
Phase Retrieval in Coherent
Diffractive Imaging

Albert Fannjiang

University of California, Davis

National Center for Theoretical Science, Taiwan, 2016

Collaborators: Peng-Wen Chen (NCHU), Gi-Ren Liu (NCKU)



Coherent diffractive imaging

I Linear propagation + intensity measurement : b(j)2 = |a∗j x0|2
I Phase retrieval: Given b = (b(j)) ∈ RN

+ and
A∗ = [a∗j ] ∈ CN×M , determine x0.

I Geometry: Intersection of N-dim real torus of radii {b(j)} and
complex linear subspace A∗CM (N > M).

2 / 38



Uniqueness for generic frames
(Balan-Casazza-Edidin 06)

I Full-rank A ∈ CM×N ,N > M: {col(A)} = frame

I Frames form a metric space.

I Necessary condition for injectivity (left inverse
exists): N ≥ 2M.

I Sufficient condition: If N ≥ 4M − 2 then generic (i.e. an open
dense set) frames are injective.

Fourier frame is exceptional!
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Diffraction = Fourier transform
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Ambiguities (Bruck-Sodin 1979, Hayes 1982)

I Oversampling: N ≥ 4M − 4
√
M + 1.

I Global ambiguities for generic objects x0 ∈ RM

(harmless) global phase x0(·) −→ e iθx0(·)
translation x0(·) −→ x0(·+ n),∀n

conjugate inversion x0(·) −→ x0(−·)

I Generic objects = random vectors according to continuous
prior distribution =⇒ nongeneric objects ∈ a measure zero set.

I Problems:

→ You can not determine if a given object is generic or not since
the “world ensemble” may not be absolutely continuous w.r.t.
your prior distribution.

→ Global ambiguities may lead to poor reconstruction: bad
algorithm or measurement scheme?
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Coded diffraction pattern
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Measurement matrix

I Mask function: µ(n).

I Masked object: x̃0(n) = µ(n)x0(n)

I Randomly phased mask: µ(n) = exp(iφ(n)) where φ(n) are
random variables.

I Measurement matrix: Φ = discrete Fourier transform

(1 mask) A∗ = Φ diag(µ)

(2 masks) A∗ =

[
Φ diag(µ1)
Φ diag(µ2)

]
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Uniqueness with coded diffraction patterns

Theorem (F. 2012)

Suppose x0 ∈ CM is rank ≥ 2 and arg(x0) belongs in a proper
sub-interval [a, b] ⊂ [0, 2π). Then the object is determined by one
coded diffraction pattern up to a constant phase factor with
probability at least

1−M

∣∣∣∣
b − a

2π

∣∣∣∣
s/2

where s is the number of nonzero pixels.

Corollary

Suppose x0 ∈ RM and is rank ≥ 2. Then with probability one the
object is determined by one coded diffraction pattern up to ± sign.
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Uniqueness (continued)

Theorem (F. 2012)

Suppose x0 ∈ CM and is rank ≥ 2. Then the object is determined
by two coded diffraction patterns up to a constant phase factor
with probability one.

vs Candes-Li-Soltanolkotabi 2015:

→ PhaseLift: convex programming.
→ Large number of regularly sampled patterns.
→ Candes-Strohmer-Voroninski 2013: Gaussian random

measurement.
→ Lifting =⇒ huge increase of dimensionality & unpractical

computation
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Nonconvex constraint

I Non-linear system:

b = |A∗x |, x ∈ X
(1 mask) X = RM , A∗ = Φ diag(µ)

(2 masks) X = CM , A∗ =

[
Φ diag(µ1)
Φ diag(µ2)

]

I Non-convex feasibility problem:

Find ŷ ∈ A∗X ∩ Y
Y := {y ∈ CN : |y | = b}
x̂ = (A∗)†ŷ

I Geometry: Intersection of N-dim torus of radii {bj} and linear
subspace A∗X
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Alternating projections: feasibility problem
Two constraints: Fourier magnitude data (N-dim torus of uneven
radii) ∩ oversampled Fourier matrix (2M-dim subspace)
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Experiments: plain diffraction pattern

Original images AP HIO (Fienup 1982)
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Reconstruction with coded diffraction patterns

I Convex method converges surely but (extremely) slowly.
I Nonconvex methods converge fast (with good measurement)

without guarantee.

1. Gradient descent algorithms: e.g. Wirtinger flow
(Candes-Li-Soltanolkotabi 2015).

2. Iterative projection/fixed point algorithms.

I Initial guess is crucial for non-convex methods: How to put the
initial guess in the basin of attraction of the global minimizer?
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Null vector method (Chen-F.-Liu 2015)Initial guess

22

If there are sufficiently many data that are small, then the 
unique null vector of the row sub-matrix may be a good bet.

16By induction on k with u(1) su�ciently small, we have the desired result (4.7).

5. The null vector method. For a nonconvex minimization problem such as phase retrieval,
the accuracy of the initialization as the estimate of the object has a great impact on the performance
of any iterative schemes.

The following observation motivates our approach to e↵ective initialization. Let I be an index
set and Ic its complement such that b(i)  b(j) for all i 2 I, j 2 Ic. Let |I| be the cardinality of the
set I. Then {ai}i2I is a set of sensing vectors nearly orthogonal to x0 if |I|/N is su�ciently small
(see Remark 5.2). This suggests the following constrained least squares solution

xnull := argmin

(X

i2I

ka⇤i xk2 : x 2 X , kxk = kx0k
)

may be a reasonable initialization. Note that xnull is not uniquely defined as ↵xnull, with |↵| = 1,
is also a null vector. Hence we should consider the global phase adjustment for a given null vector
xnull

min
↵2C, |↵|=1

k↵xnull � x0k2 = 2kx0k2 � 2 max
|↵|=1

<(x⇤
0↵xnull).

In what follows, we always assume xnull to be optimally adjusted so that

k↵xnull � x0k2 = 2kx0k2 � 2|x⇤
0xnull|(5.1)

Denote the sub-column matrices consisting of {ai}i2I and {aj}j2Ic by AI and AIc , respectively,
and, by reshu✏ing the row index, write A = [AI , AIc ] 2 Cn,N .

Define the dual vector

xdual := argmax
�
kA⇤

Ic
xk2 : x 2 X , kxk = kx0k

 
(5.2)

5.1. Isometric A⇤. In the case of isometric A⇤, we have

kA⇤
Ixk2 + kA⇤

Ic
xk2 = kxk2

and hence

xnull = xdual,(5.3)

i.e. the null vector is self-dual in the case of isometric A⇤. Eq. (5.3) can be used to construct the
null vector from AIcA

⇤
Ic

by the power method.

5.2. Non-isometric A⇤. When A⇤ is non-isometric such as a Gaussian random matrix (see
below), the power method is still applicable with the following modification.

For a full rank A, let A⇤ = QR be the QR-decomposition of A⇤ where Q is isometric and R is a
full-rank, upper-triangular square matrix. Let z = Rx, z0 = Rx0 and znull = Rxnull. Clearly, znull

is the null vector for the isometric phase retrieval problem b = |Qz|.
Let I and Ic be the index sets as above. Let

ẑ = arg max
kzk=1

kQIczk.(5.4)
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Isometry
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a⇤jx0 = 0 =) bj = |a⇤jx0| = a⇤jx0.

If there are su�ciently many rows with

Let �1 � �2 � . . . � �2n � �2n+1 = · · · = �N = 0 be the sin-

gular values of B with the corresponding right singular vectors

{⌘k 2 RN}N
k=1 and left singular vectors {⇠k 2 R2n}2n
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Null vector algorithm

18

(a) xspec (b) xt-spec (⌧2 = 4.6) (c) xnull (� = 0.5) (d) xnull (� = 0.74)

Figure 2. Initialization of the Phantom with one pattern: (a) RE(xspec) = 0.9604, (b) RE(xt-spec) = 0.7646, (c)
RE(xnull) = 0.5119, (d) RE(xnull) = 0.4592.

6. Simulations. In the following simulations, we use the relative error (RE)

RE = min
✓2[0,2⇡)

kx0 � ei✓xk/kx0k

as the figure of merit and the relative residual ( RR)

RR = kb� |A⇤x|k/kx0k

as a metric for determining the stopping rule of the iterations.
Let 1c be the characteristic function of the complementary index Ic with |Ic| = �N . Note that

� + � = 1 with � given by (5.6).

Algorithm 1: The null vector method

1 Random initialization: x1 = xrand

2 Loop:
3 for k = 1 : kmax � 1 do
4 x0

k  A(1c �A⇤xk);

5 xk+1  
h
x

0
k

i
X

/k
h
x

0
k

i
X
k

6 end
7 Output: xnull = xkmax .

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
loop to optimize the parameter � by tracking and minimizing the RR of the resulting xnull.

The key di↵erence between the null vector method and the spectral vector method is the
di↵erent weights used in step 4 where the null vector method uses 1c and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting

(6.1) xt-spec = arg max
kxk=1

kA
�
1⌧ � |b|2 �A⇤x

�
k

where 1⌧ is the characteristic function of the set

{i : |A⇤x(i)|  ⌧kbk}
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Algorithm 2: The spectral vector method

1 Random initialization: x1 = xrand

2 Loop:
3 for k = 1 : kmax � 1 do
4 x0

k  A(|b|2 �A⇤xk);

5 xk+1  
h
x

0
k

i
X

/k
h
x

0
k

i
X
k;

6 end
7 Output: xspec = xkmax .

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

iteration

re
la

ti
v
e

re
si

d
u
a
l

xnull(� = 0.5)+AP

xnull(� = 0.7)+AP

xnull(� = 0.7)+WF
xrand+AP
xrand+WF

(a) RR

0 50 100 150 200 250 300
0

0.2

0.4

0.6

iteration

re
la

ti
v
e

er
ro

r

xnull(� = 0.5)+AP

xnull(� = 0.7)+AP

xnull(� = 0.7)+WF
xrand+AP
xrand+WF

(b) RE

Figure 3. RR and RE versus iteration for the Cameraman with one pattern.

with an adjustable parameter ⌧ . As we see below the choice of weight significantly a↵ects the
quality of initialization, with the null vector method as the best performer.

6.1. Test images. Let C, B and P denote the 256⇥ 256 non-negatively valued Cameraman,
Barbara and Phantom images, respectively.

For one-pattern simulation, we use C and P for test images. For the two-pattern simulations,
we use the complex-valued images, Randomly Signed Cameraman-Barbara (RSCB) and Randomly
Phased Phantom (RPP), constructed as follows.

RSCB Let the components of µR and µI be i.i.d Bernoulli random variables of ±1. Let

x0 = µR � C + iµI �B.

RPP Let the components of � be i.i.d. uniform random variables over [0, 2⇡] and let

x0 = P � ei�.

6.2. The one-pattern case. Fig. 1 and 2 show that the null vector xnull is more accurate
than the spectral vector xspec and the truncated spectral vector xt-spec in approximating the true
images. For the Cameraman (resp. the Phantom) RR(xnull) can be minimized by setting � ⇡ 0.70
(resp. � ⇡ 0.74). The optimal parameter ⌧2 for xt�spec in (6.1) is about 4.1 (resp. 4.6).
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h
x

0
k

i
X

/k
h
x

0
k

i
X
k

6 end
7 Output: xnull = xkmax .

In Algorithm 1, the default choice for � is the median value � = 0.5 and we can add an outer
loop to optimize the parameter � by tracking and minimizing the RR of the resulting xnull.

The key di↵erence between the null vector method and the spectral vector method is the
di↵erent weights used in step 4 where the null vector method uses 1c and the spectral vector
method uses |b|2 (Algorithm 2). In [11], the truncated spectral method is proposed to improve the
spectral method with a di↵erent weighting

(6.1) xt-spec = arg max
kxk=1

kA
�
1⌧ � |b|2 �A⇤x

�
k

where 1⌧ is the characteristic function of the set

{i : |A⇤x(i)|  ⌧kbk}

Truncated spectral vector

 Candes-Chen 2015
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Experiments: Fourier case with two masks
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Experiments: Fourier case with one mask

Error metrics often poorly reflect the quality of initialization
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Performance guarantee: Gaussian case

Theorem (Chen-F.-Liu 2016)

Let A be drawn from the M × N standard complex Gaussian
ensemble. Let

σ := |I |/N < 1, ν = M/|I | < 1.

Then for any x0 ∈ Cn the following error bound

‖x0x
∗
0 − xnullx

∗
null‖2 ≤ c0σ‖x0‖4

holds with probability at least

1− 5 exp
(
−c1|I |2/N

)
− 4 exp(−c2M).

I Nonasymptotic estimate
I Asymptotic regime: |I |/N � 1, |I |2/N � 1

=⇒ |I | = Nα, error ∼ N(α−1)/2, α ∈ (1/2, 1)
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Experiments: Gaussian case

I Empirical scaling law: Relative error ∼ L−β where L = N/M
and β ≈ 1/2.

I Theoretical bound: RE ∼
√
|I |/N = L(α−1)/2 where

1/2 < α < 1.
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Alternating projectons
I Non-convex feasibility problem:

Find ŷ ∈ A∗X ∩ Y
Y := {y ∈ CN : |y | = b}
x̂ = (A∗)†ŷ

I Let P1 and P2 be projections onto A∗X and Y, respectively.

(AP) P1P2y =

[
(A∗)†

(
b � y

|y |

)]

X

with initial guess y (1) = A∗x (1), x (1) ∈ X .
I Nonconvex optimization: U = {u ∈ CN : |u(j)| = 1} N-torus.

f (x , u) =
1

2
‖A∗x − u � b‖2

u(k) = arg min
u∈U

f (x (k), u) (non-convex)

x (k+1) = arg min
x∈X

f (x , u(k)) (non-smooth)
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Parallel AP (PAP)

Otherwise ‖A∗x∗‖ < ‖b‖.
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Serial AP (SAP)
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Gradient map
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Spectral gap
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Local geometric convergence

Theorem (Chen-F.-Liu 2015)

For any given 0 < ε < 1− λ2
2, if x (1) is sufficiently close to x0, then

with probability one PAP converges to x0 geometrically after global
phase adjustment

‖α(k+1)x (k+1) − x0‖ ≤ (λ2
2 + ε)‖α(k)x (k) − x0‖

where α(k) = x (k)∗x0/|x (k)∗x0|.

Theorem (Chen-F.-Liu 2015)

For any given 0 < ε < 1− (λ
(2)
2 λ

(1)
2 )2, if x (1) is sufficiently close to

x0 then with probability one SAP converges to x0 geometrically
after global phase adjustment,

‖α(k+1)x (k+1) − x0‖ ≤ ((λ
(2)
2 λ

(1)
2 )2 + ε)‖α(k)x (k) − x0‖.

25 / 38



Experiments: with null initialization
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Experiments: null vector with noisy data

I Case 1: ‖xnull‖ = ‖b‖.
I Case 2: ‖xnull‖ = ‖x0‖.
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Experiments: noise stability
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Douglas-Rachford splitting

I Feasibility: Y ∩ Z =⇒ miny∈Y,z∈Z 1
2‖y − z‖2, y = z .

I ADMM (alternating direction method of multiplier)

max
λ

min
y∈Y,z∈Z

L :=
1

2
‖y − z‖2 + 〈λ, (y − z)〉

= max
λ

min
y∈Y,z∈Z

L :=
1

2
‖y − z + λ‖2 − 1

2
‖λ‖2





y t+1 = argminy∈Y 1
2‖y − z t + λt‖2 = PY(z t − λt)

z t+1 = argminz∈Z 1
2‖y t+1 − z + λt‖2 = PZ(y t+1 + λt)

λt+1 = λt +∇λL(y t+1, z t+1) = λt + y t+1 − z t+1

I DR: x t := y t+1 + λt =⇒

x t+1 = x t + PY(2PZ − I )x t − PZx t

29 / 38



Fourier domain Douglas-Rachford

Y = {y ∈ CN : |y | = b}, Z = A∗X
=⇒ PY(y) = b � y

|y | , PZ(y) = A∗Ay

S(x) = x +
[
Ã
(

2b � Ã∗x
|Ã∗x |

)
− x
]
X
− Ã

(
b � Ã∗x

|Ã∗x |

)
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Fixed point with two masks

Theorem (Chen-F. 2016)

The projected fixed point is unique, i.e. x∞ = e iθx0 almost surely.
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FDR locally converges geometrically

Theorem (Chen-F. 2016)

For 0 < ε < 1− λ2, if α(1)x (1) is sufficient close to x0, then FDR
converges geometrically to the solution

‖α(k)x (k) − x0‖ ≤ (λ2 + ε)k−1‖α(1)x (1) − x0‖.

I Explicit measurement schemes.

I Explicit characterization of λ2 < 1.

I No hard-to-verify assumptions.

I Convex setting (He-Yuan 2012, 2015): k-th error = O(1/k).
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Experiments: Two patterns
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Fourier domain vs. object domain DR

(FDR) Sf (x) = y + A∗A
(

2b � y

|y | − y

)
− b � y

|y |

(ODR) S(x) = x + Ã

(
2b � Ã∗x

|Ã∗x |

)
− x − Ã

(
b � Ã∗x

|Ã∗x |

)

Ã : various extensions of A
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Conclusion

I Two globally convergent schemes in practice:

1. AP+null initialization
2. FDR

I Open problem: proof of global convergence.

35 / 38



References
1. R. Balan, P. Casazza and D. Edidin, “On signal reconstruction without phase,” Appl. Comput. Harmon.

Anal. 20, 345-356 (2006).

2. E. J. Candes, X. Li and M. Soltanolkotabi, “Phase retrieval via Wirtinger flow: theory and algorithms,”
IEEE Trans Inform. Th. 61(4), 1985–2007 (2015).

3. E.J. Candès, T. Strohmer, and V. Voroninski, “ Phaselift: exact and stable signal recovery from magnitude
measurements via convex programming,” Comm. Pure Appl. Math. 66, 1241-1274 (2013).

4. P. Chen and A. Fannjiang, “Phase retrieval with a single mask by Douglas-Rachford algorithms,” Appl.
Comput. Harmon. Anal. (2016), http://dx.doi.org/10.1016/j.acha.2016.07.003.

5. P. Chen, A. Fannjiang and G. Liu, “Phase retrieval with one or two coded diffraction patterns by
alternating projection with the null initialization,” arxiv:1510.07379.

6. A. Fannjiang, “Absolute uniqueness of phase retrieval with random illumination,” Inverse Problems 28,
075008 (2012).

7. A. Fannjiang and W. Liao, “Phase retrieval with random phase illumination,” J. Opt. Soc. A 29,
1847-1859 (2012).

8. A. Fannjiang and W. Liao, “Fourier phasing with phase-uncertain mask,” Inverse Problems 29 125001
(2013).

9. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982).

10. M. Hayes, ”The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier
transform,” IEEE Trans. Acoust. Speech Sign. Proc. 30 140- 154 (1982).

11. B.S. He and X.M. Yuan,“ On the O(1/n) convergence rate of Douglas-Rachford alternating direction
method.” SIAM J. Numer. Anal. 50, 700709 (2012)

12. P. Netrapalli, P. Jain, S. Sanghavi, “Phase retrieval using alternating minimization,” IEEE Trans. Signal
Proc. 63 (2015), pp. 4814-4826.

36 / 38


