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Coded-aperture phase retrieval

e Mask (wavefront) u + propagation -+ intensity measurement:

p-coded diffraction pattern = |&(f ® p)|?, & = Fourier transform.

@ Ambiguities with one randomly coded diffraction pattern:

(harmless) constant phase  f(-) — e”f(-)
translation  f(-) — f(- +n)

conjugate inversion f(-) — f(—)



Uniqueness theory

@ Redundancy: 14 randomly coded pattern.
Theorem (F. 2012)

Suppose f is a non-line object. Then the object is uniquely determined by
two independent coded diffraction patterns up to a constant phase factor
with probability one.

@ Noise stability?
M x N Gaussian measurement matrix: M = O(N)

— Candes-Strohmer-Voroninski 2013, Candes-Li 2014, Demanet-Hand
2014, Hand 2017

— PhaseMax: Goldstein-Studer 2018, Dhifallah-Thrampoulidis-Lu 2017



Numerics

o (Empirical) global convergence
— Gradient-descent + special initialization methods: Alternating
Projections (AP) or Wirtinger Flow (WF).
— Initialization methods:
— Spectral: Netrapalli-Jain-Sanghavi 2015, Chen-Candes 2017
— Null-vector: Chen-F.-Liu 2017
— Optimal spectral: Mondelli-Montanari 2019, Luo-Alghamdi-Lu 2019.

(a) NSR 0% (b) NSR 10% (c) NSR 20%

— Initialization methods are ineffective for blind phasing.

4/38



e ADMM/DRS: Globally and linearly convergent algorithm: Luke 2005,
F.-Zhang 2020

@ Convergence proof:
— Local convergence for the Fourier case with two diffraction patterns
(Chen-F.-Liu 2017, Chen-F. 2018).
— Global convergence for suboptimal algorithms: Li-Pong 2016.
— Global convergence for the Gaussian case with many diffraction
patterns (Cand‘es-Strohmer-Voroninski 2013, Candes-Li 2014,
Candes-Li-Soltanolkotabi 2015).
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Ptychography
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@ Phase retrieval with windowed Fourier intensities.
@ Measurement scheme:

— Window function?

— Scan pattern?

— Overlap?



Mask /probe retrieval

Thibault et al. 08/09
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o Relative residual reduces (from 32% to 18%) after mask recovery

routine is turned on.
@ Simultaneous recovery of the mask and the object?



Maiden-Johnson-Li 2017
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@ The mask is randomly initialized and the object is initialized as a
constant.

@ Overlap ratio 70 — 80%.



Measurement scheme: notation & set-up

e T: t € Z? (pixel space) involved in ptychography.

o 0 the initial mask; ut the t-shifted mask

o MO =72; M" the domain of ut.

o M = Uger Mt

o ft: the object restricted to M*

o Twin(f!): 180°-rotation of ft around the center of M"
o f = Vft with support C M.

The original object is broken up into a set of overlapping object parts,
each of which produces a coded diffraction pattern (coded by ut).



Raster scan

Raster scan: ty = 7(k, /), k,| € Z where 7 is the step size.
M =172 MO® =72 n> m, with the periodic boundary condition.
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Measurement scheme

o M" = nodes
o Two nodes are s-connected if | Mt N MY N supp(f)| > s > 2.
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(a) raster scan (b) (c)

Theorem (Chen-F. 2017)

Suppose that ptychographic graph is s-connected (s > 2). If the known
mask comprises non-vanishing independent continuous random variables
and every object part f' is non-line, then the object is uniquely, up to a
constant phase factor, by the ptychographic data.

Iwen-Viswanathan-Wang 2016: Uniqueness for standard raster scan with a

standard Gabor window function shifted by one pixel at'a time.
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Graph representation
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Raster scan with Fresnel mask can be ineffective

Twin-like ambiguity: Chen & F (2017)
Fresnel mask 1%(k) := exp {imp|k|>/m}

(a) g=2 (b) g =4

No uniqueness for a discrete set of p (except with one pixel shifts)!
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Affine phase ambiguity

@ Fundamental ambiguity with blind ptychography.
Consider the probe and object estimates

P(n) = pO(n)exp(—ia—iw-n), ne M°
g(n) = f(n)exp(ib+iw-n), neZ?

for any a,b € R and w € R?. Then
vi(n)g'(n) = u'(n)f'(n)exp(i(b — a)) exp(iw - t)

@ exp(iw - t) depends on t but not on n = g and ©° produce the same
ptychographic data as f and 0.
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Phase drift

Necessary condition for blind ptychography:
(x) togt=e%utoft, vieT,
for some 6y (phase drift).

Theorem (F 2019)

Let T = {tx} be a v-generated cyclic group of order q and M* the
ti-shifted mask domain. Suppose that

vk(n)gk(n) = &% X (n)fX(n), forallne M* andt, e T.

If
MK M A supp(F) N (supp(F) & v) # 0,  Vk

then {6p,01,...,0q—1} form an arithmetic progression.



Intermediate step

Theorem (F-Chen 2020)

Let the scheme be s-connected and each f* is a non-line object. Suppose
that some ft has a tight support in M and that u® # 0 has independently
distributed random phases over at least the range of length 7.

Suppose that 1° with

(MPC) &e[ﬁ(n)ﬂo(n)} >0, VYne M,
and an arbitrary object g = U,g" produce the same ptychographic data as
f and ;0. Then the phase drift equation
(x) Vogt=*toft, VteT,

holds with probability at least 1 — c®, ¢ < 1, where c depends on the
mask phase distribution.



Object support constraint (OSC)

ft has a tight support in M*: Each and every side of M! intersects with
supp(f*).

OSC for a measurement scheme (the scan pattern): any translation of f
would move some nonzero pixels across UM,
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OSC counter-example

Let m = 2n/3 t=(m/2,0) f°=10,f] and f* = [f},0] with £0 = f}.

Likewise, 0 = [ud, u3], it = [, 1]
Let 10 = 10 vt = 1t and g° = [g0,0],g* = [0, g ] where

g’(n) = FN—n)i°(N—-n)/p’(n), VneM°
gt(n) = fY(N+2t—n)g"(N+2t—n)/p(n), Vnec M

Hence g% ® 1 and gt ® it produce the same diffraction patterns as
fO® u0 and £ ® pt but

gO ® MO 7& ei@g fO o MO
gt ® Mt 7& ei@g ft ® Mt

even when the mask is completely known.
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Block phase ambiguity

For g =3,7=m/2, let

foo  fio  fo0 foo 23y 3
f=1|f1 A1 fu|, &= |e?/3fy e*/3f, f1
foo f2 f2 /3y fi2 235,

be the object and its reconstruction, respectively, where f;;, g;; € Cn/3xn/3,
Let

kl kl kl —i2w /3, ki
k= [ﬂoo Mlo} R - [ Ho0 e—i2m/ i K1=0.12

ki ki —i27/3, kI —i4n/3, kI |
Ho1  M11 € /M01 € /M11

be the probe and its estimate, respectively, where ,uf}l, ij-’ e Cn/3%n/3,
s Vil o gl — ili+0)27/3 i ) il

19/38



Periodic ambiguity (raster grid pathology)

(7 = m/2) ty-shifted probes pX' and v¥ can be written as
Let
e = [a(n)exp(ig(n))], ¢! = [a7"(n)exp(~ip(n))] € CT7.
Consider the two objects
foo ... fq-10

f=| + i | e=[Tof
fog-1 ... fq-1,9-1

Two exit waves pK' @ f¥ and ¥ @ gk are identical. But the estimates are
far off.
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e Rank-one perturbation ty = 7(k,/) + (6, 0?).
e Full-rank perturbation ty = 7(k, /) + (0%, 0%)).
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Global uniqueness

Theorem (F. 2019)

J J

Suppose f does not vanish in 7Z2. Let aJ’: = 251’-'“'— 6t — 6!, and let {6J’:k}
be the subset of perturbations satisfying ged; {|a} |} =1, i =1,2, and

T 2 max{la |+ & =0}
2r < m-— 2%{5}'”2 - 6}-;}, (> 50% overlap)
m-—T1 >

1+ max ’n;%{\aj’k\ + 01 — Ok}

Then APA and SF are the only ambiguities, i.e. for some explicit r
g(n)/f(n) = a *(0)exp(in-r),

S(n)/i(n) = a(0)exp(i6(0) — in-v)
O = Ooo+ty-r.



Theorem (F.-Chen 2020)
If T satisfies the mixing property, then

g(n)/f(n) = a *(0)exp(in-r),
2(n)/pl(n) = «(0)exp(ip(0) —in - r)
0y = Op+t-r.

@ Counterexamples exist for perturbed raster scans with < 50% overlap.

o lwen-Preskitt-Saab-Viswanathan 2020: 7 = Z2 = noise stability.



Initialization with mask phase constraint

e Mask/probe initialization

pa(n) = 1°(n) exp[ip(n)],

where ¢(n) i.i.d. uniform on (—7/2,7/2) =

%[m(n),ﬁ(n)} >0, Vne M,

Relative error of the mask estimate

1 [ 2
/ lei® — 1|2dp = 1/2(1 — =) ~ 0.8525
T _7r/2 Vs

@ Object initialization: f; = constant or random phase object.
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Noise-aware ADMM

o Let F(v, x) = the totality of the Fourier (magnitude and phase) data
for any mask v and object x.

o Chang-Enfedaque-Marchesini 2019 consider the augmented
Lagrangian

1 . g
»C(V,X,Z,)\): EHb_ ’Z|||2+)\ (Z_‘F(Vax))+§‘|Z_‘F(V5X)||2

and the ADMM scheme

Uk+1 = argmin L(v, Xk, Zk, Ak)

Xkr1 = argmin L(pkr1, X, Zk, Ak)

zxr1 = argmin L(pk+1, Xk+1, Z, Ak)
M1 = M+ B(zrg1 — F(phr1s Xkr1))-
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Fourier domain algorithms

o F.-Strohmer 2020 considers the augmented Lagrangian

1 " P
Lly20) = el = b2+ X(z = y) + Bllz =y +Tx(y)
where Ir is the indicator function of {y : y = F(v, x) for some v, x}.
(Zk41, k1) = argming L(yk, Z, Xk, V, Ak)
= (Ykt1,Xk1) = argminy L(y, Zk i1, X, fk+1, Ak)
M+l = M+ p(Zkg1 — Y1)
zer1 = 5Py — /o) + (v — M/ p)
tei1 = By
= Yitr = Acs1A (ka1 + Me/p)
Xk+1 = A:+1yk+1 (needed for By1)
Akr1/p = /P + Zks1 — Vit

where A, x := F(v, x) = concatenation of {® diag(v')} and
Bww = F(v, x) = {®diag(x*)}. Both have orthogonal columns.
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eGaussian-DRS

In terms of the new variable ux = zx + Ax_1/p, we have

Uk+1
1
= le(QAkA;ruk — k) + %(2/4;(/4?% — Ug) + Ug — AkAtUk
w  p—1, 1 +
= ALA Pp(2AKA -
p+1+p+1 k kUk—|—p+1 b( kA Uk uk)

- _ Rta At _a+
with fie+1 = Bk AkAk Uk,  Xk+1 = Ak+1uk+1-
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Noise-agnostic ADMM

o Consider
1
»C(Z,V,X, )‘) = ]Ib(Z) +)‘*(Z_‘F(V7X))+ §Hz—f(l/,X)||2

and the following ADMM scheme

Zki1 = arg mzin L(z, pogs Xy Ak) = Pp [F (ks xk) — k]
(Mk+17Xk+1) = arg mljinﬁ(Zk+1,V,X7)\k)
Mer1 = A+ Zorr — F(pka1, Xkr1)-

o If we simplify the bilinear optimization step by one-step alternating
minimization

lkr1 = arg ml/in L(Zk41, Vs Xky Ak) = B,:L(zk+1 + k)
Xky1 = arg mgi” L(Zks 1 kg1, X, M) = Af 1 (Zkr1 + i)

then we obtain the DM algorithm of Thibault et al. 2008/20009.
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eRAAR

Consider the augmented Lagrangian

1 *
Lly,z,v,x,0) = HY(Z)+§IIy—F(V,X)II2+A(Z—y)+%\lz—y\|2

(Vk+1, Xk41) = argminy, L(y, Zic, X, ftk, Ak)
= (Zk-‘rl):uk-‘rl) — argminzﬁ()/k-&-lazaxk—s-la% )\k)
M1 = M+ Y(Zkg1 — Yirr)-

In terms of the new variable uyi1 = yk11 — A\¢/v and Rp = 2P, — |

Ukyr = PBuk+ (1 —28)Ppuy + BPkRpuy
= MHk+1 = B/—(:.1(Uk+1 + Ppuy — ug)
Xep1 = Al Rpuk
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Test objects and error metric
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Scan patterns

e Rank-one perturbation tg = 30(k, /) + (0}, 6?) where &} and 62
are randomly selected integers in [—4,4].

o Full-rank perturbation tx = 30(k, /) + (6},,62,) where 6%, and 62,
are randomly selected integers in [—4, 4] .

@ The adjacent probes overlap by roughly 50%.

@ Boundary conditions:

Periodic BC ﬁ
Dark-field (enforced or not) :
Bright-field (enforced or not)
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eGaussian-DRS vs eRAAR
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(a) 50% overlap; § = 0.45 (b) 66% overlap; 6 = 0.4 (c) 75% overlap; 6 =1/2
Figure: eGaussian-DRS with p = 1/3 for CiB
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Local convexity

o Let L(Ax) := ||b— |Ax||| and B = diag [sgn(Ax)] A.

(gradient) 2R[C*VL(AX)] = R(x*C)— bTR(BC), V¢ eC™
(stationarity) B*[|Ax|—b] = 0
(Hessian) R[¢*Hess, (] = [[¢]|? — I(B¢) T diag LA[:;J 3(BC).
Theorem (Chen-F. 2018)

Suppose ft is not a line object for any t. For any connective scheme, the

Hessian at x = f (nonvanishing almost surely) is positive semi-definite and
the eigenvalue zero has multiplicity one.

Proof: the second largest singular value Ay of
B=[-R(B) S(B)]
is strictly less than 1 with probability one.



Gaussian-DRS with known mask

@ Fourier domain fixed points: Px = AAT, Rx = 2Px — |
Pxu+ pPxu = b® sgn(Rxu).

Theorem (F.-Zhang 2020)

Let u be a fixed point.

(i) p > 1: If u is attracting, then |Pxu| = b (i.e. regular solution).
(ii) p > 0: If |[Pxu| = b then u is attracting.

(iii) p = 0: local linear convergence near the true object

@ DRS (p > 1): A fixed point is linearly attracting iff it is a true
solution.

@ DR (p = 0): continuously distributed unstable fixed points in the
vicinity of the true solution = sub-linearly attracting.

@ Convergence rate achieves the minimum

A2
~ 2 at pe=224/1- X2 e]0,1].
m a p 2 26[ ]
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Conclusion and Questions

© Blind ptychography not realizable with the regular raster scan:
— Mixing schemes: connective graph with overlap > 50%
— Mask prior: mask phase constraint.

A

Extension: 3D tomographic phase retrieval with uncertain
orientations.

@ Local convergence analysis for Gaussian-DRS with known mask.
Global convergence: cf. Li-Pong 2016.
Noise leads to infeasible optimization problem:
© Blind ptychography algorithms:
— Little convergence analysis: cf. Hesse-Luke-Sabach-Tam 2015

— Initialization method?
35/38



References |

Cand'es-Li 2014: “Solving quadratic equations via PhaseLift when there are about
as many equations as unknowns”, Found. Comput. Math. 14, 10171026.
Cand'es-Li-Soltanolkotabi 2015, “Phase retrieval from coded diffraction patterns”,
Appl. Comput. Harmon. Anal. 39, 277299.

Cand'es-Strohmer-Voroninski 2013: “PhaseLift: Exact and stable signal recovery
from magnitude measurements via convex programming”, Commun. Pure Appl.
Math. 66, 12411274.

Chen-Cand‘es 2017: “Solving random quadratic systems of equations is nearly as
easy as solving linear systems”, Commun. Pure Appl. Math. 70, 822-883.
Chen-Chi-Fan-Ma 2019: “Gradient descent with random initialization: Fast global
convergence for nonconvex phase retrieval”, Math. Program. 176, 537.
Chen-Fannjiang 2017: “Coded-aperture ptychography: Uniqueness and
reconstruction,” Inverse Problems 34, 025003.

Chen-Fannjiang 2018, “Phase retrieval with a single mask by Douglas-Rachford
algorithms,” Appl. Comput. Harmon. Anal. 44, 665-699

Chen-Fannjiang-Liu 2017: “Phase retrieval by linear algebra”. SIAM Journal on
Matrix Analysis and Applications 38 854-868.

Chen-Fannjiang-Liu 2018: “Phase retrieval with one or two diffraction patterns by
alternating projections with the null initialization”, J. ‘Fourier Anal. Appl. 24,
719-758. 36/38



Ref. 1l

Demanet-Hand 2014, “Stable optimizationless recovery from phaseless linear
measurements,” J. Fourier Anal. Appl. 20, 199-221.

Fannjiang 2012: “Absolute uniqueness of phase retrieval with random
illumination,” Inverse Problems 28 075008.

Fannjiang 2019: “Raster Grid Pathology and the Cure” Multiscale Model. Simul.
17, 973-995.

Fannjiang-Chen 2020: “Blind ptychography: Uniqueness & ambiguities,” Inverse
Problems 36, 045005.

Fannjiang-Strohmer 2020, “The numerics of phase retrieval,” Acta Numerica,
125-228.

Fannjiang-Zhang 2020: “Blind Ptychography by Douglas-Rachford Splitting,”
SIAM J. Imaging Sci. 13, 609-650.

Hand 2017, “PhaselLift is robust to a constant fraction of arbitrary errors”, Appl.
Comput. Harmon. Anal. 42, 550-562.

Hesse-Luke-Sabach-Tam 2015, “Proximal heterogeneous block implicit-explicit
method and application to blind ptychographic diffraction imaging,” SIAM J.
Imaging Sci. 8, 426-457.

Iwen-Preskitt-Saab-Viswanathan 2020: “Phase retrieval from local measurements:

Improved robustness via eigenvector-based angular synchronization” ,Appl.
Comput. Harmon. Anal. 48, 415-444. 37/38



Ref. Il

@ Iwen-Viswanathan-Wang 2016: “Fast phase retrieval from local correlation
measurements”, SIAM J. Imaging Sci., 9, 1655-1688.

@ Li-Pong 2016, “Douglas-Rachford splitting for nonconvex optimization with
application to nonconvex feasibility problems”, Math. Program. A 159, 371-401

@ Luke 2005, “Relaxed averaged alternating reflections for diffraction imaging,”
Inverse Problems 21, 37-50.

@ Luo-Alghamdi-Lu 2019: “Optimal spectral initialization for signal recovery with
applications to phase retrieval”, IEEE Trans. Signal Pro- cess. 67, 2347-2356.

@ Maiden-Johnson-Li 2017: “Further improvements to the ptychographical iterative
engine”, Optica, 4, 736-745.

@ Mondelli-Montanari 2019: “Fundamental limits of weak recovery with applications
to phase retrieval’, Found. Comput. Math. 19, 703-773.

@ Netrapalli-Jain-Sanghavi 2015: “Phase retrieval using alternating minimization,”
IEEE Transactions on Signal Processing 63 4814-4826.

@ Thibault-Dierolf-Bunk-Menzel-Pfeiffer 2009: “Probe retrieval in ptychographic
coherent diffractive imaging”, Ultramicroscopy 109, 338-343.

@ Thibault-Dierolf-Menzel-Bunk-David-Pfeiffer 2008: “High-resolution scanning
x-ray diffraction microscopy”, Science 321, 379-382.

38 /38



