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Summary. RCL networks are widely used for the modeling and simulation of the
interconnect of today’s complex VLSI circuits. In realistic simulations, the number
of these RCL networks and the number of circuit elements of each of these networks
is so large that model reduction has become indispensable. We describe the general
class of descriptor systems that arise in the simulation of RCL networks, and mention
two particular benchmark problems.

1 Motivation

Today’s state-of-the-art VLSI circuits contain hundreds of millions of transis-
tors on a single chip, together with a complex network of “wires”, the so-called
interconnect. In fact, many aspects of VLSI circuits, such as timing behavior,
signal integrity, energy consumption, and power distribution, are increasingly
dominated by the chip’s interconnect. For simulation of the interconnect’s
effects, the standard approach is to stay within the well-established lumped-
circuit paradigm [9] and model the interconnect by simple, but large subcir-
cuits that consist of only resistors, capacitors, and inductors; see, e.g., [1, 6, 7].
However, realistic simulations require a very large number of such RCL sub-
circuits, and each of these subcircuits usually consists of a very large number
of circuit elements. In order to handle these large subcircuits, model-order
reduction methods have become standard tools in VLSI circuit simulation.
In fact, many of the Krylov subspace-based reduction techniques for large-
scale linear dynamical systems were developed in the context of VLSI circuit
simulation; see, e.g., [2, 3, 4] and the references given there.

In this brief note, we describe the general class of descriptor systems that
arise in the simulation of RCL subcircuits, and mention two particular bench-
mark problems.
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2 Modeling

We consider general linear RCL circuits that consist of only resistors, capaci-
tors, inductors, voltage sources, and current sources. The voltage and current
sources drive the circuit, and the voltages and currents of these sources are
viewed as the inputs and outputs of the circuit. Such RCL circuits are mod-
eled as directed graphs whose edges correspond to the circuit elements and
whose nodes correspond to the interconnections of the circuit elements; see,
e.g., [9]- For current sources, the direction of the corresponding edge is chosen
as the direction of the current flow, and for voltages sources, the direction of
the corresponding edge is chosen from “+4” to “” of the source. For the re-
sistors, capacitors, and inductors, the direction of the currents through these
elements is not known beforehand, and so arbitrary directions are assigned to
the edges corresponding to these elements. The directed graph is described
by its incidence matriz A = [a;j ]. The rows and columns of A correspond to
the nodes and edges of the directed graph, respectively, where a;; = 1 if edge
k leaves node j, a;jr = —1 if edge k enters node j, and a;j; = 0 otherwise.

We denote by v, the vector of nodal voltages, i.e., the j-th entry of v, is
the voltage at node j. We denote by v, and i, the vectors of edge voltages and
currents, respectively, i.e., the k-th entry of v, is the voltage across the circuit
element corresponding to edge k, and the k-th entry of i is the current through
the circuit element corresponding to edge k. Finally, we use subscripts r, c,
l, v, and ¢ to denote edge quantities that correspond to resistors, capacitors,
inductors, voltage sources, and current sources of the RCL circuit, respectively,
and we assume that the edges are ordered such that we have the following
partitionings:
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The RCL circuit is described completely by three types of equations: Kirch-
hoff’s current laws (KCLs), Kirchhoff ’s voltage laws (KVLs), and the branch
constitutive relations (BCRs); see, e.g., [9]. Using the partitionings (1), these
equations can be written compactly as follows. The KCLs state that

Aty + Acic + Aig + Ayiy + Aji; =0, (2)
the KVLs state that
AZvn = vy, AZvn = v, AlTvn =y, A;";vn = Uy, A?vn =v;, (3)
and the BCRs state that

. _ . d d .
ir=R v, i.= C%vc, v = L%zl. (4)
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Here, R and C' are positive definite diagonal matrices whose diagonal entries
are the resistances and capacitances of the resistors and capacitors, respec-
tively. The diagonal entries of the symmetric positive definite matrix L are the
inductances of the inductors. Often L is also diagonal, but in general, when
mutual inductances are included, L is not diagonal. In (2)—(4), the known
vectors are the time-dependent functions v, = v, (t) and i; = i;(t) the entries
of which are the voltages and currents of the voltage and current sources,
respectively. All other vectors are unknown time-dependent functions.

3 Formulation as first-order descriptor systems

The circuit equations (2)—(4) can be rewritten in a number of different ways.
For example, for the special case of RCL circuits driven only by voltage
sources, a formulation as systems of first-order integro-DAEs is given in [5].
Here, we present a formulation of (2)—(4) as a structured descriptor system.
Recall that the currents ¢;(¢) of the current sources, and the voltages v, (t) of
the voltage sources are known functions of time. In the setting of a descriptor
system, these quantities are the entries of the system’s input vector u(t) as

follows: '
u(t) = [_U’((:))] . (5)

The voltages v;(t) across the current sources, and the currents i,(¢) through
the voltage sources, are unknown functions of time, and these quantities are
the entries of the system’s output vector y(t) as follows:

=501 ©

Note that we can use the first three equations in (3) and the BCRs (4) to
readily eliminate the parts v, v., v; of the edge voltages and the parts 4., i. of
the edge currents. Therefore, in addition to the input and output variables (5)
and (6), only the nodal voltages v, and the inductor currents i; remain as
unknowns, and we define the system’s state vector x(¢t) as follows:

2(t) = | inlt) | - ™)

Performing the above eliminations of v,., v., vy, %, i. and using (5)—(7), one
easily verifies that the RCL circuit equations (2)—(4) are equivalent to the

descriptor system,

%m(t) = Ax(t) + Bu(t),

y(t) = BTx(t),

¢ ®
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where
AR_lAZ A A, ACCACT 0 0
A=— —AlT 0o 0|, &:= 0 L 0],
—AZ’ 0 O 0 0 O
9)
A, O
B:=]10 0],
0 -I

and I denotes the identity matrix. Moreover, the block sizes in (9) correspond
to the partitionings of the input, output, and state vectors in (5)—(7).

4 Two particular benchmark problems
The first benchmark problem, called the PEEC problem, is a circuit resulting
from the so-called PEEC discretization [8] of an electromagnetic problem.

The circuit is an RCL circuit consisting of 2100 capacitors, 172 inductors,
6990 inductive couplings, and a resistive source that drives the circuit.

Table 1. System matrices for the PEEC problem.

matrix m n nnz Is symmetric?
A 306 306 696 no
& 306 306 18290 yes
B 306 2 2 no

The second example, called the package problem, is a 64-pin package model
used for an RF integrated circuit. Only eight of the package pins carry signals,
the rest being either unused or carrying supply voltages. The package is char-
acterized as a 16-port component (8 exterior and 8 interior terminals). The
package model is described by approximately 4000 circuit elements, resistors,
capacitors, inductors, and inductive couplings.

Table 2. System matrices for the package problem.

matrix m n nnz Is symmetric?
A 1841 1841 5881 no
£ 1841 1841 5196 yes

B 1841 16 24 no
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