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Abstract
Inverse scattering methods capable of compressive imaging are proposed
and analyzed. The methods employ randomly and repeatedly (multiple-
shot) the single-input–single-output (SISO) measurements in which the probe
frequencies, the incident, and the sampling directions are related in a precise
way and are capable of recovering exactly scatterers of sufficiently low sparsity.
For point targets, various sampling techniques are proposed to transform the
scattering matrix into the random Fourier matrix. Two schemes are particularly
interesting: the first one employs multiple frequencies with the sampling
angle always in the back-scattering direction resembling the synthetic aperture
(SA) imaging; the second employs only single frequency with the sampling
angle in the (nearly) forward-scattering direction in the high-frequency limit,
resembling the setting of x-ray tomography. The results for point targets are
then extended to the case of localized extended targets by interpolating from
grid points. In particular, an explicit error bound is derived for the piece-wise
constant interpolation which is shown to be a practical way of discretizing
localized extended targets and enabling the compressed sensing techniques.
For distributed extended targets, the Littlewood–Paley basis is used in analysis.
A specially designed sampling scheme then transforms the scattering matrix
into a block-diagonal matrix with each block being the random Fourier matrix
corresponding to one of the multiple dyadic scales of the extended target. In
other words, by the Littlewood–Paley basis and the proposed sampling scheme
the different dyadic scales of the target are decoupled and therefore can be
reconstructed scale-by-scale by the proposed method. Moreover, with probes
of any single frequency ω the coefficients in the Littlewood–Paley expansion
for scales up to ω/(2π) can be exactly recovered.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Consider the scattering of the incident plane wave

ui(r) = eiωr·d (1)

by the variable refractive index n2(r) = 1 + ν(r) where d is the incident direction. The
scattered field satisfies the Lippmann–Schwinger equation [8]

us(r) = ω2
∫

ν(r′)(ui(r′) + us(r′))G(r, r′, ω) dr′, r ∈ R
d , d = 2, 3, (2)

where G(r, r′, ω) is the Green function of the operator −(� + ω2). We assume that the wave
speed is unity and hence the frequency equals the wavenumber ω.

The scattered field has the far-field asymptotic

us(r) = eiω|r|

|r|(d−1)/2
(A(r̂, d, ω) + O(|r|−1)), r̂ = r/|r|, (3)

where A is the scattering amplitude. In inverse scattering theory, the scattering amplitude is
the measurement data determined by the formula [8]

A(r̂, d, ω) = ω2

4π

∫
dr′ν(r′)u(r′) e−iωr′·r̂. (4)

The main objective of inverse scattering then is to reconstruct the medium inhomogeneities
ν from the knowledge of the scattering amplitude. In part I [11] and this paper the target to
be imaged consists of a finite number of point scatterers. And the main techniques for
reconstruction are from the theory of compressed sensing. In [11] we analyze the one, but
high, frequency imaging method with the single-input–multiple-output (SIMO), multiple-
input-single output (MISO), and multiple-input–multiple-output (MIMO) measurements in
which for every incident plane wave the scattering amplitude is sampled at multiple directions
independent of the incident wave.

In this paper the focus is on the multi-shot single-input–single-output (SISO) measurement
in which for every randomly selected incident plane wave the scattering amplitude is sampled
at only one direction correlated with the incident wave.

Our motivation for this alternative imaging method is practical as well as theoretical. On
the theoretical aspect, the analysis of the high-frequency SIMO/MISO and MIMO schemes
employs the coherence theory of compressed sensing which deals with only random targets
under a suitable sparsity constraint. On the other hand, the multi-shot SISO method proposed
in this paper is amenable to the restricted isometry theory of the random Fourier matrix which
guarantees reconstruction for all targets under the weakest known sparsity constraint. On the
practical aspect, the present method can achieve a comparable performance with a much lower
frequency or bandwidth (figure 7). Moreover, the case of extended targets can be treated by
either interpolating from grid points or using the wavelet basis in this approach. The main
drawback, though, of the present approach, in comparison to that of [11], is that the multiple
scattering effect is not accounted for.

In section 2, we discuss the case of point scatterers and propose several sampling schemes
to transform the scattering matrix into the random Fourier matrix which is amenable to
the compressed sensing techniques. One scheme employs multiple frequencies with the
sampling angle always in the back-scattering direction resembling the synthetic aperture (SA)
imaging; another scheme employs only a single frequency with the sampling angle in the
(nearly) forward-scattering direction in the high-frequency limit, resembling the setting of
x-ray tomography. We then extend these results to the case of localized extended targets by
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Figure 1. Far-field imaging of discrete scatterers.

interpolating from grid points in section 3. In section 4 we analyze the case of distributed
extended targets using the Littlewood–Paley basis and propose a sampling scheme to block-
diagonolize the scattering matrix. Each block is in the form of a random Fourier matrix and
corresponds to one dyadic scale of the target. Hence, our method has the capability of imaging
the target scale-by-scale by the compressed sensing techniques. Moreover, the coefficients in
the Littlewood–Paley expansion for scales up to ω/(2π) can be exactly recovered by using
probes of any single frequency ω. We numerically test these sampling methods and compare
their success probabilities in section 5. We conclude and comment on the issue of resolution
in section 6.

2. Point scatterers

For the simplicity of notation, we will focus on two dimensions below (see also figure 1).
We consider the medium with point scatterers located in a square lattice

L = {ri = (xi, zi) : i = 1, . . . , m}
of spacing �. The total number m of grid points in L is a perfect square. Without loss of
generality, assume xj = j1�, zj = j2� where j = (j1−1)

√
m+j2 and j1, j2 = 1, . . . ,

√
m. Let

νj , j = 1, . . . , m, be the strength of the scatterers. Let S = {
rij = (

xij , zij

)
: j = 1, . . . , s

}
be the locations of the scatterers. Hence, νj = 0,∀rj �∈ S.

For the discrete medium the scattering amplitude becomes a finite sum:

A(r̂, d, ω) = ω2

4π

m∑
j=1

νju(rj ) e−iωrj ·r̂. (5)

Unlike [11] which covers both linear and nonlinear scattering, here we work exclusively
under the Born approximation in which the exciting field u(rj ) is replaced by the incident
field ui(rj ); unlike [11] which deals exclusively with one frequency, here we will work with
multiple frequencies.

Let dl , r̂l , l = 1, . . . , n, be various incident and sampling directions for the frequencies
ωl, l = 1, . . . , n, to be determined later. Define the measurement vector Y = (Yl) ∈ C

n with

Yl = 4π

ω2
A(r̂l , dl , ωl), l = 1, . . . , n. (6)

The measurement vector is related to the target vector X = (νj ) ∈ C
m by the sensing matrix Φ

as Y = ΦX. Let θl, θ̃l be the polar angles of dl , r̂l , respectively. The (l, j)-entry of Φ ∈ C
n×m

is

e−iωl r̂l ·rj eiωldl ·rj = eiωl�(j2(sin θl−sin θ̃l )+j1(cos θl−cos θ̃l )), j = (j1 − 1) + j2. (7)
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Note that the all entries of Φ have unit modulus. As in [11] we reconstruct X as the solution
of the L1-minimization, called basis pursuit (BP):

min ‖Z‖1, s.t. ΦZ = Y (8)

which can be solved by a linear program or by various greedy algorithms [1, 7, 16].
In the presence of noise/error E of size ε as in

Y = ΦX + E, ‖E‖2 � ε, (9)

(8) is replaced by the relaxation scheme called the basis pursuit denoising (BPDN):

min‖Z‖1, s.t. ‖Y − ΦZ‖2 � ε. (10)

A fundamental notion in compressed sensing under which BP yields the unique exact
solution is the restrictive isometry property (RIP) due to Candès and Tao [5]. Precisely, let
the sparsity s of a vector Z ∈ C

m be the number of nonzero components of Z and define the
restricted isometry constant δs to be the smallest positive number such that the inequality

κ(1 − δs)‖Z‖2
2 � ‖ΦZ‖2

2 � κ(1 + δs)‖Z‖2
2

holds for all Z ∈ C
m of sparsity at most s and some constant κ > 0. For the target vector X

let X(s) denote the best s-sparse approximation of X in the sense of the L1-norm, i.e.

X(s) = argmin‖Z − X‖1, s.t. ‖Z‖0 � s

where ‖Z‖0 denotes the number of nonzero components, called the sparsity, of Z. Clearly,
X(s) consists of the s largest components of X.

Now we state the fundamental result of the RIP approach [2] which is an improvement of
the results of [3, 5].

Proposition 1 [2]. Suppose the restricted isometry constant of Φ satisfies the inequality

δ2s <
√

2 − 1 (11)

with κ = 1. Then the solution X̂ of BPDN (10) satisfies

‖X̂ − X‖2 � C1s
−1/2‖X − X(s)‖1 + C2ε (12)

for some constants C1 and C2.

Remark 1. For general κ �= 1, one can consider the normalized version of (9)

1√
κ

Y = 1√
κ
ΦX +

1√
κ

E

by which it follows that

‖X̂ − X‖2 � C1s
−1/2‖X − X(s)‖1 + C2

ε√
κ

. (13)

We wish to write the (l, j)-entry of the sensing matrix in the form

eiπ(j1ξl+j2ζl ), j = (j1 − 1)
√

m + j2, j1, j2 = 1, . . . ,
√

m, l = 1, . . . , n, (14)

where ξl, ζl are independently and uniformly distributed in [−1, 1] in view of the following
theorem.

Proposition 2 [14]. Suppose

n

ln n
� Cδ−2σ ln2 σ ln m ln

1

α
, α ∈ (0, 1), (15)
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for a given sparsity σ where C is an absolute constant. Then the restricted isometry constant
of the matrix with entry (14) satisfies

δσ � δ

with κ = n and with the probability at least 1 − α.

See [3, 6, 15] for the case when ξl, ζl belong to the discrete subset of [−1, 1] of equal
spacing 2/

√
m.

To construct a sensing matrix of the form (14) we proceed as follows. Write (ξl, ζl) in the
polar coordinates ρl, φl as

(ξl, ζl) = ρl(cos φl, sin φl), ρl =
√

ξ 2
l + ζ 2

l �
√

2 (16)

and set

ωl(cos θl − cos θ̃l) =
√

2ρl� cos φl

ωl(sin θl − sin θ̃l) =
√

2ρl� sin φl

where � is a parameter to be determined later (30). Equivalently, we have

−
√

2ωl sin
θl − θ̃l

2
sin

θl + θ̃l

2
= �ρl cos φl (17)

√
2ωl sin

θl − θ̃l

2
cos

θl + θ̃l

2
= �ρl sin φl. (18)

This set of equations determines the single-input-(θl, ωl)–single-output-θ̃l mode of sampling.
The following implementation of (17)–(18) is natural. Let the sampling angle θ̃l be related

to the incident angle θl via

θl + θ̃l = 2φl + π, (19)

and set the frequency ωl to be

ωl = �ρl√
2 sin θl−θ̃l

2

. (20)

Then the entries (7) of the sensing matrix Φ have the form

ei
√

2��(j1ξl+j2ζl ), l = 1, . . . , n, j1, j2 = 1, . . . ,
√

m. (21)

By the square symmetry of the problem, it is clear that relation (19) can be generalized to

θl + θ̃l = 2φl + ηπ, η ∈ Z. (22)

On the other hand, the symmetry of the square lattice should not play a significant role and
hence we expect the result to be insensitive to any fixed η ∈ R, independent of l, as long as
(20) holds. Indeed this is confirmed by numerical simulations below (figure 5).

Let us focus on three specific measurement schemes.

Scheme I. This scheme employs �-band limited probes, i.e. ωl ∈ [−�,�]. This and (20) lead
to the constraint∣∣∣∣sin

θl − θ̃l

2

∣∣∣∣ � ρl√
2
. (23)

The simplest way to satisfy (19) and (23) is to set

φl = θ̃l = θl + π, (24)
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ωl = �ρl√
2

, (25)

l = 1, . . . , n. In this case the scattering amplitude is always sampled in the back-scattering
direction. This resembles the synthetic aperture imaging which has been previously analyzed
under the paraxial approximation in [13]. In contrast, the forward-scattering direction with
θ̃l = θl almost surely violates the constraint (23).

Scheme II. This scheme employs single-frequency probes not less than �:

ωl = γ�, γ � 1, l = 1, . . . , n. (26)

To satisfy (22) and (20) we set

θl = φl +
ηπ

2
+ arcsin

ρl

γ
√

2
(27)

θ̃l = φl +
ηπ

2
− arcsin

ρl

γ
√

2
(28)

with η ∈ Z. The difference between the incident angle and the sampling angle is

θl − θ̃l = 2 arcsin
ρl

γ
√

2
(29)

which diminishes as γ → ∞. In other words, in the high-frequency limit, the sampling angle
approaches the incident angle. This resembles the setting of the x-ray tomography.

Scheme III. This scheme employs probes of unlimited frequency band. Let θl be n arbitrary
distinct numbers in [−π, π ] and let θ̃l and ωl be determined by (22) and (20), respectively.
The possibility of having a small divisor in (20) renders the bandwidth unlimited in principle.

The following result is an immediate consequence of propositions 1 and 2.

Theorem 1. Let ξl, ζl be independently and uniformly distributed in [−1, 1] and let (ρl, φl)

be the polar coordinates of (ξl, ζl), i.e.

(ξl, ζl) = ρl(cos φl, sin φl).

Let the probe frequencies ωl , the incident angles θl and the sampling angles θ̃l satisfy (19)
and (20), for example, by scheme I, II or III.

Suppose

�� = π/
√

2 (30)

and suppose (15) holds with σ = 2s and any δ <
√

2 − 1. Then (11) with κ = n is satisfied
for the matrix Φ and the bound (13) holds true with the probability at least 1 − α.

3. Localized extended targets

In this section we consider extended targets that are localized in space (see figure 2). We
represent such targets by interpolating from grid points and thus extend the preceding results
for point targets to localized extended targets. We will treat the case of distributed extended
targets that are not localized in space in the next section.

Suppose that the target function ν(r) is continuous and has a compact support. Consider
the filtered version νη of ν:

νη(r) =
∫

gη(r − r′)ν(r′) dr′ (31)

6
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scatterers

scattered waveprobe wave

Figure 2. Scattering from extended targets.

where gη(r) = η−2g(r/η) for any integrable filter function g such that
∫

g(r) dr = 1. Clearly,
νη tends to ν as η → 0.

Next we discretize (31) by replacing the integral by the Riemann sum of step size �. We
obtain

νη,�(r) = �2
∑
p∈I

gη(r − �q)ν(�q), I ⊂ Z
2, (32)

which is as smooth as the interpolation element gη.
Since ν has a compact support, I is a finite set. For simplicity let I be the square sublattice

I = {q = (q1, q2) : q1, q2 = 1, . . . ,
√

m}
of total cardinality m. Let j = (q1 − 1)

√
m + q2. Define the target vector X = (Xj ) ∈ C

m

with Xj = ν(�q). Let ωl and dl be the probe frequencies and directions, respectively, and let
r̂l be the sampling directions for l = 1, . . . , n. Now we write the data vector Y in form (9)
with the sensing matrix elements

�lj = 1

2πĝ(ηωl(dl − r̂l ))

∫
R2

gη(r′ − �q) eiωl(dl−r̂l )·r′
dr′, j = (q1 − 1)

√
m + q2

= eiωl�q·(dl−r̂l ) (33)

and the error term E due to the filtered discretization. For sufficiently small η, � we may
assume ‖E‖2 � εn1/2 for a given ε > 0 (see remark 1 and below).

The crucial observation is that the sensing matrix (33) is identical to (7) with (xj , zj ) = ωq
and any isotropic filter function g. Therefore, theorem 1 holds verbatim for the case of localized
extended targets formulated above.

How small must η and � be in order to ensure that ‖E‖2 � εn1/2? This can be answered
roughly as follows. First, by the inequality ‖E‖2 � ‖E‖∞

√
n it suffices to have ‖E‖∞ � ε.

Now consider the transformation T , defined by

(T ν)l = 1

2πĝ(ηωl(dl − r̂l ))

∫
ν(r′) eiωl(dl−r̂l )·r′

dr′,

from the space of continuous functions supported on [�,m�]2 to C
n, cf (4). By definition

E = T v − T vη,�

and we have

‖E‖∞ � ‖ν − νη,�‖1

2π minl |ĝ(ηωl(dl − r̂l ))| .

7
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For the sampling schemes I and II (with γ = 1) of section 2, we can give an explicit
bound for the discretization error

‖E‖∞ � 1

2π
‖ν − νη,�‖1‖ĝ−1‖L∞([−η�−1π,η�−1π]2),

where ‖·‖L∞([−η�−1π,η�−1π]2) denotes the L∞-norm of functions defined on [−η�−1π, η�−1π ]2.

Theorem 2. Consider the sampling schemes I and II (with γ = 1) of section 2. Assume (30)
and

‖ν − νη,�‖1 � 2πε

‖ĝ−1‖L∞([−η�−1π,η�−1π]2)

. (34)

Suppose that (15) holds with σ = 2s and any δ <
√

2 − 1. Then the bound (13) with κ = n

holds true with the probability at least 1 − α.

Remark 2. For example, consider the smooth isotropic filter function

g(r) = 1

2π
e− |r|2

2

with ĝ(k) = g(k). With the choice η = �, condition (34) can be formulated as

‖ν − ν�,�‖1 � e−π2/2ε. (35)

For another example, consider the indicator function g on the unit square
[− 1

2 , 1
2

]2
. The

resulting interpolation is the piece-wise constant approximation. Then

ĝ(k1, k2) = 2

π
· sin k1

2

k1
· sin k2

2

k2
.

Setting again η = � we obtain the condition

‖ν − ν�,�‖1 � 4

π2
ε (36)

which appears to be much more useful than (35) because of the larger constant in (36).

4. Distributed extended targets

In this section, we consider extended targets represented by square-integrable functions ν(x, z).
To this end we use the Littlewood–Paley basis

ψ̂(ξ, ζ ) =
{
(2π)−1, π � |ξ |, |ζ | � 2π

0, otherwise
(37)

or

ψ(r) = (π2xz)−1(sin (2πx) − sin (πx)) · (sin (2πz) − sin (πz)). (38)

Then the set of functions

ψp,q(r) = 2−(p1+p2)/2ψ(2−pr − q), p, q ∈ Z
2, (39)

with

2−pr = (2−p1x, 2−p2z),

forms an orthonormal wavelet basis in L2(R2) [10]. In terms of the Littlewood–Paley basis
we have the expansion

ν(x, z) =
∑

p,q∈Z2

νp,qψp,q(x, z). (40)

8
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With the incident fields

ui
k(r) = eiωkr·dk , k = 1, . . . , n,

we have from (4), (6) and (40) that

Yk = 2π
∑

p,q∈Z2

2(p1+p2)/2νp,q eiωk2p(dk−r̂k)·qψ̂(ωk2p(r̂k − dk)), k = 1, . . . , n. (41)

Define the sensing matrix elements to be

�k,l = 1

2np + 1
ψ̂(ωk2p(r̂k − dk)) eiωk2p(dk−r̂k)·q (42)

and let Φ = [�k,l], where dk, r̂k, ωk are given below.
Let

l =
p1−1∑

j1=−p∗

p2−1∑
j2=−p∗

(2mj + 1)2 + (q1 + mp)(2mp + 1) + (q2 + mp + 1),

|q|∞ � mp, |p|∞ � p∗,

k =
p′

1−1∑
j1=−p∗

p′
2−1∑

j2=−p∗

(2nj + 1)2 + (q ′
1 + np′)(2np′ + 1) + (q ′

2 + np′ + 1),

|q′|∞ � np′ , |p′|∞ � p∗,

for some mp, np, p∗ ∈ N, be the column and row indices, respectively, of Φ. It is important to
keep in mind how k and l are related to (p′, q′) and (p, q), respectively, in order to understand
the scheme described below.

Let ξk, ζk be independent, uniform random variables on [−1, 1] and define

αk = π

ωk2p′
1

·
{

1 + ξk, ξk ∈ [0, 1]
−1 + ξk, ξk ∈ [−1, 0]

(43)

βk = π

ωk2p′
2

·
{

1 + ζk, ζk ∈ [0, 1]
−1 + ζk, ζk ∈ [−1, 0]

. (44)

Suppose αk, βk ∈ [−1, 1] for all p′, |p′| � p∗. This holds true, for example, when the
frequencies ωk satisfy the constraint

ωk2p′
1 � 2π, ωk2p′

2 � 2π. (45)

Let (ρk, φk) be the polar coordinates of (αk, βk).
As before, let θk, θ̃k be the angles of incidence and sampling, respectively, which are

chosen according to

−2 sin
θk − θ̃k

2
sin

θk + θ̃k

2
= αk = ρk cos φk (46)

2 sin
θk − θ̃k

2
cos

θk + θ̃k

2
= βk = ρk sin φk (47)

in analogy with (17)–(18). This means

−ωk2p(r̂k − dk) = ωk(2
p1αk, 2p2βk) = π(2p1−p′

1(sgn(ξk) + ξk), 2p2−p′
2(sgn(ζk) + ζk)). (48)

9
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By (48) and the definition of ψ̂ it is clear that �k,l are zero if p �= p′. Consequently, the
sensing matrix is the block-diagonal matrix with each block (indexed by p = p′) in the form
of random Fourier matrix:

�k,l = 1

2np + 1
eiπ(q1ξk+q2ζk). (49)

Let X = (Xl) with

Xl = 2π(2np + 1)2(p1+p2)/2νp,q

be the target vector. Let

m =
p∗∑

j1=−p∗

p∗∑
j2=−p∗

(2mj + 1)2.

We can then write the measurement vector Y = ΦX where Φ ∈ C
n×m. The above observation

means that the target structures of different dyadic scales are decoupled and can be determined
separately by our approach using compressed sensing techniques.

To solve (46)–(47) we consider

θk + θ̃k = 2φk + π (50)

and

2 sin
θk − θ̃k

2
= ρk. (51)

To satisfy relationships (50) and (51) we set

θk = φk +
π

2
+ arcsin

ρk

2
(52)

θ̃k = φk +
π

2
− arcsin

ρk

2
(53)

analogous to (27) and (28).
In the case of extreme anisotropy (needle-like structure), say 2p1−p2 � 1, (43)–(44)

implies

φk ≈ ±π

2
and hence

θk + θ̃k ≈ 0 (54)

by (50). On the other hand, if 2p1−p2 � 1, then

φk ≈ ±π

and hence

θk + θ̃k ≈ π. (55)

Relations (54) and (55) are reminiscent of Snell’s law of reflection if θ̃k are interpreted as the
reflection angles.

Using the RIP for the random Fourier matrix of each block, we obtain the following
theorems analogous to theorem 1.

Theorem 3. For each p, |p| � p∗, let (15) be satisfied for n = np and σ = 2sp and any
δ <

√
2 − 1. Suppose

ωk � 2π · 2max (p1,p2), k = 1, . . . , np. (56)

Let ξl, ζl be independently and uniformly distributed in [−1, 1]. Let the incident and
sampling angles be determined by (43)–(44), (46)–(47).

10
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Figure 3. Success probabilities for scheme I with (58). The label indicates the value of η. As the
recipe (24) is increasingly violated, the performance degrades accordingly.

Then (11) is satisfied for the p-block of the sensing matrix with the probability at least
1 − α. Consequently, the solution X̂p by BP (10) satisfies

‖X̂p − Xp‖2 � C1s
−1/2
p

∥∥Xp − X
(sp)
p

∥∥
1 + C2ε (57)

for the same constants C1, C2 as in (13).

Remark 3. Condition (56) implies that the wavelengths are not larger than the scales under
interrogation, consistent with the classical resolution criterion.

Theorem 3 allows reconstruction with probes of single sufficiently high-frequency
ωk = ω#:

ω# � π21+p∗ .

The beauty of the theorem, however, lies in the fact that with probes of any frequency ω

the coefficients in the Littlewood–Paley expansion for scales up to ω/(2π) can be recovered
(exactly in the absence of noise).

5. Numerical results

Greedy algorithms have significantly lower computational complexity than linear
programming and have provable performance under various conditions. For example, under
the condition δ3s < 0.06 the subspace pursuit (SP) algorithm is guaranteed to exactly recover X
via a finite number of iterations [9]. We have used SP for reconstruction in all our simulations
with the following parameters: m = 2500, � = 1,� = π/

√
2, n = 100. The probability

of recovery is calculated by using 1000 independent runs. In figures 3–7, the vertical
axis is for the probability of recovery and the horizontal axis is for the number of point
scatterers.

To test scheme I numerically, we use (25) and

θ̃l = θl + ηπ, η = 1, 1/2, 1/4, 1/8, (58)

to see if the deviations from (24) have any impact on performance. Their probabilities
of recovery are plotted as a function of the sparsity in figure 3. Clearly, the performance

11
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Figure 4. Success probabilities for scheme II: (a) η = 1, η̃ = 1, 1/2, 1/4 with γ = 1, 20.
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Figure 5. Success probabilities for schemes II: (b) η = η̃ = 1, 1/2, 1/4 with γ = 1, 20.

deteriorates rapidly as the difference between the sampling and incident angles decreases.
This is due to increasingly more frequent and more severe violation of (23) as a result. In
other words, the backward-scattering direction is the optimal sampling direction for scheme I.

Likewise, to test scheme II numerically, we use (26),

θ̃l = φl +
η̃π

2
− arcsin

ρl

γ
√

2
, η̃ = 1, 1/2, 1/4, (59)

instead of (28), and (27) with (a) η = 1 as well as with (b) η = η̃ = 1, 1/2, 1/4. Condition
(29) is satisfied if and only if η = η̃.

The results for case (a) at γ = 1, 20 are shown in figure 4 and the results for case (b)
with η = η̃ at γ = 1, 20 are displayed in figure 5. The slight degradation in performance for
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Figure 6. Success probabilities for scheme III with (60).
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Figure 7. Solid curves are the success probabilities for the SIMO measurement at γ = 1, 20, 200
and the dashed curve is the SISO scheme II at γ = 1.

e.g. η = 1, η̃ = 1/4, γ = 1 results from the violation of (29) (and hence (23)) which affects
the performance significantly for small γ . For large γ , it has been shown in [11] that the
sampling angles can be chosen independently of the incident angles to maintain a high level
of performance (figure 7). On the other hand, when (29) holds, the performance is essentially
independent of both γ and η̃, figure 5.

For scheme III we use equally spaced incident angles θl ∈ [π/6, π/3], (20) and

θl + θ̃l = 2φl + η̃π, η̃ = 1, 1/2, 1/4. (60)

As shown in figure 6, the performance is essentially independent of η̃.
We demonstrate numerically the high-frequency SIMO schemes analyzed in [11] and

compare their performance with that of the multi-shot SISO schemes presented above. A
case in point would be to use (26) and (28) but for a fixed incident angle, say θl = 0,∀l (in

13
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Figure 8. Imaging of an extended target of the scales (1, 32). The left plot is the exact structure;
the middle plot is the the reconstructed profile; the right plot shows the (round-off) error. See the
color bars for the meaning of the color code (see online).

this case (29) is almost certainly violated). In [11] it is established that the SIMO schemes
with sampling angles, independent of the incident angles, achieves a high performance in
reconstructing a sparse target with a sufficiently high-frequency probe wave (i.e. γ � 1). The
success probabilities of the SIMO schemes for γ = 1, 20, 200 are calculated and plotted in
figure 7. Consistent with the theory [11], the low frequency case with γ = 1 has the worst
performance. Clearly the performance of the SIMO schemes improves with γ and in the limit
γ � 1 approaches that of the multi-shot SISO scheme II. There is a negligible difference
between the performances for γ = 20 and γ = 200 both of which follow closely that of the
SISO scheme II with γ = 1 (black dashed line in figure 7).

Finally we demonstrate the reconstruction with the Littlewood–Paley basis. Since the
scattering matrix is block-diagonalized by the proposed sampling schemes (43)–(44) and (46)–
(47), we consider targets of a single pair of dyadic scales. In this simulation, the reconstruction
is carried out for a target on the scales (1, 32) (p = (0, 5)) with 42 nonzero coefficients
(sp = 42) among 441 possible modes (mp = 10, 21 modes in each coordinate) by using 81
samples (np = 81). The target and its reconstruction in the domain [−10, 10] × [−200, 200]
are color-coded (see online) and displayed in figure 8.

6. Conclusion and discussion

We have proposed, analyzed and numerically tested several multi-shot SISO sampling schemes
which transform the scattering matrix into the random Fourier matrix in the case of point and
localized extended scatterers and the block-diagonal form of random Fourier matrices in the
case of distributed extended targets.

In the case of point scatterers, these sampling schemes are either multi-frequency band
limited (I) or single frequency outside band (II). For scheme I , the sampling direction is the
backward direction analogous to the synthetic aperture radar (SAR) while for scheme II in the
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high-frequency limit the optimal sampling is in the forward direction, analogous to the x-ray
tomography. Both schemes produce nearly the same recovery probability with the resolution
given by (30), i.e.

� = π√
2�

.

We have extended this approach to the case of localized extended targets by interpolating
from grid points. We have formulated the approximate scheme as inversion with noisy data.
In particular, we have derived an explicit error bound for the simple piece-wise constant
interpolation.

In the case of distributed extended targets, the block-diagonal form of the scattering
matrix in the Littlewood–Paley representation means that different dyadic scales of the target
are decoupled and can be imaged scale-by-scale separately by our method. Moreover, we can
determine the coefficients in the Littlewood–Paley expansion (40) for scales up to ω/(2π) by
using probes of any single frequency ω. The disadvantage of the Littlewood–Paley basis is
that a localized target has slowly decaying coefficients and hence is not compressible in this
basis.

The SIMO schemes in which the scattered field of an incident angle is measured at
multiple sampling angles have been studied in [11–13]. Except for the special case of the
periodic scatterers lying on a transverse plane [12], it is not known if the sensing matrices
of the SIMO schemes in general satisfy the RIP or not. In this case, the approach based on
the notion of incoherence is taken to analyze the SIMO schemes [11, 13]. This approach is
generally more flexible and should be applicable to the SISO schemes considered here.

The main advantage of the SIMO schemes is that in the one-shot setting (one incident
field) the inverse scattering problem can be solved exactly without the Born approximation by
inverting an auxiliary nonlinear system of equations [11]. We are working to extend the idea
to the imaging methods with multi-shot measurements.

On the other hand, the SISO schemes with the RIP tend to have a better performance
which can be matched by that of the SIMO schemes only at a high frequency as demonstrated
in figure 7. In the high-frequency regime the sampling angles can be chosen independently of
the incident angles [11].
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