlander and Iwaniec do this for a0 = 1 in Theorem
14.4 of [FI]. However, it is not necessary here.
5In [BG], the authors consider r f (n), the number of inequivalent representations of n by f , which is slightly different from
r′f (n). Note, however, that (r f (n))0 = (r′f (n))

0, so the notation U0
f (X) in (3.10) is the same in this paper as it is in [BG].
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Let r′f (n)
0 = 1 if r′f (n)> 0, and 0 otherwise. Denote by

(3.10) U0
f (X) = ∑

n≤X
r′f (n)

0

the number of integers less than X represented by f , counting without multiplicity. In [BG], Blomer

and Granville compute bounds for U0
f (X) for D in three ranges between 0 and X . These ranges are de-

fined in terms of the class number h of the binary quadratic form f and by g, the number of genera. De-

note by L(1,χ−D) the Dirichlet L-function at 1 with character χ−D(n) =
(−D

n

)
where

( ·
·
)

is the Jacobi-

Kronecker symbol, and let φ be the Euler totient function. Letting ` = `−D = L(1,χ−D)(φ(D)/D),

Blomer and Granville create a parameter

κ =
log(h/g)

(log2)(log(`−D logX))

where h/g = D1/2+o(1). Their bounds for U0
f (X) are then uniform in D for each range below (see

Theorem 3.3):

• 0≤ κ ≤ 1/2

• 1/2 < κ < 1

• 1≤ κ � logD
log logD

In the first and last range, they are able to compute both an upper and lower bound on U . However

they prove only an upper bound for U0
f (X) in the case that D is in the middle range, which is not

suitable for our purposes. The lower bound for U0
f (X) for a form f of discriminant −D where D is in

the smallest range is essentially Bernays’ result in Theorem 2.2, and is used to show that

κ(P,X)� X
(logX)ε

in [F1]. Our results and the statement in Lemma 3.2 depend on Blomer and Granville’s lower bound

for U0
f (X) where f is of dicriminant −D and D is in the third range above. Specifically, we use

Theorem 2 from [BG], which is summarized below.

Theorem 3.3. (Blomer, Granville): Let f be a binary quadratic form of discriminant −D, and let

U0
f (X) be as before. Let G be the group of genera of binary quadratic forms of discriminant −D.

Denote by s the smallest positive integer that is represented by f , and by u the smallest positive

integer represented by some form in the coset f G . Then

(3.11) U0
f (X) = π ·

(
1− 1

2u

)
· X√

D
+E0(X ,D)

where

(3.12) E0(X ,D)�
√

X
s
+ τ(D) ·

(
X logX

D
+

X

D
3
4

)
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where τ(D) is the number of prime divisors of D, and the implied constant does not depend on D.

With this in mind we are ready to prove Lemma 3.2.

Proof of Lemma 3.2:

We use Theorem 3.3 to count the integers less than X represented by forms of discriminant −D

where D is a power of logX in our case. Recall that

fa(x,y) = αx2 +2βxy+ γy2

is of discriminant −D =−4a2. In particular, since (logX)2 ≤ a≤ (logX)3, we have that

(logX)4 ≤ D≤ (logX)6

and the number of prime divisors of D is

τ(D)� log logX ,

and so

E0(X ,D)� X log logX
(logX)3 +(logD) · X

D
3
4

Thus we have that the error E0(X ,D)� X
D3/4−ε

for any ε > 0, and thus Theorem 3.3 implies

(3.13) U0
f (X)� X√

D

where the implied constant does not depend on D. Since D = −4a2, it follows from (3.13) that the

number of distinct values less than X represented by fa is� X
a and we have

∑
a∈A
|Sa| � ∑

a∈A

X
a

� η ·X ·∑
2k+1<(logX)3

2k>(logX)2

1
k

� η ·X(3.14)

as desired. �

The sum in Lemma 3.2 is the lower bound on the number of integers we count by considering the

quadratic forms associated with a ∈A . In order to prove Theorem 1.2, we obtain an upper bound on

the number of integers we have counted twice in this way in the next section.

3.2. Integers in the intersections. To prove Theorem 1.2 we would like to show

(3.15)

∣∣∣∣∣ ⋃
a∈A

Sa

∣∣∣∣∣� X
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since this union is a subset of all curvatures less than X in the packing P. By Lemma 3.2, we may

estimate the size of this union as follows:∣∣∣∣∣ ⋃
a∈A

Sa

∣∣∣∣∣ ≥ ∑
a∈A
|Sa|− ∑

a6=a′∈A
|Sa∩Sa′ |

� ηX− ∑
a6=a′∈A

|Sa∩Sa′ |(3.16)

We need only to determine an upper bound for the last sum above. We do this by counting points

(x,y,x′y′) in a box on the quadric

fa(x,y)− fa′(x
′,y′) = a′−a

for each a 6= a′ ∈ A . The region in which we count these points is induced by the condition that

fa(x,y)< X . Namely, rewriting the binary form fa as

(3.17) fa(x,y) =
(αx+βy)2 +4a2y2

α

we can define a region

(3.18) Ba = {(x,y) ∈ R2 s.t. |αx+βy| �
√
|α| and |y| �

√
|α|
a
}

so that fa(x,y)� 1 for (x,y) ∈ Ba, and fa(x,y)� X for every (x,y) ∈
√

X Ba as desired. Therefore,

the region in R4 over which we consider the forms fa− fa′ will be

Ba,a′ = (
√

XBa×
√

XBa′)∩Z4

With this notation, we are ready to prove the following proposition.

Proposition 3.4. Let A , Sa, Sa′ , η , and X be as before. Then there exists c′′ > 0 depending only on

a0 such that

(3.19) ∑
a 6=a′∈A

|Sa∩Sa′ | ≤ c′′η2X

Note that, since we chose 0 < η < 1, we have η2 < η , and so this upper bound on the size of the

intersection of the sets Sa−a is small compared to the count in Lemma 3.2.

Proof. We note that the expression inside the sum has an upper bound

|Sa∩Sa′ |(3.20)

≤ |{(x,y,x′,y′) ∈Ba,a′ | fa(x,y)− fa′(x
′,y′) = a−a′}|

Although bounding (3.19) in this way involves counting the integers in Sa∩Sa′ with multiplicity, our

analysis shows that this sacrifice is in fact not too expensive to our final count. We thus consider the
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quaternary quadratic form

F(x,y,x′,y′) = fa(x,y)− fa′(x
′,y′)

with discriminant ∆ = (β 2−αγ)(β ′2−α ′γ ′) = 16a2(a′)2. To obtain an upper bound on the number

of points in x∈Ba,a′ for which F(x) = a′−a, one can use the well developed circle method following

Kloosterman in [Kl] and Esterman in [E] or modular forms (see [DRS]). Both methods would yield

what we want – the latter would give the best results but is not as flexible as the former for our purposes

since we wish to vary the parameters a and a′ which is more straightforward in the circle method.

Heath-Brown’s Theorem 4 in [HB] and Niedermowwe’s Theorem 5.6 in [N] determine representation

numbers of a fixed indefinite quadratic form6. Since our a,a′ are all a small power of logX , the proofs

of these theorems can be manipulated slightly to yield the following lemma regarding representation

numbers of all the indefinite quaternary quadratic forms we consider:

Theorem 3.5. Let F be as before, and let (logX)2 ≤ a,a′ ≤ (logX)3. Let χa,a′ denote the character-

istic function on the region Ba,a′ , and let

Rχa,a′ (a−a′) = ∑
x∈Z4

F(x)=a−a′

χa,a′(x).

Let ∆ be as above. Then we have

Rχa,a′ (a−a′)

= |Iχa,a′ (a−a′)| · |S(a−a′)|+O
(

X ·∆100

(logX)λ

)
(3.21)

where the first factor is the singular integral

(3.22) Iχa,a′ =
∫

∞

−∞

[∫
R4

χa,a′(x)e(z(F(x)−a+a′))dx

]
dz

and the second factor is the singular series

(3.23) S(a−a′) = ∏
p

σp

where

(3.24) σp = lim
k→∞

p−3k ·#{x ∈ (Z/pZ)4 s.t. F(x)≡ a−a′ (pk)}

and e(z) = e2πiz.

In the error term in (3.21), λ is an arbitrary large fixed constant. With more effort we can in fact

get a power saving here by using modular forms – while this would yield the best result, the methods

6Note that in [HB] one considers representations of an integer m by F where m is asymptotic to the scaling factor P of the
unscaled domain B (in our case B = Ba×Ba′ and P =

√
X), while in [N] m is any nonzero integer.
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in [HB] and [N] suffice. In particular, the argument in [N] lends itself well to our consideration of

the quadratic form F , which has a discriminant of size (logX)k. The error term in Niedermowwe’s

Theorem 5.6 consists of a power saving in X , and a careful examination of the proof shows that the

dependency on the discriminant of the form is absorbed into the error term since it is only logarithmi-

cally large – this is reflected in (3.21) via a power of the discriminant ∆ of F . It is similarly important

here that the distortion of Ba and Ba′ with respect to the standard cube discussed in [HB] and [N] is

logarithmic in X .

To prove Proposition 3.4 it remains to evaluate the singular integral and singular series in (3.22)

and (3.23). For a set P ⊂ R4, let V(P) denote the measure of P. From the definition of fa and Ba in

(3.17) and (3.18), we have

Iχa,a′ � lim
ε→0

1
ε
·V
(
{(x,y,x′,y′) ∈

√
XBa×

√
XBa′ | | fa(x,y)− fa′(x

′,y′)−a+a′|< ε}
)

� lim
ε→0

1
ε
· ε√
|α|X

·
√
|α|X
a
·

√
X
|α ′|
·
√
|α ′|X
a′

� X
aa′

(3.25)

To evaluate the singular series S(a−a′) we prove the following lemma.

Lemma 3.6. Let S(a−a′) be the singular series defined in (3.23). We have

S(a−a′)� ∏
p|aa′(a−a′)
p 6|(a,a′)

(
1+

1
p

)
·2ω((a,a′))

where ω(n) denotes the number of distinct prime factors of n.

Proof. We compute an upper bound for the expression in the limit in (3.24) by letting k = 1 since the

expression in the limit decreases with k. Note that if p|(a,a′), we have F is not degenerate modulo p

by the primitivity of the packing and the definition of the coefficients of fa in (??). Therefore

σp < p−3 ·#{x ∈ (Z/pZ)4 s.t. F(x)≡ 0 (p)},

and over Fp, the number of nontrivial representations of 0 by F is bounded above by 2p3 (see [C]

p. 31 ex.13, for example), so σp is bounded above by 2 in this case. In the other cases, we use

exponential sum estimates – see Chapter 20.2 of [IK] for a detailed explanation of the equivalence of

the expression below to that in (3.24). Bounding σp from above by letting k = 1 as before, we have

(3.26) p3 ·σp <
1
p

p−1

∑
r=0

[
∑
x,y

ep(r fa(x,y))
][

∑
x′,y′

ep(−r fa′(x
′,y′))

]
ep(r(a−a′))

where ep(z) = exp( 2πiz
p ). There are several cases to consider:
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Case 1: p does not divide aa′(a−a′):

If we diagonalize fa and fa′ , we obtain

p3 ·σp < p3 +
1
p

p−1

∑
r=1

(
α̃r
p

)2(
α̃ ′r
p

)2

p2ep(r(a−a′)) = p3 +o(p)

since (a−a′, p) = 1.

Case 2: p|a−a′ and does not divide aa′:

In this case we have p3 ·σp < p3 +o(p2).

Case 3: p|a and p 6 |a′:

Diagonalizing fa′ , we obtain

p3 ·σp < p3 +
1
p

p−1

∑
r=1

(
αr
p

)
p
√

p · p · ep(r(a−a′))< p3 +o(p2)

From these bounds and Lemma 3.8, we obtain the desired result in Lemma 3.6. �

Combining our computation of the singular integral in (3.25) and the bound on the singular series

in Lemma 3.6, the result of Niedermowwe in Theorem 3.5 yields

(3.27) |Sa∩Sa′ | �
X

aa′
· ∏

p|aa′(a−a′)
p6|(a,a′)

(
1+

1
p

)
·2ω((a,a′))

where ω(n) is the number of distinct prime factors of n. Thus to evaluate the last sum in (3.16), we

count the number of a ∈ A in progressions a ≡ r mod q. To this end, we recall Theorem 14.5 from

[FI] of Friedlander and Iwaniec regarding sums of squares in progressions below.7.

Theorem 3.7. (Friedlander, Iwaniec): Let b(n) be a characteristic function defined as

b(n) =

{
1 if n = s2 + t2 for some s, t ∈ Z
0 otherwise

and let

B(x,q,a) = ∑
n≤x

n≡a(q)

b(n)

7Note that the set of integers in the interval [2k,2k +η
2k
√

k
] which can be written as sums of two squares contains the a ∈A (k)

in progressions a≡ r (q), since A (k) is a set of integers represented by a binary quadratic form of discriminant−δ 2. This count
is therefore an upper bound on what we want.
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For 2≤ q≤ x, (a,q = 1), and a≡ 1 mod (4,q) we have

B(x,q,a) =
cq

q
· x√

logx

[
1+O

[(
logq
logx

) 1
7
)]

where the implied constant is absolute and cq� log logq is a positive constant.

We note that the statement in Theorem 3.7 is much stronger than what we need – we require only

an upper bound on B(x,q,a), which could be proven using an upper bound sieve. Since our set A

is obtained via the fixed quadratic form of discriminant −4a2
0 from Section 2, such an upper bound

implies the following in our case.

Lemma 3.8. Let A , X, and η be as before. Then we have

∑
a∈A

a≡r (q)

1
a
� log logq

q
·η

where 1 < q < logX is a square-free integer.

Proof. With the definition of A (k) in (3.6), we may bound above the sum in Lemma 3.8 as a sum over

k for which (logX)2 ≤ 2k,2k+1 ≤ (logX)3:

(3.28) ∑
k

1
2k ∑

a∈A0

a∈[2k,2k+η
2k√

k
]

a≡r (q)

1

By Theorem 3.7, the inner sum is bounded above (up to a constant) by

η
cq

q
2k

k

[
1+O

((
logq

log logq

) 1
7
)]

Since cq� log logq, substituting this into (3.28) we have

∑
k

η
cq

qk

[
1+O

((
logq

log logq

) 1
7
)]
� η

log logq
q

as desired. �
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With this in mind, we may evaluate the sum in (3.27) as follows.

∑
a6=a′∈A

|Sa∩Sa′ | � X · ∑
a6=a′∈A

1
aa′

2ω((a,a′))
∏

p|aa′(a−a′)
p6|(a,a′)

(
1+

1
p

)
(3.29)

� X · ∑
q0,q1,q′1,q2

2ω(q2)

q1q′1q2
∑

q0q1 |a
q0q′1|a′
q2 |a−a′

1
aa′

(3.30)

where q0,q1,q′1,q2 are square-free and relatively prime. We may restrict to primes p < (logX)
1

100 in

the product in (3.29), we may restrict in (3.30) the summation to q0,q1,q′1,q2 < (logX)
1
10 . We bound

the sum

∑
q0q1 |a

q0q′1|a′
q2 |a−a′

1
aa′

using Lemma 3.8. First fix a and sum over a′ subject to the restrictions q0q′1|a′ and a ≡ a′ mod q2.

From Lemma 3.8, we have

∑
a′∈A

q0q′1|a′
q2 |a−a′

1
a′
� log log(q0q′1q2)

q0q′1q2
·η

and

∑
q0q1|a

1
a
� log(q0q1)

q0q1
·η

so

(3.31) ∑
q0q1 |a

q0q′1|a′
q2 |a−a′

1
aa′
� (log log(q0 +q1 +q′1 +q2))

2

q2
0q1q′1q2

·η2

Substituting (3.31) into (3.30) gives the desired bound

∑
a 6=a′∈A

|Sa∩Sa′ | � η
2X ∑

q0,q1,q′1,q2

2ω(q2) · (log log(q0 +q1 +q′1 +q2))
2

(q0q1q′1q2)2

< c′′η2X(3.32)

�

Note that c′′ above is independent of η , and we may choose η small enough depending on c′′ so

that η− c′′η2 > 0 since 0 < η < 1. Then (3.16) and (3.14) imply∣∣∣∣∣ ⋃
a∈A

Sa

∣∣∣∣∣� (η− c′′η2)X �c X
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where c = η− c′′η2 > 0 as desired. �

We note that the methods used here are easily generalizable to prove similar positive density theo-

rems for integer orbits of subgroups of O(3,1). If the group contains several Fuchsian subgroups as in

the case of the Apollonian group, we may restrict to the orbits of these subgroups as in Section 2. We

would again utilize the subgroup’s preimage in the spin double cover of SO to relate the problem to

integers represented by a binary quadratic form. This would yield a comparable lower bound on the

number of integers less than X in the orbit of the group (counted without multiplicity).
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