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Abstract
The multiple signal classification (MUSIC) algorithm, and its extension for
imaging sparse extended objects, with noisy data is analyzed by compressed
sensing (CS) techniques. A thresholding rule is developed to augment the
standard MUSIC algorithm. The notion of restricted isometry property (RIP)
and an upper bound on the restricted isometry constant (RIC) are employed
to establish sufficient conditions for the exact localization by MUSIC with or
without noise. In the noiseless case, the sufficient condition gives an upper
bound on the numbers of random sampling and incident directions necessary
for exact localization. In the noisy case, the sufficient condition assumes
additionally an upper bound for the noise-to-object ratio in terms of the RIC
and the dynamic range of objects. This bound points to the super-resolution
capability of the MUSIC algorithm. Rigorous comparison of performance
between MUSIC and the CS minimization principle, basis pursuit denoising
(BPDN), is given. In general, the MUSIC algorithm guarantees to recover, with
high probability, s scatterers with n = O(s2) random sampling and incident
directions and sufficiently high frequency. For the favorable imaging geometry
where the scatterers are distributed on a transverse plane MUSIC guarantees
to recover, with high probability, s scatterers with a median frequency and
n = O(s) random sampling/incident directions. Moreover, for the problems of
spectral estimation and source localizations both BPDN and MUSIC guarantee,
with high probability, to identify exactly the frequencies of random signals
with the number n = O(s) of sampling times. However, in the absence
of abundant realizations of signals, BPDN is the preferred method for spectral
estimation. Indeed, BPDN can identify the frequencies approximately with just
one realization of signals with the recovery error at worst linearly proportional
to the noise level. Numerical results confirm that BPDN outperforms MUSIC
in the well-resolved case while the opposite is true for the under-resolved case,
giving abundant evidence for the super-resolution capability of the MUSIC
algorithm. Another advantage of MUSIC over BPDN is the former’s flexibility
with grid spacing and the guarantee of approximate localization of sufficiently
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separated objects in an arbitrarily refined grid. The localization error is bounded
from above by O(λs) for general configurations and by O(λ) for objects
distributed in a transverse plane, in line with physical intuition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The multiple signal classification (MUSIC) algorithm is a well-known method in signal
processing for estimating the individual frequencies of multiple time-harmonic signals [7, 27].
Mathematically, MUSIC is essentially a method of characterizing the range of the covariance
matrix of the signals (see section 6 for details).

MUSIC was originally developed to estimate the direction of arrival for source localization
[25]. Later, the MUSIC algorithm was extended to imaging of point scatterers [9, 10, 17]. A
proof of a sufficient condition for the exact recovery of the object support in the noiseless case
is given in [22] (see also [21]) which is reproduced in proposition 1 below. The performance
guarantee is general but qualitative in nature. Neither does it take into account the effect of
noise which is important for assessing the super-resolution effect.

The main purpose of this paper is to give a quantitative performance evaluation for the
MUSIC algorithm in terms of how many data are needed and how they may be collected in
order to exactly recover the locations of a given (large) number of objects, be they sources,
scatterers or frequencies as well as how much noise the MUSIC algorithm can tolerate. Our
approach is based on recent advances in compressed sensing theory ([2, 3, 24] and references
therein) and applications to imaging (see [12, 13, 16] and references therein).

A main result for localizing scatterers obtained in this paper has the following flavor (more
details later). Let ξmax and ξmin be, respectively, the strengths of the strongest and weakest
(nonzero) scatterers, δ±

s the (upper/lower) restricted isometry constants (RIC) of order s and ε

the level of noise in the data. If the noise-to-scatterer ratio (NSR) obeys the upper bound

ε

ξmin
<

√(
1 + δ+

s

)2 ξ 2
max

ξ 2
min

+ (1 − δ−
s )2�̃ − (1 + δ+

s )
ξmax

ξmin
(1)

where

�̃ = 1

2
− 1

2

1√√
2γs + 1

, γs = 1 − δ−
s+1(1 + δ+

s )

2 + δ+
s − δ−

s+1

then the MUSIC imaging function J ε (defined in (36)) with the thresholding rule{
r ∈ K : J ε(r) � 2γ −2

s

}
(2)

recovers exactly the locations of the s scatterers (cf theorem 2, section 3). Compressed sensing
theory comes into play in addressing the dependence of RIC on the frequency, the number
and distribution of random sampling directions (or sensors), the number of scatterers and the
inter-scatterer distances.

In the under-resolved case, the δ−
s tends to 1 and �S tends to zero, rendering the right-hand

side of (1) approximately

(1 − δ−
s )2�̃

2(1 + δ+
s )ξmax/ξmin

(3)

where ξmax/ξmin is the dynamic range of the scatterers. For a NSR smaller than (3) the
s scatterers can still be perfectly localized by the MUSIC algorithm with the thresholding
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Figure 1. Scattering measurement: for each incident wave, the scattering amplitudes in multiple
directions are measured.

rule (2) where the threshold is approximately

2

(1 − δ−
s+1)

2

(
1 + δ+

s

2 + δ+
s

)2

� 1.

Previous observation [23] and our numerical results (section 8) lend support to this super-
resolution effect of the MUSIC algorithm.

First let us review the inverse scattering problem and the MUSIC imaging method.

1.1. Inverse scattering

Consider the scattering of the incident plane wave

ui(r) = eiωr·d̂ (4)

by the variable refractive index n(r) = √
1 + ξ(r) where d̂ is the incident direction (figure 1).

The resulting total wave field u satisfies the Helmholtz equation

�u(r) + ω2(1 + ξ(r))u(r) = 0. (5)

We assume that the wave speed is unity and hence the frequency equals the wave number ω.
We write the total field u = ui + us as the sum of the incident field ui and the scattered

field us. Since (∇2 + ω2)ui = 0, the scattered field satisfies

− (∇2 + ω2)us = ω2ξu, (6)

subject to the radiation condition

lim
|r|→∞

|r|(d−1)/2
(
r̂ · ∇us(r) − ıωus(r)

) = 0, r̂ = r/|r|, d = 2, 3

which distinguishes the scattered field from the incident field. Invoking Green’s function
G, satisfying the radiation condition, of the free-space Helmholtz operator −(∇2 + ω2), we
convert (5) into the Lippmann–Schwinger integral equation

us(r) = ω2
∫

Rd

ξ(r′)(ui(r′) + us(r′))G(r, r′) dr′. (7)

As a result of the radiation condition, Green’s function G(r, r′) has the following far-field
asymptotic [22]:

G(r, r′) = eiω|r|

4π |r|(d−1)/2
(e−iωr′ ·r̂ + O(|r|−1)), r̂ = r/|r|, |r| � 1

and therefore by (7) the scattered field has the asymptotic

us(r) = eiω|r|

|r|(d−1)/2
(A(r̂, d̂) + O(|r|−1)), (8)

3
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where the scattering amplitude A is given by the integral formula

A(r̂, d̂) = ω2

4π

∫
Rd

dr′ξ(r′)u(r′) e−iωr′ ·r̂. (9)

In inverse scattering, the scattering amplitude is the observable data and the main objective
then is to reconstruct ξ from the knowledge of the scattering amplitude. Note that since u
in (9) is part of the unknown, the inverse scattering problem is nonlinear. In physical terms,
the nonlinearity is the consequence of multiple scattering between different parts of medium
inhomogeneities. In the Born scattering regime, the total field u on the right-hand side of (9)
can be replaced by the incident field ui, linearizing the inverse scattering problem.

Next we recall the MUSIC algorithm as applied to localization of point scatterers.

1.2. MUSIC for point scatterers

Let S = {
rj : j = 1, . . . , s

}
be the locations of the scatterers. Let ξj 	= 0, j = 1, . . . , s,

be the strength of the scatterers. We will make the Born approximation first and discuss
how to lift this restriction at the end of the section (remark 2). For the discrete medium
ξ(r) = ∑

j ξj δ(r − rj ) and the scattering amplitude (9) becomes the finite sum

A(r̂, d̂) = ω2

4π

s∑
j=1

ξju
i(rj ) e−iωrj ·r̂j (10)

under the Born approximation.
Let d̂l , l = 1, . . . , m, and ŝk, k = 1, . . . , n, be, respectively, the incident and sampling

directions. For each incident field d̂l , l = 1, . . . , m, the scattering amplitude is measured
in all n directions ŝk, k = 1, . . . , n. The whole measurement data consist of the scattering
amplitudes for all pairs of (d̂l , ŝk).

Define the data matrix Y = (Yk,l) ∈ C
n×m as

Yk,l ∼ A(ŝk, d̂l ), k = 1, . . . , n, l = 1, . . . , m (11)

where we keep open the option of normalizing Y in order to simplify the setup. The data
matrix is related to the object matrix

X = diag(ξj ) ∈ C
s×s , j = 1, . . . , s,

by the measurement matrices Φ and Ψ as

Y = ΦXΨ∗ (12)

where Φ and Ψ are, respectively,

�k,j = 1√
n

e−iωŝk ·rj ∈ C
n×s (13)

�l,j = 1√
n

e−iωd̂l ·rj ∈ C
m×s (14)

after proper normalization. Both (13) and (14) are normalized to have columns of unit 2-norm.
We extend the formulation (12)–(14) to the case of sparse extended objects in appendix A.

Note that both Φ and Ψ are unknown and (12) can be inverted only after the locations of
scatterers are determined. This is what the MUSIC algorithm is designed to accomplish.

The standard version of the MUSIC algorithm deals with the case of n = m and
ŝk = d̂k, k = 1, . . . , n, as stated in the following result.
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Table 1. The idealized MUSIC algorithm when the noise and round-off error are absent.

Idealized MUSIC algorithm

� Input Y,Φ.
� Compute the orthogonal projector P onto the null space of Y∗.
� Plot J (r) = |Pφr|−2, r ∈ K.
� Identify the singularities of J as the object locations.

Table 2. MUSIC algorithm with thresholding (66) when the data are contaminated by noise.

MUSIC algorithm with thresholding for equation (22)

� Input Yε,Φ and the sparsity s.
� Compute the orthogonal projector Pε onto the noise subspace of Yε = YεYε∗.
� Compute the function J ε(r) = |Pεφr|−2, r ∈ K.

� Output the set of points corresponding to the s highest values of J ε or equivalently

the set
{
r ∈ K : J ε(r) � 2γ −2

s

}
where γs = 1 − δ−

s+1(1+δ+
s )

2+δ+
s −δ−

s+1
as the object locations.

Proposition 1 [21, 22]. Let {ŝk = d̂k, k ∈ N} be a countable set of directions such that
any real analytic function on the unit sphere that vanishes in ŝk,∀k ∈ N, vanishes identically.
Let K ⊂ R

3 be a compact subset containing S. Then n0 exists such that for any n � n0 the
following characterization holds for every r ∈ K:

r ∈ S if and only if φr ≡ 1√
n
(e−iωŝ1·r, e−iωŝ2·r, . . . , e−iωŝn·r)T ∈ Ran(Φ). (15)

Moreover, the ranges of Φ and Y coincide.

Remark 1. As a consequence, r ∈ S if and only if Pφr = 0 where P is the orthogonal
projection onto the null space of Y∗ (Fredholm alternative) and the locations of the scatterers
can be identified by the singularities of the imaging function [7]

J (r) = 1

|Pφr|2 . (16)

Therefore in the case without noise and round-off errors we can state the idealized form of the
MUSIC algorithm as given in table 1.

Once the locations are exactly recovered, then both Φ and Ψ are known explicitly and
the strength ξj , j = 1, . . . , s, of scatterers can be determined by inverting the linear equation
(12) which is an over-determined system, given the support of scatterers.

In the realistic case when the noise is present in the data, the singularities generally
disappear from J and a thresholding rule is necessary to complete the algorithm. The
thresholding rule is part of the contribution of this paper (see table 2).

Remark 2. The assumptions of proposition 1 can be relaxed: instead of ŝk = d̂k,∀k, it
suffices to have Ψ ∈ C

m×s which has rank s.
In light of this observation, it is also straightforward to extend the performance guarantee

for the Born scattering case to the multiple-scattering case. In the latter case, Ψ consists of
entries which are the total field evaluated at rj for the incident direction d̂l , i.e.

�l,j = u∗(rj ; d̂l ). (17)

What is really needed is that Ψ ∈ C
m×s has rank s since then Z = XΨ∗ and X shares the same

support (see more on this in section 2). Generically this is true for sufficiently large m as we
will show below.
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Define the incident and full field vectors at the locations of the scatterers:

U i(d̂l) = (ui(r1; d̂l ), . . . , u
i(rs; d̂l ))

T ∈ C
s

U(d̂l ) = (u(r1; d̂l ), . . . , u(rs : d̂l ))
T ∈ C

s .

Denote

G = [(1 − δij )G(rj , ri )] ∈ C
s×s . (18)

The discrete version of the Lippmann–Schwinger equation (i.e. the Foldy–Lax equation) can
be written as

U(d̂l ) = U i(d̂l ) + ω2GXU(d̂l ), l = 1, . . . , m. (19)

The δij terms in (18) represent the singular self-energy terms of point scatterers and should be
removed for self-consistency.

Denote Ui = [U i(d̂1), . . . , U
i(d̂m)] ∈ C

s×m and U = [U(d̂1), . . . , U(d̂m)] ∈ C
s×m.

Suppose that ω−2 is not an eigenvalue of GX. Then we can invert equation (19) to obtain

U = (I − ω2GX)−1Ui.

Hence U has rank s if Ui does. Indeed, for sufficiently high frequency ω and m randomly
selected incident directions with sufficiently large ratio

√
m/s, Ui has rank s with high

probability (see propositions 3 and 4).
For some special imaging geometry it is possible to reduce the number of incident and

sampling directions to O(s) (section 4).

1.3. Outline

Proposition 1 says that if the number of sampling directions is sufficiently large then the
locations of the s scatterers can be identified by the s singularities of J. However, the condition
is only qualitative in the sense that an estimate for the threshold n0 is not given. It would be of
obvious interest to know, e.g., how n0 scales with s when s is large and when the conventional
wisdom (n0 = s + 1) derived from counting dimensions is true. Also how much noise can the
MUSIC algorithm tolerate?

However, unless additional constraints are imposed on the measurement scheme (the
frequency, the incident and sampling directions, etc), it is unlikely to make progress toward
obtaining a useful estimate which is the objective of this study. In [9] a geometric constraint on
the configuration of sensors and objects has been pointed out for exact recovery in the absence
of noise. Moreover, it seems possible that a nonvanishing portion of s randomly distributed
scatterers may not be exactly recovered in the presence of machine error no matter how large
n is (figure 5, middle panel, and figure 7, right panel).

Let us briefly sketch our approach and results: we shall discretize the problem by using a
finite grid for the computation domain K and put the problem in a probabilistic setting by using
random sampling directions. Moreover, we consider noisy data and aim for a result for stable
recovery by MUSIC. For the case of well-resolved grids, we show by using the compressed
sensing techniques that for the NSR obeying (1) and with high probability, n0 = O(s2) for
general configuration of s objects and n0 = O(s) for objects distributed on a transverse plane.
For the case of under-resolved grids, we seek sufficient conditions for approximate, instead
of exact, localization of objects and we show that for sufficiently small NSR and with high
probability, the localization error is O(λs) with n = O(s2) for a general object configuration
and the localization error is O(λ) with n = O(s) for objects distributed in a transverse plane.

Our plan for the rest of the paper is to first give a sensitivity analysis for MUSIC and derive
the condition for exact recovery with noisy data under which the MUSIC algorithm based on

6
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the perturbed data matrix can still recover exactly the object support (section 2). Next, we
review the basic notion of compressed sensing (CS) theory and show how it naturally lends
itself to a proof of exact localization by MUSIC (section 3). We show that with generic, random
sampling and sufficiently high frequency the MUSIC algorithm can, with high probability,
recover s scatterers with n = O(s2) sampling and incident directions (corollary 2). Then we
consider a favorable imaging geometry where the scatterers are distributed on a transverse
plane (section 4). We show that with median frequency the MUSIC algorithm can recover, with
high probability, s scatterers with n = O(s) sampling and incident directions (corollary 3).
Next we analyze the performance guarantee of the compressed sensing principle, basis pursuit
denoising (BPDN) (section 5) and show that in the generic situation BPDN with sufficiently
high frequency can recover s scatterers with n = O(s2) sampling directions and just one
incident wave (remark 11) while for the favorable geometry of planar objects BPDN can
recover s scatterers with n = O(s) sampling directions and one incident wave (remark 10).
In section 6 we return to the original applications of MUSIC and perform the compressed
sensing analysis of the performance of MUSIC as applied to spectral estimation and source
localization. We show that the MUSIC algorithm can, with high probability, identify exactly
the frequencies of random signals with the number n = O(s) of sampling times (theorem 5
and remark 12). We discuss MUSIC in the setting with an arbitrarily fine grid and give
error bounds in section 7. Numerical tests are given in section 8 where the super-resolution
capability of MUSIC and the noise sensitivity are studied. We conclude in section 9 with a
discussion on the pros and cons of MUSIC versus the orthogonal matching pursuit (OMP) as
applied to reconstruction based on multiple measurement vectors. We give an extension of the
MUSIC algorithm to the case of extended objects in appendix A and a proof of the performance
guarantee for the complex-setting BPDN under the asymmetrical RIP in appendix B.

2. Sensitivity analysis

For quantitative performance analysis of the MUSIC algorithm, we will work with the discrete
setting and assume that K is a discrete set of N, typically large, number of points, i.e. the
computation grid. The discrete setting appears naturally in applying MUSIC to imaging of
extended scatterers (see appendix A). Moreover, we consider the extension Φ̃ of Φ which
includes not only the columns φrj

, j = 1, . . . , s, representing the locations of the objects
but also the columns representing all the points in K. Hence, Φ̃ ∈ C

n×N and as usual Φ̃ is
normalized so that the columns have unit 2-norm. The ordering of the columns of Φ̃ is not
important for our purpose as long as they correspond to the points in K in a well-defined
manner. Ψ̃ ∈ C

n×N is similarly defined. Also the extension X̃ ∈ C
N×N of X is defined by

filling in zeros in all the entries outside the object support.
In terms of these notations, we can write

Y = Φ̃X̃Ψ̃∗ =
N∑

j=1

�̃j ⊗ �̃∗
j ξj . (20)

By a slight abuse of notation, we shall use S to denote the locations of objects in the physical
domain as well as the corresponding index set. Likewise Sc denotes the complement set of
S in the computation grid K as well as the total index set {1, . . . , N}. In the same vein,
Φ̃S denotes the column submatrix of Φ restricted to the index set S. Hence, Φ̃S = Φ and
Ψ̃S = Ψ.

First, let us reformulate condition (15) for exact recovery as follows.

7
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Note that

ΦΦ†φr

is the orthogonal projection of φr onto the range of Φ where Φ† is the pseudo-inverse of Φ.
Hence,

Pφr = (I − ΦΦ†)φr.

If φr for r ∈ Sc is independent of the columns of Φ, then

φ∗
r ΦΦ†φr < ‖φr‖2

and vice versa. Therefore (15) is equivalent to

�S ≡ min
r∈Sc

‖φr‖−1
2 ‖Pφr‖2 =

√
1 − max

r∈Sc
‖φr‖−2φ∗

r ΦΦ†φr > 0. (21)

The number �S gives a measure of how ‘independent’ φz is from the range of Φ uniformly in
r ∈ Sc.

Now we give a sensitivity analysis for MUSIC with respect to perturbation in the data
matrix Y in terms of �S and other parameters. We want to show what else is needed, in
addition to (15), to guarantee exact recovery of the support of scatterers when the data matrix
is perturbed.

The general data matrix considered in this paper has the form Yε = Y + E where
Y = ΦXΨ∗ ∈ C

n×m,m � s, the number of objects. Set Z = XΨ∗ ∈ C
s×m such that

Y = ΦZ where Z is assumed to have rank s.
We shall treat Z as the new object matrix and consider perturbed data matrices of the form

Yε = ΦZ + E. (22)

Note that the locations of objects represented by Z are identical to those represented by
X = diag(ξj ).

Set

Yε = YεYε∗ = Y + E (23)

where

Y = ΦZZ∗Φ∗ ∈ C
n×n (24)

E = EZ∗Φ∗ + ΦZE∗ + EE∗ ∈ C
n×n (25)

are both self-adjoint. Note that the range of Y is the same as the range of Φ and under the
assumption of (15) equals the span of {φr : r ∈ S}.

Let {vj : j = 1, . . . , s} and {vj : j = s +1, . . . , n}, respectively, be the set of orthonormal
bases for the range and null space of Y . Let Q1 ∈ C

n×s and Q2 ∈ C
n×(n−s), respectively, be

the matrices whose columns are exactly {vj : j = 1, . . . , s} and {vj : j = s + 1, . . . , n}. Let
Q = [Q1, Q2] ∈ C

n×n.
Let σ1 � σ2 � · · · � σn be the singular values of Y . Denote the smallest nonzero singular

value of Y by σmin and set σmax = σ1. If Y has rank s, then σmin = σs . We partition Q∗EQ as
follows:

Q∗EQ =
[
E11 E12

E21 E22

]
(26)

where E11 ∈ C
s×s , E12 ∈ C

s×(n−s), E21 ∈ C
(n−s)×s , E22 ∈ C

(n−s)×(n−s).
The following is a slight recasting of a general result of matrix perturbation theory [26].

8
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Proposition 2 (Theorem 2.7, chapter V [26]). If
√‖E12‖2‖E21‖2

σmin − ‖E11‖2 − ‖E22‖2
<

1

2
(27)

then F ∈ C
(n−s)×s exists with

‖F‖2 � 2‖E21‖2

σmin − ‖E11‖2 − ‖E22‖2
(28)

such that the columns of

Qε
1 = (Q1 + Q2F)(I + F∗F)−1/2 (29)

Qε
2 = (Q2 − Q1F∗)(I + FF∗)−1/2 (30)

are, respectively, orthonormal bases for invariant subspaces of Yε.
The representation of Yε with respect to Qε

1, Qε
2 is, respectively,

�ε
1 = (I + F∗F)1/2 [�1 + E11 + E12F] (I + F∗F)−1/2 (31)

�ε
2 = (I + FF∗)−1/2 [E22 − FE12] (I + FF∗)1/2 (32)

where �1 = diag(σ1, σ2, . . . , σmin).

Corollary 1. Let ρ∗ ∈ (1/5, 1/4) be the only real root of the cubic polynomial
p(ρ) = 1 − 8ρ + 20ρ2 − 20ρ3 and suppose

‖E‖2

σmin
< ρ∗. (33)

Then Ran(Qε
1) is the singular subspace associated with the s largest singular values of Yε and

Ran(Qε
2) the singular subspace associated with the rest of the singular values.

Proof. It suffices to show that under (33) the smallest singular value of �1 is larger than the
largest singular value of �2.

Since ρ∗ < 1/4, condition (33) implies that

‖E‖2

σmin − 2‖E‖2
<

1

2

which in turn implies (27). Note that under this condition ‖F‖2 � 1. By proposition 2 we
have

‖�ε
2‖2 � ‖I + FF∗‖1/2

2 ‖E22 − FE12‖2

�
(

1 +
4‖E‖2

2

(σmin − 2‖E‖2)2

)1/2 (
‖E‖2 +

2‖E‖2
2

σmin − 2‖E‖2

)
. (34)

On the other hand,

min
‖e‖2=1

‖�ε
1e‖2 = min

‖e‖2=1
‖(�1 + E11 + E12F)e‖‖I + F∗F‖−1/2

2

�
(

σmin − ‖E‖2 − 2‖E‖2
2

σmin − 2‖E‖2

) (
1 +

4‖E‖2
2

(σmin − 2‖E‖2)2

)−1/2

. (35)

Let

ρ = ‖E‖2

σmin
.

9



Inverse Problems 27 (2011) 035013 A C Fannjiang

Imposing that the right-hand side of (35) is greater than that of (34) leads to the inequality

p(ρ) = (1 − 2ρ)3 − 2ρ(1 − 2ρ)2 − 4ρ3

= 1 − 8ρ + 20ρ2 − 20ρ3 > 0

which holds for ρ < ρ∗, the only real root of p(x). It is readily verified that ρ∗ ∈ (1/5, 1/4).

�

In view of corollary 1, it is natural to call Ran(Qε
2) the noise subspace and Ran(Qε

1) the
signal (or object) subspace.

Let Pε be the orthogonal projection onto the noise subspace and define the MUSIC
imaging function for the noisy data

J ε(r) = 1

|Pεφr|2 . (36)

We are ready to state the first main result of the paper.

Theorem 1. Let Yε = Y + E where Y and E are given by (24)–(25).
Suppose �S > 0. Then the condition

‖E‖2

σmin
< � = 1

2
− 1

2

1√√
2�S + 1

(37)

implies that the s highest peaks of J ε(r) coincide with the true locations of objects. Indeed,
the object locations can be identified by the thresholding rule:{

r ∈ K : J ε(r) � 2�−2
S

}
. (38)

Proof. Let {vj + δvj : j = s + 1, . . . , n} be the columns of Qε
2. Clearly, δvj is the (j − s)th

column of Qε
2 − Q2. Now we have

‖Qε
2 − Q2‖2 � ‖Q1F∗(I + FF∗)−1/2‖2 + ‖Q2(I + FF∗)−1/2 − Q2‖2

� ‖Q1F∗‖2 + ‖(I + FF∗)−1/2 − I‖2

whose first term is bounded by ‖F‖2 and whose second term is bounded by

‖(I + FF∗)−1/2 − I‖2 = ‖(I + FF∗)−1/2(I + (I + FF∗)1/2)−1FF∗‖2

� 1
2‖F‖2

2.

Hence,

‖δvj‖2 � ‖Qε
2 − Q2‖2 � ‖F‖2 +

1

2
‖F‖2

2 � 2ρ(1 − ρ)

(1 − 2ρ)2
, j = s + 1, . . . , n, (39)

where ρ = ‖E‖2/σmin.
By corollary 1 {vj + δvj : j = s + 1, . . . , n} is the set of singular vectors associated with

the n−s smallest singular values of Y. By definition,

‖Pεφr‖2
2 =

n∑
k=s+1

∣∣(v∗
k + δv∗

k)φr
∣∣2

=
n∑

k=s+1

∣∣v∗
kφr

∣∣2
+ 2

n∑
k=s+1

�[v∗
kφrφ

∗
r δvk] + ‖(Qε

2 − Q2)
∗φr‖2

2. (40)

By assumption the first two terms on the right-hand side of (40) vanish if and only if r ∈ S.
By (39) the third term is bounded by

‖(Qε
2 − Q2)

∗φr‖2
2 � 4ρ2(1 − ρ)2

(1 − 2ρ)4
.

10
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For r 	∈ S,
n∑

k=s+1

∣∣(v∗
k + δv∗

k)φr
∣∣2 =

n∑
k=s+1

∣∣v∗
kφr

∣∣2 − ‖(Qε
2 − Q2)

∗φr‖2
2

� �2
S − 4ρ2(1 − ρ)2

(1 − 2ρ)4

by (39). Hence J ε(r) has the following behavior

J ε(r) � (1 − 2ρ)4

4ρ2(1 − ρ)2
, r ∈ S (41)

J ε(r) �
(

�2
S − 4ρ2(1 − ρ)2

(1 − 2ρ)4

)−1

, r ∈ Sc. (42)

Setting

(1 − 2ρ)4

4ρ2(1 − ρ)2
>

(
�2
S − 4ρ2(1 − ρ)2

(1 − 2ρ)4

)−1

we obtain the inequality

ρ2 − ρ +
�S

4�S + 2
√

2
> 0 (43)

whose solution is (37). Note that � < 1/5 < ρ∗,∀�S ∈ [0, 1]. �
Condition (37) would not be very useful unless ‖E‖2 can be bounded from above and

σmin, �S can be bounded from below by other known or accessible quantities. This is what
the compressed sensing techniques enable us to do.

3. Compressed sensing analysis

We now give a quantitative evaluation of MUSIC based on compressed sensing theory.
A fundamental notion in compressed sensing is the restrictive isometry property (RIP)

due to Candès and Tao [5]. Precisely, let the sparsity s of a vector Z ∈ C
N be the number of

nonzero components of Z and define the restricted isometry constants δ−
s ∈ [0, 1], δ+

s ∈ [0,∞)

to be the smallest nonnegative numbers such that the inequality

(1 − δ−
s )‖Z‖2

2 � ‖Φ̃Z‖2
2 � (1 + δ+

s )‖Z‖2
2 (44)

holds for all Z ∈ C
N of sparsity at most s.

Roughly speaking this means that Φ̃ acts like a near isometry, up to a scaling, when
restricted to s-sparse vectors. In particular, if δ−

s+1 < 1 then any s + 1 columns of Φ̃ are linearly
independent which implies the characterization (15).

More generally, let us extend the notion of the restricted isometry constants to ones δ±
S

associated with a particular set S, namely the smallest nonnegative numbers satisfying

(1 − δ−
S )‖Z‖2

2 � ‖Φ̃Z‖2
2 � (1 + δ+

S)‖Z‖2
2 (45)

for all Z ∈ C
N supported on the set S. This will become important later when we analyze the

case of an arbitrarily refined grid (section 7). Clearly,

δ±
s = max

|S|=s
δ±
S . (46)

Then (15) is equivalent to δ−
S ′ < 1 for all S ′ which is the union of S and another point r ∈ Sc.

First, let us estimate the magnitude of the error term E in terms of E as follows.

11
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Lemma 1. Suppose (45) holds for Φ. Then

‖E‖2 � ‖E‖2
2 + 2ζmax

√
1 + δ+

S‖E‖2 � ‖E‖2
2 + 2ζmax

√
1 + δ+

s ‖E‖2 (47)

where ζmax = ‖Z‖2 is the largest singular value of Z.
For the case of Z = XΨ∗ with Ψ satisfying (45), we have

‖E‖2 � ‖E‖2
2 + 2ξmax

(
1 + δ+

S
)‖E‖2 � ‖E‖2

2 + 2ξmax
(
1 + δ+

s

)‖E‖2 (48)

where ξmax = maxi |ξi |.
Proof. First we have

‖E‖2 � ‖E‖2
2 + 2‖ΦZE∗‖2.

The RIP (45) then implies that

‖ΦZE∗‖2
2 � (1 + δ+

S)‖ZE∗‖2
2

and thus

‖E‖2 � ‖E‖2
2 + 2

√
1 + δ+

S‖ZE∗‖2

� ‖E‖2
2 + 2

√
1 + δ+

S‖Z‖2‖E∗‖2.

In the case of scattering objects Z = XΨ∗

‖ZE∗‖2 = ‖EΨX∗‖2 � ‖E‖2‖ΨX∗‖2 � ‖E‖2ξmax

√
1 + δ+

s

provided that Ψ also satisfies the RIP (45). In this case,

‖E‖2 � ‖E‖2
2 + 2ξmax(1 + δ+

S)‖E‖2 (49)

and hence (48). �

Lemma 2. The minimum nonzero singular value σmin of Y obeys the lower bound

σmin � (1 − δ−
S )ζ 2

min � (1 − δ−
s )ζ 2

min (50)

where

ζmin = min
e∈Cs

‖Z∗e‖2

‖e‖2
. (51)

For the case of scattering objects Z = XΨ∗ with Ψ satisfying (45), we have

σmin � (1 − δ−
S )2ξ 2

min � (1 − δ−
s )2ξ 2

min. (52)

Proof.
Using the max–min theorem [19]

σs(Y) = max
dimH=s

min
e∈H

‖Ye‖2

‖e‖2
(53)

with H = Ran(Φ), we obtain

σmin(Y) � min
e∈Ran(Φ)

‖e‖2=1

‖ΦZZ∗Φ∗e‖2. (54)

Let {uj : j = 1, . . . , s} be the eigenvectors of ΦΦ∗ associated with the nonzero eigenvalues
{λ2

1 � λ2
2 � · · · � λ2

s } and form the orthonormal basis of H. Write e = ∑s
j=1 ej uj where∑s

j |ej |2 = 1. We have

ΦΦ∗e =
s∑

j=1

λ2
j ej uj

12
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and thus

‖Φ∗e‖2
2 =

s∑
j=1

λ2
j |ej |2 � λ2

s . (55)

It follows from (54), (45) and (55) that

σmin �
√

1 − δ−
S ‖ZZ∗Φ∗e‖2 �

√
1 − δ−

S ζ 2
minλs (56)

by (51). On the other hand, λ2
s is exactly the smallest eigenvalue of Φ∗Φ ∈ C

s×s and hence
by (45) is bounded from below by 1 − δ−

S . Using this observation in (56) we obtain (50).
In the case of scattering objects we can bound ζ 2

min as

ζ 2
min � (1 − δ−

S )ξ 2
min

ζ 2
max � (1 + δ+

S)ξ 2
max

by using (45) with Ψ and hence the result (52). �

Next we derive a lower bound for �S in terms of RIC.

Lemma 3. Fix S, |S| = s. Then, the lower bound is valid

�S � 1 − max
r∈Sc

S′=S∪{r}

δ−
S ′(1 + δ+

S)

2 + δ+
S − δ−

S ′
� γs (57)

γs = 1 − δ−
s+1(1 + δ+

s )

2 + δ+
s − δ−

s+1

. (58)

Proof. Without loss of generality, suppose S = {1, 2, . . . , s} and consider φr = �̃s+1.
Let S ′ = S ∪ {s + 1}. Our subsequent analysis is independent of these choices modulo
inconsequential notational change.

Denote Pφr = φ′ and write the orthogonal decomposition

φr = φ′ +
s∑

j=1

cj �̃j . (59)

Hence we can express φ′ as

φ′ = �̃s+1 −
s∑

j=1

cj �̃j = Φ̃Z, Z = (−c1,−c2, . . . ,−cs, 1, 0, . . . , 0)T ∈ C
N .

Using (45) for sparsity S ′ we obtain a lower bound for ‖φ′‖2:

(1 − δ−
S ′)

⎛
⎝1 +

s∑
j=1

|cj |2
⎞
⎠ � ‖φ′‖2

2. (60)

On the other hand, we have by the Pythagorean theorem that

‖φr‖2
2 = ‖φ′‖2

2 + ‖
s∑

j=1

cj �̃j‖2
2. (61)

Applying (45) for sparsity S to the second term on the right-hand side of (61) we obtain

‖φr‖2
2 − ‖φ′‖2

2 = ‖
s∑

j=1

cj �̃j‖2
2 � (1 + δ+

S)

s∑
j=1

|cj |2

13
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and hence
s∑

j=1

|cj |2 �
(
1 + δ+

S
)−1 (‖φr‖2

2 − ‖φ′‖2
2

)
. (62)

Combining (62) and (60) we obtain

‖φ′‖2
2 � (1 − δ−

S ′)

(
1 +

1 − ‖φ′‖2
2

1 + δ+
S

)
which can be solved to yield

‖φ′‖2
2 � 1 − δ−

S ′(1 + δ+
S)

2 + δ+
S − δ−

S ′
. (63)

Minimizing (63) over r ∈ Sc we obtain the first inequality in (57).
The second inequality (57) follows from (46) and the observation (by differentiation) that

the quantity

δ−
S ′(1 + δ+

S)

2 + δ+
S − δ−

S ′

is an increasing function of δ−
S ′ ∈ [0, 1] and δ+

S ∈ [0,∞) separately. �

Combining the preceding results we have the following stability criterion for exact
recovery by MUSIC.

Theorem 2. Suppose δ−
s+1 < 1 (implying (15)) and ‖E‖2 = ε.

If the noise-to-object ratio (NOR) satisfies

ε

ζmin
<

√
(1 + δ+

s )
ζ 2

max

ζ 2
min

+ (1 − δ−
s )�̃ − ζmax

ζmin

√
1 + δ+

s (64)

where

�̃ = 1

2
− 1

2

1√√
2γs + 1

, γs given by (58), (65)

then the object support S can be identified by the thresholding rule{
r ∈ K : J ε(r) � 2γ −2

s

}
. (66)

In the case of scattering objects Z = XΨ∗ with Ψ∗ satisfying the RIP (44) the thresholding
rule (66) holds under the following bound on the noise-to-scatterer ratio (NSR)

ε

ξmin
<

√
(1 + δ+

s )2
ξ 2

max

ξ 2
min

+ (1 − δ−
s )2�̃ − (1 + δ+

s )
ξmax

ξmin
(67)

where ξmax/ξmin is the dynamic range of scatterers.

Proof. By (47) and (50)

ρ̃2 + 2ρ̃
ζmax

ζmin

√
1 + δ+

s < �̃, ρ̃ = ε

ζmin
, (68)

implies (37) in theorem 1. The sufficiency of (64) now follows from solving the quadratic
inequality (68) for ρ.

The derivation of the thresholding rule (66) under the stronger condition (64) is exactly
the same as that of (38). Alternatively, we can use (41) and (42) to verify the validity of the

14
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thresholding rule (66) as follows. Under condition (37) (and hence (43)) it is straightforward
to check that 2γ −2

s � 2�−2
S and is greater than the right-hand side of (42). On the other hand,

(37) and lemma 3 imply that 2γ −2
s is smaller than the right-hand side of (41).

The proof for the case of scattering objects is exactly the same as above. �

Remark 3. The right-hand side of (67) decreases as the ratio

(1 − δ−
s )2�̃

2(1 + δ+
s )ξmax/ξmin

(69)

decreases. In the under-resolved case (section 8), δ−
s is close to 1, making the ratio (69)

a small number. For a noise-to-scatterer ratio smaller than (69) the s scatterers can be
perfectly localized by the MUSIC algorithm with thresholding. This super-resolution effect
is demonstrated in the numerical simulations of section 8.

We state the MUSIC algorithm with the thresholding rule (66) for the noisy case as
follows.

Theorem 2 provides a performance guarantee for this algorithm under condition (64).
The thresholding rule (66) can be made more practical and useful as (76) in corollary 2.

A simple upper bound for the RIC can be given in terms of the notion of coherence
parameter μ(Φ̃) defined as

μ(Φ̃) = max
i 	=j

∣∣∣∑l �̃li�̃
∗
lj

∣∣∣√∑
l |�̃li |2

∑
l |�̃lj |2

.

Namely, μ(Φ̃) is the maximum of cosines of angles between any two columns.
The proof of the following well-known result is elementary and instructive.

Proposition 3. For any r ∈ N, we have

δ±
r � μ(Φ̃)(r − 1).

Proof. Calculating the quantity ‖Φ̃Z‖2
2 − ‖Z‖2

2, we have

∣∣‖Φ̃Z‖2
2 − ‖Z‖2

2

∣∣ =
∣∣∣∣∣∣
∑
i 	=j

�̃∗
i �̃jZ

∗
i Zj

∣∣∣∣∣∣ � μ(Φ̃)
∑
i 	=j

∣∣Z∗
i Zj

∣∣ .
Using the quadratic inequality 2ab � a2 + b2 we obtain∑

i 	=j

∣∣Z∗
i Zj

∣∣ � 1

2

∑
i 	=j

(|Zi |2 + |Zj |2) �
∑
i 	=j

Zj 	=0

|Zi |2 � (r − 1)‖Z‖2
2.

Therefore, (44) is satisfied with δ±
r � μ(Φ̃)(r − 1). �

Remark 4. For s = 2 it follows from proposition 3 that

δ±
2 � μ(Φ̃).

Since μ is almost surely less than unity for randomly selected sampling directions, the MUSIC
algorithm will find the true location of the object in the absence of noise, if there is only one
object.

The coherence bound for the most general setting of random sampling directions is this.
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Proposition 4 [12]. Suppose any two points in K are separated by at least � > 0. Let
ŝk, k = 1, . . . , n, be independently drawn from the distribution f s on the (d − 1)-dimensional
sphere independently and identically. Suppose

N � α

8
eK2/2 (70)

for any positive constant α,K . Then Φ̃ satisfies the coherence bound

μ(Φ̃) < χ s +

√
2K√
n

with probability greater than (1 − α)2 where χ s satisfies the bound

χ s � ct (1 + ω�)−1/2‖f s‖t,∞, d = 2 (71)

χ s � c1(1 + ω�)−1‖f s‖1,∞, d = 3 (72)

where ‖ · ‖t,∞ is the Hölder norm of order t > 1/2 and the constant ct depends only on t.

Remark 5. Replacing Φ̃, ŝk and f s in proposition 4 by Ψ̃, d̂k and f i, respectively, we have
the same conclusion about Ψ̃.

Remark 6. Constraint (70) on the number of search points in the computation grid K is
relatively weak and allows for essentially any grid. However, to have a small χ s the grid
spacing � cannot be small compared to the wavelength.

Suppose ω� � C2n for d = 2 or ω� � C
√

n for d = 3 where

C � c1√
2K

max
{‖f s‖1,∞, ‖f i‖1,∞

}
. (73)

Then, according to propositions 4, 3 and remark 5, with high probability, for continuously
differentiable distributions f s, f i we have

δ±
s � δ±

s+1 � 2
√

2Ks/
√

n. (74)

Clearly the right-hand side of (73) achieves the minimum when f s and f i are the uniform
distribution over the unit circle for d = 2 or the unit sphere for d = 3.

On the other hand when the aperture for either illumination or reception is limited, the
right-hand side of (73) increases and the condition becomes more stringent. This occurs,
for example, when the objects are embedded in a half-space with emitters and receivers set
above it. The aperture limitation typically causes the performance of the MUSIC algorithm
to deteriorate (cf [1] and [18]). However, the deterioration in performance does not get worse
than what is implied by (73) and may be restored by increasing the frequency at least in the
case of point objects.

Theorem 2 then implies the following.

Corollary 2. Suppose ω� � C2n for d = 2 or ω� � C
√

n for d = 3 with C given by (73).
Suppose that

√
n/s � 4

√
2K (hence δ±

s , δ±
s+1 � 1/2 by (74)) and that the NSR obeys

ε

ξmin
<

⎛
⎝

√
9

4

ξ 2
max

ξ 2
min

+
�̃

4
− 3

2

ξmax

ξmin

⎞
⎠ (75)

where �̃ is given in (65). Then under the assumptions of proposition 4 the MUSIC algorithm
with the thresholding rule{

r ∈ K : J ε(r) � 128

25

}
(76)

recovers exactly the locations of s scatterers with probability at least (1 − α)2.
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The value 128/25 is arrived from the fact that

max
δ+
s ,δ−

s+1<1/2

δ−
s+1(1 + δ+

s )

2 + δ+
s − δ−

s+1

� 3/8.

4. Planar objects: optimal recovery

Let us consider the favorable imaging geometry where all the scatterers lie on the transverse
plane z = 0. Furthermore, we consider the idealized situation where the locations of the
scatterers are a subset S of a finite square lattice K of spacing �:

K = {rj : j = 1, . . . , N} = {(p1�, p2�, 0) : p1, p2 = 1, . . . ,
√

N}, j = (p1 − 1)
√

N + p2.

(77)

Hence, the total number of grid points N is a perfect square.
Suppose we choose the frequency such that

ω� =
√

2π. (78)

Let ak = (ξk, ηk), k = 1, . . . , n, be independently and uniformly distributed random variables
in [−1, 1]2 and set

ŝk = 1√
2
(ak,

√
2 − |ak|2). (79)

Let the incident directions d̂l , l = 1, . . . , m, be selected the same way but independently from
ŝk, k = 1, . . . , n. It can be proved that with m � s the corresponding sensing matrix Ψ has
rank s with probability 1.

With (78)–(79) and j = (p1−1)
√

N +p2 the scattering amplitude (11) for linear extended
objects yields the following extended sensing matrix:

�̃k,j = e−π iak ·p ∈ C
n×N . (80)

Matrix (80) is often referred to as the random partial Fourier matrix in compressed sensing
theory.

The following is a standard result about the random partial Fourier matrix [24].

Proposition 5 [24]. Suppose aj , j = 1, . . . , n, are independently and uniformly distributed
in [−1, 1]d , d � 1. If

n

ln n
� Cδ−2

∗ s ln2 s ln N ln
1

γ
(81)

for γ ∈ (0, 1) and some absolute constant C, then with probability at least 1 − γ the random
partial Fourier matrix defined by (80) satisfies the RIC bound

δ±
s < δ∗. (82)

Remark 7. The result holds true for sampling points aj which are i.i.d. uniform random
variables (r.v.s) in the discrete set{(

k1

N1/d
,

k2

N1/d
, . . . ,

kd

N1/d

)
: k1, k2, . . . , kd ∈ { − N1/d , . . . , N1/d − 1

}}
(83)

instead of [−1, 1]d where N1/d is assumed to be an integer.

Assume for simplicity the plane wave incidence as before. Choosing δ∗ = 1/2 for sparsity
s + 1 in proposition 5 and using theorem 2 we obtain the following result.
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Corollary 3. Suppose that (78) is true and that ŝk = d̂k, k = 1, . . . , n, with

n

ln n
� 4C(s + 1) ln2 (s + 1) ln N ln

1

γ
. (84)

If the NSR obeys (75) the MUSIC algorithm with the thresholding rule (76) recovers exactly
the locations of s scatterers with probability at least 1 − γ .

4.1. Paraxial regime

Here we would like to extend the scattering problem to the paraxial regime for the preceding
setup where, instead of n sampling directions, n point sensors located on the transverse plane
z = z0 measure the scattered field.

We shall make the paraxial approximation for Green’s function between the object plane
z = 0 and the sensor plane z = z0:

G(s, r) = eiωz0

4πz0
eiω(x2+y2)/(2z0)e−iωxξ/z0 e−iωyη/z0 eiω(ξ 2+η2)/(2z0) (85)

with s = (ξ, η, z0), r = (x, y, 0). Denote

Gp(s, r) = eiω|x−ξ |2/(2z0)eiω|y−η|2/(2z0).

Let sk = (ξk, ηk, z0), k = 1, . . . , n, be the locations of the transceivers. We have Φ̃ = Ψ̃
where the extended matrix Φ̃ is given by

�̃k,l = (G(s1, rj ), . . . ,G(sn, rj ))
T , j = 1, . . . , N, (86)

where rj ∈ K defined in (77). After proper normalization the extended sensing matrix Φ̃ can
be written as the product of three matrices:

Φ̃ = D1AD2 (87)

where

D1 = diag(eiω(ξ 2
j +η2

j )/(2z0)) ∈ C
n×n, D2 = diag(eiω(x2

l +y2
l )/(2z0)) ∈ C

N×N

are unitary and

A = 1√
n

[
e−iωξj xl/z0 e−iωηj yl/z0

] ∈ C
n×N .

Now suppose that (ξj , ηj ), j = 1, . . . , n, are independently and uniformly distributed in
[−A

2 , A
2 ]2 and write (ξj , ηj ) = aj · A/2 with aj ∈ [−1, 1]2, j = 1, . . . , n. Write also

rl = (xl, yl, 0) = (p�, 0) where p ∈ Z
2. Then with

A�

λz0
= 1 (88)

A takes the form

A = 1√
n

[
e−πia·p] ∈ C

n×N (89)

which is exactly the random partial Fourier matrix given in (80). Here and below λ denotes
the wavelength.

Since both D1 and D2 are unitary and diagonal, they leave both the �2-norm and the
sparsity of a vector unchanged. Therefore, proposition 5 and remark 7 are applicable to Φ̃
given in (87).

Analogous to corollary 3 we have
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Corollary 4. Suppose that (88) is true and that there are n transceivers satisfying (84). If the
NSR obeys (75), then the MUSIC algorithm with the thresholding rule (76) recovers exactly
the locations of s scatterers with probability at least 1 − γ .

In the paraxial setting (88) in corollary 4 replaces condition (78) in corollary 3. Condition
(88) is exactly the classical Rayleigh criterion for resolution which is, in this case, the grid
spacing �.

5. Comparison with basis pursuit

In the standard compressed sensing theory, one usually considers the following data model:

Y ε = Φ̃Z + E ∈ C
n, Z ∈ C

N, ‖E‖2 � ε (90)

where the data and the object are vectors and employs the relaxed minimization principle
called the pasis pursuit denoising (BPDN) [2, 6]

min
Z′∈CN

‖Z′‖1, s.t. ‖Y ε − Φ̃Z′‖2 � ε (91)

for reconstruction. The noiseless version ε = 0 of (91) is called the basis pursuit (BP). Note
that BPDN uses only one column of the MUSIC model (22).

When Z is not s-sparse, consider the best s-sparse approximation Z(s) of Z. Clearly,
Z(s) = Z if Z is s-sparse.

Denote the BPDN minimizer by Ẑ. When does Ẑ give a good approximation to the true
Z? Again, the RIP (44) gives a useful characterization [3].

Theorem 3. Suppose the RICs of Φ̃ ∈ C
n×N satisfy the inequality

√
2

2
δ+

2s +

(√
2

2
+ 1

)
δ−

2s < 1. (92)

Then the BPDN minimizer Ẑ is unique and satisfies the error bound

‖Ẑ − Z‖2 � C1s
−1/2‖Z − Z(s)‖1 + C2ε (93)

where

C1 = 2 + (
√

2 − 2)δ−
2s +

√
2δ+

2s

1 −
√

2
2 δ+

2s − (√
2

2 + 1
)
δ−

2s

C2 = 4
√

1 + δ+
2s

1 −
√

2
2 δ+

2s − (√
2

2 + 1
)
δ−

2s

.

Remark 8. The real-valued version theorem 3 with the symmetrical RIP (δs = δ±
s ) is

proved in [3]. The proof for the complex-valued, asymmetrical version follows the same line
of reasoning with minor modifications. For the reader’s convenience and for the purpose of
showing where adjustments are needed, the full proof of theorem 3 is given in appendix B.

Remark 9. Theorem 3 does not guarantee exact recovery of support when E 	= 0. An
alternative condition in terms of the spectral norm guaranteeing BPDN’s exact localization
property is given in [4] and an application to imaging is given in [14]. Theorem 3 is invoked
here because condition (92) is based on RIP and the condition on noise is more relaxed than
that of [4], thus directly comparable to those of the performance guarantee for MUSIC. On
the other hand, in the noiseless case (ε = 0), BP does not guarantee to recover all s-sparse
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objects even under the RIP δ2s < 1/
√

2 according to [15]. By contrast, MUSIC guarantees to
localize exactly all s-sparse objects in the absence of noise whenever δs+1 < 1.

Remark 10. In the case of planar objects, under the assumptions of proposition 5 (with
δ∗ = √

2 − 1), BPDN yields the exact solution Ẑ = Z for n = O(s) sampling directions
(or sensors) and just one incident wave, modulo logarithmic factors. In comparison, the
performance guarantee for MUSIC in corollary 3 assumes n = O(s) sampling and incident
directions.

Using proposition 3 and theorem 3, we obtain

Corollary 5. If

s <
1

2
+

√
2 − 1

2μ(Φ̃)
,

cf (115), then (93) holds true.

Remark 11. Under the assumptions of proposition 4 with continuously differentiable f s

and f i BPDN recovers the s-sparse object exactly Ẑ = Z in the noiseless case ε = 0 for
n = O(s2) and sufficiently high frequency.

This is similar to the performance guarantee for MUSIC in corollary 2. However, the
performance guarantee for MUSIC assumes O(s2) incident waves while the performance
guarantee for BPDN assumes only one incident wave.

6. Spectral estimation and source localization

Let us turn to the original application where the MUSIC algorithm arises, namely the source
localization and the frequency estimation for multiple random signals. The two applications
share almost exactly the same mathematical formulation.

Suppose the random signal x(t) consists of random linear combinations of s time-harmonic
components from the set

{e−i2πωt : ω ∈ K}, K =
{

j

N
, j = 1, . . . , N

}
.

Let us write

x(t) =
N∑

j=1

aj e−i2πωj t , ωj = j/N (94)

and assume that there is a fixed set S (i.e. deterministic support) of s nonzero amplitudes and
the elements in the complementary set Sc are zero almost surely.

Consider the noisy signal model

y(t) = x(t) + e(t) (95)

where e(t) is the Gaussian white-noise. The task is to find out the frequency content of x by
sampling y(t).

Consider random sampling times tk, k = 1, . . . , n, which are i.i.d. uniform r.v.s in the set
{1, . . . , N}. Write Y = (y(tk)) ∈ C

n, E = (e(tk)) ∈ C
n and Z = (aj ) ∈ C

N . Then by (95)
we have

Y = Φ̃Z + E (96)

�̃k,j = 1√
n

e−i2πtkj/N ∈ C
n×N,

cf (90). From the one-dimensional setting of proposition 5 and remark (7) we know that if
(81) is satisfied with δ∗ = √

2 − 1, then the RIC of Φ̃ obeys bound (82) with a probability of
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at least 1−γ . Applying BPDN to (96) we obtain the error bound (93) with O(s) data, modulo
logarithmic factors.

How does MUSIC perform in this case? The standard MUSIC proceeds as follows.
Let RY = E[YY ∗] ∈ C

n×n, RZ = E[ZZ∗] ∈ C
N×N and RE = E[EE∗] be the covariance

matrices of Y, Z and E, respectively.
Note that RZ is sparse and has at most rank s. RZ has rank s, for example, when ai

are zero-mean, independent random variables. In this case, RZ = diag(E|ai |2) has exactly s
nonzero diagonal elements.

Suppose the noise e(t) and the signal x(t) are independent of each other. Then we have

RY − RE = Φ̃RZΦ̃∗
. (97)

Replacing the true covariances RY and RE by their sample estimates R̂Y and R̂E , we may
rewrite (98) as

R̂Y − R̂E = Φ̃RZΦ̃∗
+ E (98)

which is of the form (23) with Yε = R̂Y − R̂E and Y = Φ̃RZΦ̃∗
. We set ‖E‖2 = ε2.

Analogous to theorem 1 and lemma 2 we have

Theorem 4. Let ‖E‖2 = ε2 and assume that RZ has rank s. If

‖E‖2

σmin
<

1

2
− 1

2

1√√
2�S + 1

, σmin = max
dimH=s

min
e∈H

‖Φ̃RZΦ̃∗e‖2

‖e‖2
(99)

holds, then the frequency content S can be identified by the thresholding rule{
r ∈ K : J ε(r) � 2�−2

S
}
. (100)

Lemma 4. The minimum nonzero singular value σmin of Φ̃RZΦ̃∗
satisfies

σmin � (1 − δ−
S )ζmin, ζmin = min

e∈Cs

‖RZe‖2

‖e‖2
.

Hence by lemma 3 we obtain the following.

Theorem 5. Assume δ−
s+1 < 1 and the setting of theorem 4. If

ε

ζmin
< (1 − δ−

s )�̃

then

S =
{
ωj = j

N
, j = 1, . . . , N : J ε(ωj ) � 2γ −2

s

}
(101)

where �̃ and γs are given by (65).

Remark 12. By proposition 5 O(n), modulo logarithmic factor, time samples are sufficient
to recover the frequency content by MUSIC (theorem 5) or BPDN (theorem 3). However,
many realizations of Y and E are needed to calculate the covariance matrices accurately and
form equation (98) before the MUSIC reconstruction. Once (98) holds with sufficiently small
ε, the noise structure does not affect reconstruction as long as the noise is independent of the
signal.

In the absence of abundant realizations of signals, though, BPDN is the preferred method
for spectral estimation. Indeed, BPDN can identify the frequency content approximately with
just one realization of signals. The recovery error is at worst linearly proportional to the noise
level as in (93).
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The source localization problem can be treated in the same vein as follows.
Let us assume that s source points are distributed in the grid K defined in (77) and each

source point emits a signal governed by the paraxial Green’s function (85) and recorded by
the n sensors located at ai , i = 1, . . . , n, in the plane z = z0.

Let Z = (ξ(rj )) ∈ C
N be the object vector. After proper normalization, the data vector

Y can be written as (96) with the sensing matrix Φ̃ of the form (87).
Results essentially identical to theorems 4 and 5 and remark 12 follow immediately.

7. Resolution and grid spacing

Being essentially a gridless method, MUSIC’s flexibility with grid spacing is an advantage
that the current BPDN-based imaging methods do not yet possess.

Let � be a length scale to be determined below and let S� = {r ∈ K : dist(r,S) � �} be
the �-neighborhood of the objects. For the problem of inverse scattering, dist(r,S) typically
refers to the physical or Euclidean distance in the spatial domain. We would like to derive a
thresholding rule which can eliminate all false alarms (i.e. artifacts) occurring outside S�, no
matter how refined the grid spacing is relative to the frequency.

Let Φ̃ be the extension of Φ over a fine grid of spacing �̃ which may be much smaller
than ω−1. When �̃ = 0, the computation domain K is a continuum.

Generalizing definition (21), we define

�S(�) ≡ min
r∈Sc

�

‖φr‖−1
2 ‖Pφr‖2 =

√
1 − max

r∈Sc
�

‖φr‖−2φ∗
r ΦΦ†φr. (102)

Clearly, �S = �S(0+). In the noiseless case, the exact recovery of S by MUSIC is equivalent
to �S(0+) < 1.

Extending the proof of lemma 3 to �S(�) we have

Lemma 5.

�S(�) � γS(�) ≡ 1 − max
S ′

δ−
S ′(1 + δ+

S)

2 + δ−
S − δ+

S ′
(103)

where S ′ = S� ∪ {r},∀r ∈ Sc
� .

Extending the analysis leading to (41)–(42) we have

J ε(r) � (1 − 2ρ)4

4ρ2(1 − ρ)2
, r ∈ S (104)

J ε(r) �
(

�2
S(�) − 4ρ2(1 − ρ)2

(1 − 2ρ)4

)−1

, r ∈ Sc
� . (105)

The following result is analogous to theorem 1.

Theorem 6. Suppose δ−
S ′ < 1,S ′ = S ∪ {r},∀r ∈ Sc

� .
If

‖E‖2

σmin
< �� = 1

2
− 1

2

1√√
2�S(�) + 1

(106)

then

S ⊂ � = {
r ∈ K : J ε(r) � 2�−2

S (�)
}

(107)

where � ∩ Sc
� = ∅.
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Lemmas 5 and 2 and theorem 6 then implies the following result analogous to theorem 2.

Theorem 7. Suppose δ−
S ′ < 1,S ′ = S ∪ {r},∀r ∈ Sc

� . If the NSR obeying the upper bound

ε

ξmin
<

√
(1 + δ+

S)2
ξ 2

max

ξ 2
min

+ (1 − δ−
S )2�̃� − (1 + δ+

S)
ξmax

ξmin
(108)

with

�̃� = 1

2
− 1

2

1√√
2γS(�) + 1

(109)

then

S ⊂ � = {r ∈ K : J ε(r) � 2γS(�)−2} (110)

where γS(�) is given in (103) and � ∩ Sc
� = ∅.

Let us now give an estimate of the length scale � for (108) to be a useful upper bound for
NSR. Let us focus on the general setting of proposition 4, namely arbitrarily located scatterers
and random sampling directions.

We resort to the following result analogous to proposition 3. The proof is exactly the
same as before and is omitted here.

Proposition 6. For any set B ⊂ K, |B| � r , we have

δ±
B � μ(Φ̃B)(r − 1).

To proceed, let us tailor the estimate in proposition 4 to the current setting as follows.

Proposition 7 [12]. Suppose the physical distances between two points corresponding to any
two members of B ⊂ K are at least �. Let ŝk, k = 1, . . . , n, be independently drawn from the
distribution f s on the (d − 1)-dimensional sphere independently and identically. Suppose

|K| � α

8
eK2/2

for any positive constants α,K . Then Φ̃B satisfies the coherence bound

μ(Φ̃B) < χ s +

√
2K√
n

with probability greater than (1 − α)2 where χ s satisfies the bound (71)–(72).

Suppose ω� � C2n for d = 2 or ω� � C
√

n for d = 3 where C is given by (73) and
assume that the s scatterers are separated by at least � from one another. Then, according
to propositions 7 and 6, with high probability, for any continuously differentiable sampling
distribution f s

δ±
S � δ±

S ′ � 2
√

2Ks/
√

n

for all S ′ = S ∪ {r}, r ∈ Sc
� . Hence we have the following analogous result to corollary 2.

Corollary 6. Suppose ω� � C2n for d = 2 or ω� � C
√

n for d = 3 with C given by (73).
Under the assumptions of proposition 7 (for B = S,S ′),

√
n/s � 4

√
2K and the NSR

bound (75),

S ⊂ � =
{

r ∈ K : J ε(r) � 128

25

}
(111)
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Table 3. MUSIC algorithm with thresholding (101) which can be made explicit as (76) of
corollary 2 .

MUSIC algorithm with thresholding for equation (98)

� Input R̂Y , R̂E, Φ̃ and the sparsity s.

� Compute the orthogonal projector Pε onto the noise subspace of Yε = R̂Y − R̂E .
� Compute the function J ε(ω) = |Pεφω|−2, ω ∈ K.

� Output the set of points corresponding to the s highest values of J ε or equivalently

the set
{
ω ∈ K : J ε(ω) � 2γ −2

s

}
where γs = 1 − δ−

s+1(1+δ+
s )

2+δ+
s −δ−

s+1
as the frequency content.

with probability at least (1 − α)2 where � ∩ Sc
� = ∅.

Corollary 6 asserts that under its conditions the MUSIC algorithm (cf table 2) with the
explicit thresholding rule (111) can recover, with a probability of at least (1 − α)2, the object
locations within the accuracy �.

Likewise, for the spectral estimation problem discussed in section 6, consider (98) with
an arbitrarily refined grid K. We have the following performance guarantee (cf theorem 5).

Theorem 8. Assume δ−
S ′ < 1, S ′ = S ∪ {ω},∀ω ∈ Sc(�). If

ε

ζmin
< (1 − δ−

S )�̃�

with �̃� given in (109) then

S ⊂ � = {ω ∈ K : J ε(ω) � 2γS(�)−2} (112)

where γS(�) is given in (103) and � ∩ Sc
� = ∅.

In other words, the MUSIC algorithm as stated in table 3 can recover, with high probability,
the frequency content within the accuracy �.

8. Numerical tests

In the simulations, z0 = 10000, λ = 0.1 and the search domain is [−250, 250]2 with grid
spacing � = 10 on the transverse plane z = 0. The scatterers are independently and uniformly
distributed on the grid with amplitudes independently and uniformly distributed in the range
[1, 2]. The sensors are independently and uniformly distributed in the domain [−A/2, A/2]2

with various A. The source locations are identical to the sensor locations. In the setup,
condition (88) is satisfied with A = 100. With these parameters, the paraxial regime is about
to set in (cf [16]). Note, however, that all the simulations are performed with the exact Green’s
function.

In our simulations we have used the Matlab codes YALL1 (acronym for Your ALgorithms
for L1, available at http://www.caam.rice.edu/ optimization/L1/YALL1/). YALL1 is an L1-
minimization solver based on the alternating direction method [29].

Figure 2 compares the performances of MUSIC and BPDN in the well-resolved case
A = 100 and the under-resolved case A = 10 where the aperture is only one-tenth of that
satisfying (88). For figure 2 BPDN is carried out on the data matrix Y with the sensors
coincident with the sources, i.e. Φ = Ψ. To put the problem in the proper setup for BP, we
vectorize Y by staking its n columns and denote the resulting C

n2
vector by Y. We vectorize

the diagonal matrix X̃ by listing its N diagonals as a C
N vector X̃. The BPDN performance of
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Figure 2. The number s (vertical axis) of recoverable scatterers versus the number of sensors n
(horizontal axis) of MUSIC (dashed) and BPDN (solid) with both methods employing the whole
data matrix in the well-resolved case A = 100 (left) and the under-resolved case A = 10 (right). In
the well-resolved case, BPDN delivers a much better (quadratic-in-n) performance than MUSIC;
in the under-resolved case, MUSIC outperforms BPDN whose performance tends to be unstable
in this regime. The numbers of recoverable scatterers by BPDN are calculated based on successful
recovery of at least 90 out of 100 independent realizations of transceivers and scatterers while the
success rate of MUSIC is 100%.

this setup has been analyzed in [16]. The numbers of recoverable scatterers shown in figure
2 are computed for at least a 90% recovery rate based on 100 independent realizations of
transceivers and scatterers. In both cases, MUSIC recovers s = n−1 scatterers with certainty.
Clearly, for the well-resolved case, BPDN has a far superior performance to MUSIC. Indeed,
it can be shown that BPDN can recover s = O(n2) scatterers with high probability in the
well-resolved case [16]. The quadratic behavior is illustrated by the near-parabolic curve
in figure 8 (left). For the under-resolved case, however, MUSIC outperforms BPDN by a
significant margin, figure 8 (right). As pointed out in remark 3, the MUSIC algorithm has the
super-resolution capability for a sufficiently small noise-to-scatterer ratio.

If only one column of Y is used in BPDN, as discussed in section 5, then MUSIC
outperforms BPDN by a wide margin even in the well-resolved case, figure 3.

We further investigate the performance of the MUSIC algorithm for the extremely under-
resolved case when BPDN essentially has extremely low probabilities of exact recovery (even
for s = 1). Figure 4 shows the success probabilities of MUSIC as a function of aperture for
various n and s while figure 5 shows the success probabilities of MUSIC as a function of n
for various A and s. The success rates are calculated from 1000 independent realizations of
transceivers and scatterers.

Three observations about figure 4 are in order: (i) the optimal performance of s = n − 1
does not hold with certainty for s relatively large with respect to aperture (cf left and right
panels); (ii) increasing the number of randomly selected transceivers reduces the aperture
required for the same probability of recovering the same number of scatterers (left to middle
panels); (iii) increasing the number of randomly selected scatterers increases the aperture
required for the same probability of recovery with the same number of transceivers (middle to
right panels).

Likewise, the success rates increase with the number of transceivers for any aperture
and sparsity (figure 5). The most interesting plot in figure 5 is the middle panel which
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Figure 3. The number s (vertical axis) of recoverable scatterers versus the number of sensors n
(horizontal axis) of MUSIC (dashed) and BPDN (solid) with BPDN employing only a single column
of the data matrix in the well-resolved case A = 100 with n ∈ [10, 30] (left) and n ∈ [150, 200]
(right). Both BPDN curves show a roughly linear behavior with a slope less than that of the MUSIC
curves.
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Figure 4. Success probability of the MUSIC reconstruction versus aperture for n = 10, s = 9
(left), n = 100, s = 9 (middle) and n = 100, s = 99 (right). Note the different aperture ranges
for the three plots. The success rate is calculated from 1000 trials. Increasing the number of
transceivers for the same number of scatterers reduces the aperture required for the same success
rate. The reduction of aperture is about three folds (left to middle). On the other hand, a higher
number of scatterers with the same number of transceivers also demands larger aperture for the
same success rate. The increase in aperture is about seven times (middle to right).
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Figure 5. Success probability of MUSIC versus the number of transceivers with A = 0.5, s = 9
(left), A = 0.2, s = 9 (middle) and A = 15, s = 99 (right). The probabilities are calculated from
1000 independent trials.
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Figure 6. Success probability of MUSIC reconstruction of s = 10 scatterers with n = 100
transceivers versus the noise level σ in the well-resolved case A = 100 (left) and the under-
resolved case A = 10 (right). The success rate is calculated from 1000 trials. Note the different
scales of σ in the two plots. Noise sensitivity increases dramatically in the under-resolved case.

shows for A = 0.2, s = 9 that the success rate curve becomes a plateau after reaching 80%.
This is not inconsistent with the prediction of proposition 1 since proposition 1 assumes a
fixed configuration of scatterers while figure 5 is for random, independent realizations of
scatterers. In other words, the threshold n0 in proposition 1 may not be uniformly valid for all
configurations of s scatterers in the under-resolved case. On the other hand, when the aperture
increases by two and a half times to A = 0.5 and the number of transceivers increases to 15,
the performance becomes uniform with respect to the scatterer configuration (left panel).

Figure 6 shows the noise sensitivity of MUSIC reconstruction of ten scatterers with 100
transceivers. Here n and s are chosen so that (81) is roughly satisfied. We add the i.i.d. noises

σ(e1 + ie2)Ymax (113)

to the entries of the unperturbed data matrix where e1 and e2 are independent, uniform r.v.s in
[−1, 1] and Ymax is the maximum absolute value of the data entries. Hence the signal-to-noise
ratio (SNR) is about 2−1σ−2. In the well-resolved case (A = 100) the MUSIC reconstruction
can withstand a significant amount of noise in the data matrix. Indeed, at SNR 0.5 the
success rate is almost 100%, consistent with the prediction of theorem 2, and even at SNR
0.22 (σ = 1.5) the success rate can be indefinitely improved by increasing the number of
transceivers (figure 7, left panel).

In the under-resolved case, however, the noise sensitivity increases significantly. Figure 6
(right panel) reminds us how fragile the superior performance of MUSIC in the under-resolved
case is, cf figure 8 (right panel). Figure 7 (right panel) further indicates that in the under-
resolved case the success rate may not be indefinitely improved by increasing the number of
transceivers in the presence of noise.

9. Conclusions and discussions

We have developed a framework for discrete quantitative analysis of the MUSIC algorithm in
the well-resolved case. Our approach is based on the RIP (44) and its variant (45) which takes
into account the object configuration as well as sparsity.
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Figure 7. Success probability of MUSIC reconstruction of s = 10 scatterers as a function of n
with σ = 150% in the well-resolved case A = 100 (left) and σ = 5% in the under-resolved case
A = 10 (right). The success rate reaches the plateau of 85% near n = 1000 in the under-resolved
case. The success rate is calculated from 1000 trials.
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Figure 8. Scattering by extended objects.

Our first main result is a support recovery condition (theorem 2) that for the NOR
obeying (64) MUSIC can exactly localize the objects with noisy data. Our result indicates the
super-resolution capability of the MUSIC algorithm when the noise level is sufficiently low
(remark 3).

We have provided a coherence approach to estimating RIC (propositions 4 and 3) for
general object configuration in three dimensions with the grid spacing � ∼ λs and the sensor
number n ∼ s2. When the scatterers are distributed in a transverse plane, then � ∼ λ, n ∼ s

(modulo logarithmic factors) suffices. We have extended these results to the gridless setting
for which � is interpreted as the minimum distance between objects and only approximate
localization up to the error � is sought (theorem 7 and corollary 6).

Our comparative analysis shows that when the whole data matrix is employed in both
BPDN and MUSIC, BPDN outperforms MUSIC in the well-resolved case in the sense that the
number of objects recoverable by BPDN grows quadratically with the number of transceivers
while that by MUSIC grows linearly. The MUSIC reconstruction can tolerate a significant
amount of noise (figures 6 and 7, left panels). On the other hand, our numerical results show
that in the under-resolved case MUSIC outperforms BPDN by a wide margin (figure 2, right
panel; figures 4 and 2). However, MUSIC’s super-resolution effect can only tolerate a small
amount of noise (figures 6 and 7, right panels).
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Even in the well-resolved case where the employment of just one column of the data matrix
by BPDN guarantees a probabilistic recovery of objects numbered in linear proportion to the
number of sensors, analogous to the performance guarantee of MUSIC, the latter outperforms
the former in numerical simulations by a wide margin (figure 3).

Finally, it is worthwhile to compare the MUSIC algorithm with the other algorithms for
multiple measurement vectors such as the orthogonal matching pursuit (OMP) [8, 28].

First, the MUSIC algorithm requires the input of the object sparsity while OMP does
not. Second, the MUSIC algorithm requires the input of at least the object sparsity plus one
measurement vectors while OMP is flexible with the number of measurement vectors. Third,
the best-known sufficient condition for exact localization by OMP is [11]

ε

ξmin
� 1

2
+ μ(Φ̃)

(
1

2
− s

)
. (114)

In order for the right-hand side of (114) to be positive, it is necessary that

s <
1

2
+

1

2μ(Φ̃)
(115)

which in view of proposition 4 implies s = O(
√

n). In contrast, the best performance guarantee
for MUSIC is n ∼ s as noted before. Fourth, like most compressed sensing techniques OMP
does not perform well with an arbitrarily refined grid while MUSIC can localize the objects in
such a grid within the accuracy determined by the measurement sub-matrix restricted to the
object support.
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Appendix A. Sparse extended objects

In this appendix we extend the MUSIC algorithm to image sparse extended scatterers by
interpolating from grid points.

Suppose that the object function ξ(r) has a compact support. Consider the discrete
approximation by interpolating from the grid points

ξ�(r) = �2
∑
q∈I

g(r/� − q)ξ(�q) I ⊂ Z
d

where g is some spline function and � is the grid spacing. Since ξ has a compact support, I is
a finite set. For simplicity assume d = 2 and let I be the finite lattice

I = {q = (q1, q2) : q1, q2 = 1, . . . ,
√

N}
of total cardinality N and K = �I. In the case of a characteristic function g, ξl is a piecewise
constant object function. We will neglect the discretization error and assume ξ�(r) = ξ(r) in
the subsequent analysis.

The data matrix Y ∈ C
n×m is given by

Yk,l ∼ �d
∑
q∈I

ξ(�q)

∫
Rd

g(r′/� − q) eiω(d̂l−ŝk)·r′
dr′,

= �d(2π)d/2ĝ(�ω(d̂l − ŝk))
∑
q∈I

ξ(�q) eiω�(d̂l−ŝk)·q. (A.1)
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As before we maintain the option of normalizing Y. Suppose {ξj = ξ(�qj ) : j = 1, . . . , s}
is the set of nonvanishing ξ(�q) and let X = diag(ξj ) ∈ C

s×s . Dividing (A.1) by
�d(2π)d/2ĝ(�ω(d̂l − ŝk))/2 we can write the data matrix in the form (12) with the sensing
matrices

�kj = 1√
n

e−iω�ŝk ·q ∈ C
n×s

�lj = 1√
n

e−iω�d̂l ·q ∈ C
n×s

where j = (q1 − 1)
√

N + q2.
In other words, the scattering analysis for both point and extended scatterers leads to the

same type of Fourier-like matrices.

Appendix B. Proof of theorem 3

The following lemma differs from the original version in [3].

Lemma 6. We have

|�〈Φ̃Z, Φ̃Z′〉| � 1
2

(
δ+
s+s ′ + δ−

s+s ′
) ‖Z‖2‖Z′‖2

for all Z,Z′ supported on disjoint subsets T , T ′ ⊂ {1, . . . , m} with |S| � s, |S ′| � s ′.

Proof. Without loss of generality, suppose Z,Z′ are unit vectors. Since Z ⊥ Z′,
‖Z ± Z′‖2

2 = 2. Hence we have from the RIP (44)

2(1 − δ−
s+s ′) � ‖Φ̃(Z ± Z′)‖2

2 � 2(1 + δ+
s+s ′) (B.1)

By the parallelogram identity and (B.1)

|�〈Φ̃Z, Φ̃Z′〉| = 1
4

∣∣‖Φ̃Z + Φ̃Z′‖2
2 − ‖Φ̃Z − Φ̃Z′‖2

2

∣∣ � 1
2

(
δ+
s+s ′ + δ−

s+s ′
)

which proves the lemma. �

By the triangle inequality and the fact that Z is in the feasible set we have

‖Φ̃(Ẑ − Z)‖2 � ‖Φ̃Ẑ − Y‖2 + ‖Y − Φ̃Z‖2 � 2ε. (B.2)

Set Ẑ = Z + � and decompose � into a sum of vectors �S0 ,�S1 ,�S2 , . . . , each of sparsity
at most s. Here S0 corresponds to the locations of the s largest coefficients of Z; S1 to the
locations of the s largest coefficients of �Sc

0
; S2 to the locations of the next s largest coefficients

of �Sc
0
, and so on.

Step 1. For j � 2,

‖�Sj
‖2 � s1/2‖�Sj

‖∞ � s−1/2‖�Sj−1‖2

and hence ∑
j�2

‖�Sj
‖2 � s−1/2

∑
j�1

‖�Sj
‖1 � s−1/2‖�Sc

0
‖1. (B.3)

This yields

‖�(S0∪S1)c‖2 = ‖
∑
j�2

�Sj
‖2 �

∑
j�2

‖�Sj
‖2 � s−1/2‖�Sc

0
‖1. (B.4)

Also we have

‖Z‖1 � ‖Ẑ‖1 = ‖ZS0 + �S0‖1 + ‖ZSc
0

+ �Sc
0
‖1 � ‖ZS0‖1 − ‖�S0‖1 − ‖ZSc

0
‖1 + ‖�Sc

0
‖1
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which implies

‖�Sc
0
‖1 � 2‖ZSc

0
‖1 + ‖�S0‖1. (B.5)

Note that ‖ZSc
0
‖1 = ‖Z − Z(s)‖1 by definition. Applying (B.4), (B.5) and the Cauchy–

Schwarz inequality gives

‖�(S0∪S1)c‖2 � ‖�S0‖2 + 2e0 (B.6)

where e0 ≡ s−1/2‖Z − Z(s)‖1.
Step 2. Observe

‖Φ̃�S0∪S1‖2
2 = 〈

Φ̃�S0∪S1 , Φ̃�
〉 −

〈
Φ̃�S0∪S1 ,

∑
j�2

Φ̃�Sj

〉

= � 〈
Φ̃�S0∪S1 , Φ̃�

〉 − ∑
j�2

� 〈
Φ̃�S0∪S1 , Φ̃�Sj

〉
= � 〈

Φ̃�S0∪S1 , Φ̃�
〉 − ∑

j�2

[� 〈
Φ̃�S0 , Φ̃�Sj

〉
+ � 〈

Φ̃�S1 , Φ̃�Sj

〉]
. (B.7)

This calculation differs slightly from the corresponding calculation in [3].
From (B.2) and the RIP (44) it follows that

‖ 〈
Φ̃�S0∪S1

〉 ‖ � ‖Φ̃�S0∪S1‖2‖Φ̃�‖2 � 2ε

√
1 + δ+

2s‖�S0∪S1‖2.

Moreover, it follows from lemma appendix B that∣∣� 〈
Φ̃�S0 , Φ̃�Sj

〉∣∣ � 1
2

(
δ+

2s + δ−
2s

) ‖�S0‖2‖�Sj
‖2∣∣� 〈

Φ̃�S1 , Φ̃�Sj

〉∣∣ � 1
2

(
δ+

2s + δ−
2s

) ‖�S0‖2‖�Sj
‖2

for j � 2. Since S0 and S1 are disjoint

‖�S0‖2 + ‖�S1‖2 �
√

2
√

‖�S0‖2
2 + ‖�S1‖2

2 =
√

2‖�S0∪S1‖2.

Also

(1 − δ−
2s)‖�S0∪S1‖2

2 � ‖Φ̃�S0∪S1‖2
2 � ‖�S0∪S1‖2

×
⎛
⎝2ε

√
1 + δ+

2s +
1√
2

(
δ+

2s + δ−
2s

)∑
j�2

‖�Sj
‖2

⎞
⎠ .

Therefore, from (B.3) we obtain

‖�S0∪S1‖2 � αε + ρs−1/2‖�Sc
0
‖1, α = 2

√
1 + δ+

2s

1 − δ−
2s

, ρ =
1√
2

(
δ+

2s + δ−
2s

)
1 − δ−

2s

and moreover by (B.5) and the definition of e0

‖�S0∪S1‖2 � αε + ρ‖�S0‖2 + 2ρe0.

Namely,

‖�S0∪S1‖2 � (1 − ρ)−1(αε + 2ρe0)

if (92) holds.
Finally,

‖�‖2 � ‖�S0∪S1‖2 + ‖�(S0∪S1)c‖2 � 2‖�S0∪S1‖2 + 2e0 � 2(1 − ρ)−1(αε + (1 + ρ)e0)

which is what we set out to show.
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