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Phase retrieval

X-ray crystallography: von Laue, Bragg etc. since 1912.

Non-periodic structures: Gerchberg, Saxton, Fienup etc since 1972,
delay due to low SNR.

Nonlinear signal model: data = diffraction pattern = |F(f )|2

F = Fourier transform, | · | = componentwise modulus.
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Coded diffraction pattern
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Alternating projections



Nonconvex feasibility

Masking µ + propagation F + intensity measurement:

coded diffraction pattern = |F(f�µ)|2.

F (2012): Uniqueness with probability one

b = |Ax |, x ∈ X
(1 mask) X = Rn, A = Φ diag(µ)

(2 masks) X = Cn, A =

[
Φ diag(µ1)
Φ diag(µ2)

]

Non-convex feasibility:

Find ŷ ∈ AX ∩ Y
Y := {y ∈ CN : |y | = b}

Intersection of N-dim torus Y and n- or 2n-dim subspace AX
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Alternating projections
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Coded vs plain diffraction pattern

(a) coded; 40 iter

150 ER(SR = 4)

||fk fk+1||/||fk|| = 1.9293e 08% projerr = 5.7341e 08% residual = 5.0849e 08%

(b) error

(c) plain;1000 iter

1050 ER(SR = 8)

||X Xrectwin||/||X|| = 72.809% projerr = 4.4077% residual = 4.4075%

(d) error

AP: real-valued
Cameraman with
one diffraction
pattern.

Plain diffraction
pattern allows
ambiguities such
as translation,
twin-image
which are
forbidden by the
presence of a
random mask.
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Douglas-Rachford splitting



Alternating minimization

Minimization with a sum of two objective functions

argmin
u

K (u) + L(v), u = v

where

K = Indicator function of {Ax : x ∈ Cn}
L(v) =

∑

i

|v [i ]|2 − b2[i ] ln |v [i ]|2 (Poisson log-likelihood).

Projection onto K = AA†u.

Linear constraint u = v .

L has a simple asymptotic form
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Gaussian log-likelihood

High SNR: Gaussian distribution with variance = mean: e−(b2−λ)2/(2λ)√
2πλ

.

Gaussian log-likelihood: λ = |v |2

∑

j

ln |v [j ]|+ 1

2

∣∣∣∣
b2[j ]

|v [j ]| − |v [j ]|
∣∣∣∣
2

−→ L

In the vicinity of b, we make the substitution

b[j ]

|v [j ]| → 1, ln |v [j ]| → ln
√

b[j ]

to obtain

const. +
1

2

∑

j

|b[j ]− |v [j ]||2 −→ L

which is the smoothest of the 3 functions.
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Alternating projections revisited

Hard constraint u = v

argmin
u

K (u) + L(u) = argmin
x
L(u), u = Ax

where

K = Indicator function of {Ax : x ∈ Cn}

L(u) =
1

2
‖b − |u|‖2 (Gaussian log-likelihood).

L non-smooth where b vanishes.

AP = gradient descent with unit stepsize: xk+1 = xk −∇L(xk).

Wirtinger flow = gradient descent with

L =
1

2
‖|Ax |2 − b‖2 (additive i.i.d. Gaussian noise).
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Proximal optimality

Proximity operators are generalization of projections:

proxL/ρ(u) = arg min
x
L(x) +

ρ

2
‖x − u‖2

proxK/ρ(u) = AA†u.

For simplicity, set ρ = 1.

Proximal reflectors RL = 2 proxL − I , RK = 2 proxK − I

Proximal optimality:

0 ∈ ∂L(x) + ∂K (x) iff ξ = RLRK (ξ), x = proxK (ξ)
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Proximal optimality: proof

Let η = RK (ξ). Then ξ = RL(η).

Also ζ := 1
2 (ξ + η) = proxL(η) = proxK (ξ). Equivalently

ξ ∈ ∂K (ζ) + ζ, η ∈ ∂L(ζ) + ζ

Adding the two equations: 0 ∈ ∂K (ζ) + ∂L(ζ).

Finally ζ = proxK (ξ) is a stationary point.
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Douglas-Rachford splitting (DRS)

Optimality leads to Peaceman-Rachford splitting:
zk+1 = RL/ρRK/ρ(zk).

DRS z l+1 = 1
2z

l + 1
2RL/ρRK/ρ(z l): for l = 1, 2, 3 · · ·

y l+1 = proxK/ρ(ul);

z l+1 = proxL/ρ(2y l+1 − ul)

ul+1 = ul + z l+1 − y l+1.

γ = 1/ρ = stepsize; ρ = 0 the classical DR algorithm.

Alternating Direction Method of Multipliers (ADMM) applied to the
dual problem

max
λ

min
y ,z
L∗(y) + K ∗(−A∗z) + 〈λ, y − A∗z〉+

ρ

2
‖A∗z − y‖2
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DRS map

Object update: f = A†u∞ where u∞ is the terminal value of

ul+1 =
1

ρ+ 1
ul +

ρ− 1

ρ+ 1
Pul +

1

ρ+ 1
b � sgn

(
2Pul − ul

)

=
1

2
ul +

ρ− 1

2(ρ+ 1)
Rul +

1

ρ+ 1
b � sgn

(
Rul)

where P = AA† is the orthogonal projection onto the range of A and
R = 2P − I is the corresponding reflector.

ρ = 0: the classical Douglas-Rachford algorithm

ul+1 =
1

2
ul − 1

2
Rulul + b � sgn

(
Rul)

= ul − Pul + b � sgn
(
Rul).
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Convergence analysis



Convergence analysis

Lewis-Malick (2008): local linear convergence of AP for transversally
intersecting smooth manifolds.
Lewis-Luke-Malick (2009): transversal intersection −→ linearly
regular intersection (LRI).
Aragoón-Borwein (2012): global convergence of DR (ρ = 0) for
intersection of a line and a circle.
Hesse-Luke (2013): local geometric convergence of DR (ρ = 0) for
LRI of an affine set and a super-regular set.

Li-Pong (2016):
→ L has uniformly Lipschitz gradient (ULG).
→ DRS with ρ sufficiently large, depending on Lipschitz constant.
→ Global convergence: cluster point = stationary point.
→ Local geometric convergence for semi-algebraic case.

K and L don’t have ULG and optimal performance is with ρ ∼ 1.
Candes et at. (2015): global convergence of Wirtinger flow with
spectral initialization.
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Fixed point equation

Fixed point equation

u =
1

2
u +

ρ− 1

2(ρ+ 1)
R∞u +

1

ρ+ 1
b � sgn

(
R∞u)

The differential map is given by ΩJA(η) where

JA(η) = CC †η − 1

1 + ρ

[
<
(
2CC †η − η

)

+ı
(
I − diag(b/|Ru|)

)
=
(

2CC †η − η
)]

where

Ω = diag(sgn(Ru)), C = Ω∗A.
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Fixed point analysis

Two randomly coded diffraction patterns:

F (2012) – intersection ∼ S1 (arbitrary phase factor).

Chen & F (2016) – DR (ρ = 0) fixed points u take the form

u = e iθ(b + r)� sgn(Af ), r ∈ RN , b + r ≥ 0

=⇒ sgn(u) = θ + sgn(Af )

where r is a real null vector of A†diag[sgn(Af )]
=⇒ DR fixed point set has real dimension N − n.

Chen, F & Liu (2016) – AP based on the hard constraint u = v

AP fixed point x∗: ‖Ax∗‖ = ‖Af ‖ iff x∗ = αf , |α| = 1.
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Spectral gap and linear convergence rate

JA can be analyzed by the eigen-structure of

H :=

[
<[A†Ω]
=[A†Ω]

]
, Ω = diag(sgn(Af )).

‖JA(η)‖ = ‖η‖ occurs at η = ±ib.

Linear convergence rate is related to the spectral gap of H.

One randomly coded diffraction pattern:

→ Chen & F (2016) – the differential map at Af has the largest singular
value 1 corresponding to the constant phase and a positive spectral
gap =⇒ the true solution is an attractor (local linear convergence).

→ F & Zhang (2018) – the differential map at any DR fixed point has a
spectral radius = 1.

→ Chen, F & Liu (2016) – same for AP (parallel or serial).
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DRS fixed points

Proposition

Let u be a fixed point and f∞ := A†u.
(i) ρ ≥ 1: If ‖JA(η)‖2 ≤ ‖η‖2 then |F(µ, f∞)| = b.
(ii) ρ ≥ 0: If |F(µ, f∞)| = b then ‖JA(η)‖2 ≤ ‖η‖2. where the equality
holds iff η parallels ıb.

Summary:

DRS (ρ ≥ 1) fixed point is linearly stable iff it is a true solution

DR (ρ = 0) introduces harmless, stable fixed points.

AP likely introduces spurious nonsolution fixed points.

Linear convergence rate:

Serial AP < parallel AP ∼ DRS (ρ = 1) < DR (ρ = 0).

22 / 46



Initialization



Initialization by feature extraction

b = |Af | where A ∈ CN×n is the measurement matrix.

Feature: two sets of signals, weak and strong.

Weak signals selected by a threshold τ , i.e. bi ≤ τ, i ∈ I .

xnull := ground state of AI .

Isometry: ‖Ax‖2 = ‖AI x‖2 + ‖AIcx‖2 = ‖x‖2 =⇒

xnull = arg min
{
‖AI x‖2 : ‖x‖ = ‖f ‖

}

= arg max
{
‖AIcx‖2 : ‖x‖ = ‖f ‖

}

solved by the power method efficiently.

Non-isometry =⇒ QR: A = QR
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Null vector algorithm

18

(a) xspec (b) xt-spec (⌧2 = 4.6) (c) xnull (� = 0.5) (d) xnull (� = 0.74)

Figure 2. Initialization of the Phantom with one pattern: (a) RE(xspec) = 0.9604, (b) RE(xt-spec) = 0.7646, (c)
RE(xnull) = 0.5119, (d) RE(xnull) = 0.4592.

6. Simulations. In the following simulations, we use the relative error (RE)

RE = min
✓2[0,2⇡)

kx0 � ei✓xk/kx0k

as the figure of merit and the relative residual ( RR)

RR = kb� |A⇤x|k/kx0k

as a metric for determining the stopping rule of the iterations.
Let 1c be the characteristic function of the complementary index Ic with |Ic| = �N . Note that

� + � = 1 with � given by (5.6).

Algorithm 1: The null vector method

1 Random initialization: x1 = xrand

2 Loop:
3 for k = 1 : kmax � 1 do
4 x0

k  A(1c �A⇤xk);

5 xk+1  
h
x

0
k
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X
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h
x

0
k

i
X
k

6 end
7 Output: xnull = xkmax .

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
loop to optimize the parameter � by tracking and minimizing the RR of the resulting xnull.

The key di↵erence between the null vector method and the spectral vector method is the
di↵erent weights used in step 4 where the null vector method uses 1c and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting

(6.1) xt-spec = arg max
kxk=1

kA
�
1⌧ � |b|2 �A⇤x

�
k

where 1⌧ is the characteristic function of the set

{i : |A⇤x(i)|  ⌧kbk}
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Algorithm 2: The spectral vector method

1 Random initialization: x1 = xrand

2 Loop:
3 for k = 1 : kmax � 1 do
4 x0

k  A(|b|2 �A⇤xk);

5 xk+1  
h
x

0
k

i
X

/k
h
x

0
k

i
X
k;

6 end
7 Output: xspec = xkmax .
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Figure 3. RR and RE versus iteration for the Cameraman with one pattern.

with an adjustable parameter ⌧ . As we see below the choice of weight significantly a↵ects the
quality of initialization, with the null vector method as the best performer.

6.1. Test images. Let C, B and P denote the 256⇥ 256 non-negatively valued Cameraman,
Barbara and Phantom images, respectively.

For one-pattern simulation, we use C and P for test images. For the two-pattern simulations,
we use the complex-valued images, Randomly Signed Cameraman-Barbara (RSCB) and Randomly
Phased Phantom (RPP), constructed as follows.

RSCB Let the components of µR and µI be i.i.d Bernoulli random variables of ±1. Let

x0 = µR � C + iµI �B.

RPP Let the components of � be i.i.d. uniform random variables over [0, 2⇡] and let

x0 = P � ei�.

6.2. The one-pattern case. Fig. 1 and 2 show that the null vector xnull is more accurate
than the spectral vector xspec and the truncated spectral vector xt-spec in approximating the true
images. For the Cameraman (resp. the Phantom) RR(xnull) can be minimized by setting � ⇡ 0.70
(resp. � ⇡ 0.74). The optimal parameter ⌧2 for xt�spec in (6.1) is about 4.1 (resp. 4.6).
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Truncated spectral vector

 Candes-Chen 2015
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Performance guarantee: Gaussian case

Theorem (Chen-F.-Liu 2016)

Let A be drawn from the n × N standard complex Gaussian ensemble. Let

σ := |I |/N < 1, ν = n/|I | < 1.

Then for any x0 ∈ Cn the following error bound

‖x0x
∗
0 − xnullx

∗
null‖2 ≤ c0σ‖x0‖4

holds with probability at least

1− 5 exp
(
−c1|I |2/N

)
− 4 exp(−c2n).

Non-asymptotic estimate: n < |I | < N < |I |2, L = N/n

|I | = Nαn1−α =⇒ RE ∼ L(α−1)/2, α ∈ [1/2, 1)

26 / 46



2 CDPs, |I | =
√
nN.

Uniqueness of phase retrieval with 2 CDPs (F. 2012).

(e) phantom (f) Spectral vector

1

Title: Null vector method with new parameter setup |I| =
p

nN.
Conclusion:
(1) By comparing Fig. 1 and Fig. 2 (a-b) with Fig. 3 (a-b) in the paper, we observed
that the new parameter setup |I| =

p
nN slightly reduces the reconstruction errors

of the null vector method with |I| = 0.5N for NSR= 0%, 5%, and 10%.
(2) By comparing Fig. 2 (c-d) with Fig. 3 (c-d) in the paper, there is no remarkable
difference between the parameter setups for NSR= 15% or 20%.

Fig. 1. Noiseless case: The modulus of the reconstructed image by the null vector method with the parameter setup |I|
N

=
p

nN
N

=
0.3536. The reconstruction error (measured in the operator norm) is equal to 0.8714. Here, we used two coded diffraction patterns
to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the oversampling ratio is equal to 8.

(g) Null vector

2

(a) NSR = 5% (RE= 0.8780) (b) NSR = 10% (RE= 0.9173)

(c) NSR = 10% (RE= 0.9774) (d) NSR = 10% (RE= 1.0797)

Fig. 2. Effects of noises on the performance of the null vector method with the parameter setup |I|
N
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= 0.3536. Here, we
used two coded diffraction patterns to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the
oversampling ratio is equal to 8.
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(i) NSR=15%
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(a) NSR = 5% (RE= 0.8780) (b) NSR = 10% (RE= 0.9173)

(c) NSR = 10% (RE= 0.9774) (d) NSR = 10% (RE= 1.0797)

Fig. 2. Effects of noises on the performance of the null vector method with the parameter setup |I|
N

=
p

nN
N

= 0.3536. Here, we
used two coded diffraction patterns to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the
oversampling ratio is equal to 8.

(j) NSR=20%

Figure: Noisy estimation by Algorithm 1 with |I | =
√
Nn at various NSRs.
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Experiments: with null initialization

PAP: two diffraction patterns used in parallel

SAP: two diffraction patterns used in serial
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Comparison with Wirtinger flow
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Complex Gaussian noise
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(a) RSCB
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(b) RPP

b = |Af + complex Gaussian noise|
NSR = noise/signal
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Blind ptychography



Ptychography: extended objects

Hoppe (1969), Nellist-Rodenburg (95), Faulkner-Rodenburg (04, 05). ,
Thibault et al. (08, 09)

Inverse problem with shifted windowed Fourier intensities.

Unlimited, extended objects: structural biology, materials science etc.

32 / 46



Linear phase ambiguity

Consider the probe and object estimates

ν0(n) = µ0(n) exp(−ia− iw · n), n ∈M0

g(n) = f (n) exp(ib + iw · n), n ∈ Z2
n

for any a, b ∈ R and w ∈ R2. We have all n ∈Mt, t ∈ T

νt(n)g t(n) = µt(n)f t(n) exp(i(b − a)) exp(iw · t).
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Raster scan pathology

Raster scan: tkl = τ(k , l), k, l ∈ Z where τ is the step size.
M = Z2

n, M0 = Z2
m, n > m, with the periodic boundary condition.
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Mixing schemes

Partial perturbation tkl = τ(k , l) + (δ1
k , δ

2
l ).

Full perturbation tkl = τ(k , l) + (δ1
kl , δ

2
kl).
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Mask phase constraint (MPC)

µ0: independent phases with range ≥ π.

ν0 satisfies MPC if ν0(n) and µ0(n) form an acute angle

| arg[ν0(n)/µ0(n)]| < π/2
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Global uniqueness

Theorem (F 2018)

Suppose f does not vanish in Z2
n. Let aij = 2δij+1 − δij − δij+2 and let {δijk}

be the subset of perturbations satisfying gcdjk{|aijk |} = 1, i = 1, 2, and

2τ ≤ m − max
i=1,2
{δijk+2 − δijk} (Overlap > 50%)

max
i=1,2

[|aijk |+ max
k ′
{δik ′+1 − δik ′}] ≤ m − τ

δijk+1 − δijk+2 ≤ τ ≤ m − 1 + δijk+1 − δijk+2.

Then APA and SF are the only ambiguities, i.e. for some explicit r

g(n)/f (n) = α−1(0) exp(in · r),

ν0(n)/µ0(n) = α(0) exp(iφ(0)− in · r)

θkl = θ00 + tkl · r.
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Initialization with mask phase constraint

Mask/probe initialization

µ1(n) = µ0(n) exp [iφ(n)],

where φ(n) i.i.d. uniform on (−π/2, π/2)
Relative error of the mask estimate

√
1

π

∫ π/2

−π/2
|e iφ − 1|2dφ =

√
2(1− 2

π
) ≈ 0.8525

Object initialization: f1 = constant or random phase object.
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Alternating minimization

|F(µ, f )| = b : the ptychographic data. Define Akh := F(µk , h),
Bkη := F(η, fk+1). We have Ak fj+1 = Bjµk .

1 Initial guess µ1.

2 Update the object estimate fk+1 = argmin
g∈Cn×n

L(A∗kg)

3 Update the probe estimate µk+1 = argmin
ν∈Cm×m

L(B∗kν)

4 Terminate when ‖B∗kµk+1| − b‖ is less than tolerance or stagnates. If
not, go back to step 2 with k → k + 1.
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Fixed point algorithm with ρ = 1

ρ = 1

Reflectors: Rk = 2Pk − I ,Sk = 2Qk − I .

Gaussian:

ul+1
k =

1

2
ulk +

1

2
b � sgn

(
Rku

l
k

)

v l+1
k =

1

2
v lk +

1

2
b � sgn

(
Skv

l
k

)
.

Poisson:

ul+1
k =

1

2
ulk −

1

3
Rku

l
k +

1

6

√
|Rku

l
k |2 + 24b2 � sgn

(
Rku

l
k

)

v l+1
k =

1

2
v lk −

1

3
Skv

l
k +

1

6

√
|Skv lk |2 + 24b2 � sgn

(
Skv

l
k

)
.
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Masks

correlation length c = 0, 0.4m, 0.7m, 1m
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Rank-one vs. full-rank
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Independent vs. correlated mask
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Poisson noise

Photon counting noise: b2 = Poisson r.v. with mean = |Af |2.

Gaussian log-likelihood outperforms Poisson log-likelihood.
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Conclusion

1 Disorder can better condition measurement schemes: random mask,
random perturbation to raster scan

2 Analytical and statistical considerations can guide our way to a better
objective function

3 Fixed point analysis can help determine parameters or select
algorithms

4 Initialization by feature extraction

Thank you!
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