
A new fast hybrid adaptive grid generation technique for
arbitrary two-dimensional domains

Mohamed Ebeida1,†, Roger L. Davis2,‡, and Roland W. Freund3,§

1 Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, U.S.A.

2 Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields
Avenue, Davis, CA 95616, U.S.A.

3 Department of Mathematics, University of California Davis, One Shields Avenue, Davis, CA 95616,
U.S.A.

SUMMARY

This paper describes a new fast hybrid adaptive grid generation technique for arbitrary two-
dimensional domains. This technique is based on a Cartesian background grid with square elements
and quadtree decomposition. A new algorithm is introduced for the distribution of boundary points
based on the curvature of the domain boundaries. The quadtree decomposition is governed either
by the distribution of the boundary points or by a size function when a solution-based adaptive
grid is desired. The resulting grid is quad-dominant and ready for the application of finite-element,
multigrid, or line-relaxation methods. All of the internal angles in the final grid have a lower bound
of 45◦ and an upper bound of 135◦. Although our main interest is in grid generation for unsteady
flow simulations, the technique presented in this paper can be employed in many other fields. Several
application examples are provided to illustrate the main features of this new approach.

key words: grid generation; quadtree; quad-dominant; adaptive; finite-element method; multigrid

method; line-relaxation method; computational fluid dynamics

1. INTRODUCTION

Grid generation is an important first step in the solution of many computational problems,
especially problems arising in scientific computing and computer graphics. For example, the
accuracy of the numerical solution of partial differential equations depends on the quality of the
grid used in the discretization of the problem, especially on the grid density, the distribution
of the grid points, and the quality of the elements connecting these points. For simulations in
computational fluid dynamics (CFD), an optimal grid is one that accurately captures all the

†E-mail: msebeida@andrew.cmu.edu
‡E-mail: davisrl@ucdavis.edu
§E-mail: freund@math.ucdavis.edu

2 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

main features of the geometry and the fluid flow with the minimum number of grid points and
elements.

Grids are either structured or unstructured. For two-dimensional domains, structured grids
are composed of quadrilateral elements, while unstructured grids may be composed of elements
with any number of sides, but, in most cases, consist of triangular elements. Each element type
has its own advantages and disadvantages. Structured grids with quadrilateral elements have
been shown to be superior in capturing viscous flows adjacent to solid surfaces due to their
orthogonality and somewhat insensitivity to large aspect ratios in the dominant flow direction.
However, because grid lines must eventually extend across the entire grid-block or domain to
maintain certain block structures that are required for some solution methods, additional grid
points are often placed in regions where they are not required to resolve the flow accurately.
On the other hand, triangular elements can cover any regular or irregular domain efficiently,
but stretching these elements affects the accuracy of the solution to a large extent. As a
result, use of unstructured grids with triangular elements in high-gradient regions along a
dominant flow direction, such as flow through a boundary layer or across a shock, is limited.
In order to resolve this problem, one usually employs hybrid grids that use quadrilateral
elements wherever stretching is required. In addition, unstructured grids put some limitations
on the use of multigrid methods, which are well known to be efficient and relatively simple
techniques for the acceleration of flow solutions. There are other serious problems with hybrid
grids that are dominated by triangular elements. For example, a larger amount of work is
required per time step due to the larger number of faces and edges for such grids. Moreover,
the generation of such grids usually requires more computational work and the required data
structures consume more memory. The highly-referenced handbook [1] on grid generation
summarizes these challenges as follows: There are thus very clear incentives to use structured

grids whenever possible. For hybrid grids the implication is that the extent of unstructured grid

employed should be as minimal as possible.

During the last two decades many remeshing techniques have been developed. Recently,
various papers have addressed the generation of surface grids [2, 3]. Surface remeshing is the
most widely used technique for the generation of high-quality surface meshes [4, 5, 6].

Most of the computing time required to simulate a certain flow problem is consumed by the
solution of a linear system of equations. Hence, the use of an efficient solver is critical. As has
been demonstrated in the CFD community, multigrid methods are among the best algorithms
for the solution of these linear systems. In multigrid approaches, convergence acceleration
is achieved by using successively coarser grids, where the errors associated with the high
frequencies are damped by a carefully chosen smoother on the fine grid levels, while the
errors associated with the lower frequencies are damped on the coarser grid levels and quickly
propagated out of the domain. In the case of structured grids, geometric multigrid methods [7]
are easily implemented where coarser grids are derived from a given fine grid by dropping every
other grid line in each coordinate direction. Of course, such a straightforward implementation
is not possible in the case of hybrid unstructured grids.

Algebraic multigrid (AMG) methods have been proposed as an efficient and more flexible
alternative to geometric multigrid methods. When using unstructured grids, there are three
different approaches that can be adopted for AMG. The first approach resembles the classical
grid-sequencing technique, where a coarse level grid is first generated and the refined grid
levels are obtained by repeated refinements [8, 9]. The second approach employs non-nested
unstructured grids either with a subset of fine grid points to construct the coarse grids or

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 3

with completely independent coarse and fine grids. This has been shown to be successful for
both inviscid and viscous flow computations [10, 11]. The third approach uses coarse grids
that are obtained from a coarsening of the fine grid through agglomeration or fusion, resulting
in polyhedral coarse grid control volumes. In 1992, Lallemand et al [12] devised a technique
to generate coarser grid levels using topological neighboring relations for cell-vertex schemes.
In 2001, the AMGE (AMG for finite elements) method based on element agglomeration was
proposed by Jones and Vassilevski [13]. This approach was further refined to handle inviscid
and viscous flows past complex configurations in both two and three dimensions [14, 15].

Although the first approach can be utilized in an adaptive procedure and has simple inter-
grid operators, it suffers from the dependence of the fine grid distribution on the coarse levels.
This is avoided in the second approach, but with the added complication of the inter-grid
operators and the requirement to generate multiple grids that preserve the geometry. Although
the third approach is the most popular one, it produces coarse grids of higher complexity. This
increases the cost of multigrid V -cycles and makes the use of W -cycles impractical [16].

Over the last two decades, there has been a great deal of interest in adaptive methods
in the engineering community. For some flow applications, such methods are crucial because
of the pressing need for accurate computation of flows with variable density, for example in
cavitating flows, or shock waves that might occur in compressible flows; see, e.g., [17, 18, 19].
Adaptive methods offer a means of tackling complex flow problems at a reasonable cost and
of controlling the accuracy of numerical simulations.

Adaptive grids based on quadtree decomposition methods can be employed to efficiently
refine the generated grid in regions where more accuracy is required. In some grid-embedding
schemes, refinement can introduce hanging nodes [20]. Hanging nodes limit the use of finite-
element discretizations, and for finite-volume discretizations, the values of the variables at these
points are usually obtained via some form of interpolation, which is not always conservative
and can introduce additional discretization errors. The application of spatial decomposition
methods solve these problems by nesting these hanging nodes to the grid using triangular
elements, but an optimization step is then required to enhance the quality of the triangular
elements, especially those defining any internal boundaries. This usually leads to a grid that is
dominated by triangular elements [21]. The problem with local refinements of such triangular
element-dominant grids is that an optimization step is required after each local refinement to
enhance the minimum angle condition for the triangular elements on the edges of the refined
region. The optimization step usually involves moving grid nodes with retriangulation of the
grid elements [22]. Some optimization approaches involve the creation of new nodes and nesting
them to the original grid without moving any node. This approach suffers from placing nodes
where they might not be needed for increasing the accuracy of the solution [23]. Also, once a
retriangulation is performed, then all the parent-child relations between grid levels required for
multigrid methods are no more valid. Thus the generation of grid levels has to be performed
from scratch with each adaptive refinement followed by a retriangulation step.

In this paper, we describe a new fast adaptive procedure for generating grids for arbitrary
two-dimensional domains, together with data structures that are suitable for the application
of multigrid solvers. The grids produced by this approach are dominated by quadrilateral
elements. Refinement of the elements is constrained to ensure the high quality of the grids,
without the need to move any node and/or perform retriangulation. The procedure is applied
in a way that makes the dependence of the fine-grid node distribution on the coarse levels an
advantage, because it allows a restriction of the refinement to certain subregions within the

4 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

given domain. At each refinement level, we store the grid elements and update the parent-child
tree for the newly added nodes. As a result, upon completion of the refinement steps, all the
grid-level information required for multigrid solvers is readily available.

Spatial decomposition is employed in such a way that only a very simple optimization step
is needed to represent the boundaries of the domain and to create a nearly orthogonal grid
around them. Moreover, without optimization, most of the grid lines are either horizontal
or vertical. Hence, the optimization step is required only when these lines fail to define the
boundaries of the domain adequately.

The development of the technique proposed in this paper was mainly motivated by the need
to generate grids that are suitable for viscous flow simulations. At high Reynolds number, the
boundary layer requirements are achieved by successive one-dimensional refinement, i.e., by
splitting only the edges normal to those solid surfaces modeled with the no-slip condition. This
refinement is utilized to rapidly reduce the length of these edges. For example, the resulting
grids allow the accurate capturing of turbulent flow features inside the boundary layer, using
only a small number of grid points.

Further adaptive refinements can be performed based on flow features identified via solution
gradients or based on variables that quantify the local error in the solution. The quality of the
elements during this type of refinement are guaranteed by constraining the possible resulting
grid element geometry.

The motivation for the grid generation technique proposed in this paper was to develop a
procedure that meets the following requirements:

• The procedure is fast and adaptive.
• The generated grids are suitable for the application of multigrid solvers, finite-element

methods, and line-relaxation techniques.
• Most of the domain is covered by square elements for optimal quality.
• All the internal angles in the final grid have a lower bound of 45◦ and an upper bound

of 135◦.

The main steps of our grid generation technique are as follows:

1. linear representation of the boundaries of the domain and distribution of boundary
points,

2. refinement of the background Cartesian grid based on quadtree decomposition and the
distribution of boundary points,

3. optimization of near-boundary elements, which includes

(a) buffer zone creation around each geometry and removal of elements that lie inside
the buffer zone or outside the desired domain,

(b) covering the gap between the terminal elements and the boundaries of the domain,

4. grid adaptation based on some error function during numerical simulation.

The remainder of this paper is organized as follows. In Section 2, we describe an algorithm
for representing the boundaries of any two-dimensional domain. In Section 3, we present a
procedure that generates a base grid of the domain, given the linear representation of the
domain boundaries. In Section 4, we describe how to modify the base grid so that it respects
the boundaries of the domain without deteriorating the quality of the elements in the final

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 5

grid. In Section 5, we present an algorithm for solution-based adaptation of the grid. Section 6
discusses the use of the proposed grid generation technique within multigrid solvers. Finally,
we make some concluding remarks in Section 7.

2. REPRESENTATION OF THE DOMAIN BOUNDARIES

In this section, we describe an algorithm for representing the boundaries of any given two-
dimensional domain linearly. The distribution of the boundary points in the representation
produced by this algorithm depends on the curvature of the boundaries and on the desired
upper bound for the maximum edge length in the final linear representation.

To illustrate the main idea of this algorithm, consider the smooth curve C in Figure 1. This
curve C is given by its end points, A and B, and the smooth parametrization (x(t), y(t)),
0 ≤ t ≤ 1, of the points (x,y) ∈ C. Here, t = tA = 0 and t = tB = 1 correspond to the end
points A and B, respectively. As a first linear approximation (n = 0) to that curve we simply
use the line segment AB connecting A and B; see Figure 1(a). If C has zero curvature, then this
first approximation is exact. Otherwise, we may need a better, piecewise linear approximation.
To this end, we refine the line segment AB by replacing it with the two-segment polyline, P1,
that consists of the two line segments AC and CB, where C ∈ C and tC = (tA + tB)/2. Let
0 ≤ α ≤ 180◦ denote the the angle between the two new line segments (AC and CB). We refer
to α as the refinement angle of the old line segment AB. If necessary, we continue with this
refinement procedure to obtain an n-segment polyline Pn, where n denotes the iteration index.
Obviously, the larger n, the better Pn approximates the curve C. Note that the refinement angle
of any line segment in Pn approaches 180◦ as n → ∞. This fact is used in the following point-
distribution algorithm, where we use a parameter, ǫ, to control the termination of the iterative
refinement procedure. More precisely, we consider a line segment to be a good representation
of the curve passing through its end points if the refinement angle α corresponding to that
line segment satisfies

180◦ − ǫ ≤ α ≤ 180◦.

(a) n = 0 (b) n = 1 (c) n = 2 (d) n = 3

Figure 1. Linear representation of a curve C

6 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

Algorithm 1. (Initial distribution of boundary points)

Input: A set of smooth curves {Ci} representing the boundaries of the domain, where each

curve has a parametric representation of the form (x(t), y(t)), a parameter ǫ > 0 (in degrees)
that controls the termination of the refinement iterative procedure, and a parameter δ > 0 that

controls the maximum length of the boundary edges.

1. For each curve Ci, do:

(a) (Creation of initial polyline P0

i)

Set a point A at the beginning of the curve (tA = 0), a point B at its end (tB = 1),
and initialize P0

i to be the line segment AB. Note that for a closed curve, the points A
and B are identical and can be placed anywhere on that curve.

(b) For n = 1, 2, 3, . . . , do:

• For each line segment in Pn−1

i , do:

– Calculate the refinement angle 0 ≤ α ≤ 180◦ corresponding to this edge.

– If α < 180◦ − ǫ, refine this line segment.

– Otherwise, for all internal points of Pn−1

i do:

∗ Calculate the angle 0 ≤ β ≤ 180◦ between the two boundary line segments

intersecting at this internal point.

∗ If β < 180◦ − ǫ, refine both these boundary line segments.

(An internal point is a boundary point that is part of two boundary line
segments.)

– If Pn
i = Pn−1

i , continue with step (c).

(c) (Controlling the maximum length of the line segments)

For all line segments in Pn
i , do:

• Calculate the length le of that line segment.

• If le > δ, refine that line segment.

• If no line segment was refined, proceed to step 2: The linear approximation Pn
i is

acceptable.

2. Merge all the polylines with the same end points and relocate the two points surrounding any

internal point associated with some sharp features such that the two line segments intersecting

at that point will have the same length.

(One way to do that is to shorten the longer edge without changing its slope.)

Output: A set of polylines {Pi}. Each polyline represents a closed part of the domain

boundaries and is defined by a set of boundary points {Ni} and a set of line segments {Ei}.

In the following, we will often refer to the line segments in Ei as edges. We remark that step (c)
in Algorithm 1 is optional. This step has no effect on the final output if we choose δ > lc, where
lc is the length of the curve to be approximated. We include this step when the final grid is
to be used in turbulent flow simulations. In such cases, an upper bound for the edge length is
enforced to ensure that the requirements of the turbulent model are satisfied when generating
the grid in the boundary layer region. Sometimes we may enforce an additional constraint. For

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 7

instance, we may refine the edges around those parts of the boundaries associated with sharp
features. These extra refinements are necessary to increase the accuracy of the simulation in
these critical regions.

Next, we present some numerical examples in order to illustrate the behavior of Algorithm 1
and show the effects of the choice of the parameter ǫ on the number and the distribution of the
boundary points. The first domain, D1, was chosen to test the adaptivity and the symmetry of
the algorithm. The boundary of D1 consists of a single smooth curve with varying curvature.
This curve is symmetrical with respect to the y-axis. As shown in Figure 2, the number of
boundary points, N , increases as ǫ decreases and symmetry is always conserved.

(a) ǫ = 20◦ =⇒ N = 149 (b) ǫ = 10◦ =⇒ N = 269

(c) ǫ = 5◦ =⇒ N = 511 (d) ǫ = 2◦ =⇒ N = 1213

Figure 2. Linear representation of D1 using different values for ǫ.

8 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

The second domain, D2, was selected to test the ability of the algorithm to deal with domain
boundaries with singular points. The boundary of D2 consists of 6 smooth curves. Figure 3
shows the linear representations of D2 generated by Algorithm 1 when different values for ǫ
are used. Clearly, as ǫ decreases, the ability of the algorithm to capture more details increases.

(a) ǫ = 20◦ =⇒ N = 239 (b) ǫ = 10◦ =⇒ N = 414

(c) ǫ = 5◦ =⇒ N = 816 (d) ǫ = 2◦ =⇒ N = 2008

Figure 3. Linear representation of D2 using different values for ǫ.

To illustrate the effect of the choice of ǫ on capturing the details of the boundaries, we
used one of the great lakes as domain D3. This domain has a great deal of detail along its
boundaries. The boundaries of D3 are treated here as a single smooth curve with a wide range
of curvature values. Figure 4 shows the linear representations of D3 generated by Algorithm 1
when different values for ǫ are used. Again, using lower values for ǫ increases the ability of the
algorithm to capture more details.

Finally, to test the ability of Algorithm 1 to deal with domains for computational fluid

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 9

(a) ǫ = 20◦ =⇒ N = 745 (b) ǫ = 10◦ =⇒ N = 1614

(c) ǫ = 5◦ =⇒ N = 3652 (d) ǫ = 2◦ =⇒ N = 8711

Figure 4. Linear representation of a D3 using different values for ǫ.

dynamics (CFD) simulations, we use the domain D4 of a multi-element airfoil. The overall
airfoil length is almost one unit. The boundary of D4 consists of multiple closed curves, where
each curve contains at least two singular points. Figure 5 shows the linear representation of the
boundary of D4 that is produced by Algorithm 1 with parameter values ǫ = 4◦ and δ = 0.1.
In this example, we forced each straight part of the boundaries to be represented by at least
5 boundary points.

3. SPATIAL DECOMPOSITION

In this section, we present a procedure that generates a base grid of the domain, using the
linear representation of the domain boundaries produced by Algorithm 1 as input. We refer
to the boundary points of the linear representation as the refinement points in this section.

The spatial decomposition described in this section is based on the quadtree refinement
algorithm. In the standard quadtree algorithm [24, 25], the iterative refinement procedure
starts with a Cartesian grid of square elements and a certain distribution of refinement points.
An element is then refined if it contains more than one refinement point. This algorithm is
fast, but sensitive to the orientation of the refinement points. For example, Figure 6(a) shows a

10 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) N = 131 + 100 + 94

(b) Zoom A (c) Zoom B (d) Zoom C

Figure 5. Linear representation of D4 using ǫ = 4◦ and δ = 0.1.

distribution of boundary points representing a circle. Here the curvature is fixed, so the length
of all the boundary edges are the same. However, as Figure 6(b) illustrates, the output of the
standard quadtree algorithm suffers from the following problems:

• The constant curvature of the circular boundary does not guarantee elements of the same
size near that boundary.

• Large jumps in the element size may occur. In CFD simulations, we prefer to limit the
size ratio of any two neighboring elements to an upper bound of 2.

• The standard quadtree algorithm produces a large number of hanging nodes. A hanging
node is one that exists in one of the elements without being one of its corners. Such
nodes are undesirable in finite-element and finite-volume methods.

We modified the standard quadtree algorithm to eliminate these problems. For the above
example, the spatial decomposition produced by our algorithm for a circular boundary
represented with more refinement points is shown in Figure 6(c).

Our algorithm starts with a background Cartesian grid with square elements. This grid has
to contain all the refinement points. The goal is to refine the square elements iteratively so
that in the final grid, Gb, an element crossing the boundaries will have a size that is bounded
from above by the distance between its nearest two refinement points and bounded from below
by half that distance. The refinement iteration is done such that the size ratio between any
two neighboring elements is guaranteed to be less than or equal to 2. The size of an element

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 11

(a) Refinement points (b) Standard quadtree (c) Our spatial decom-
position

Figure 6. Spatial decomposition around a circular boundary.

here is measured using the maximum length of its edges. In order to eliminate the hanging
nodes, we allow partial refinements of the square elements, as illustrated in Figure 7. This
process results in the formation of transition elements, which are generated from refining one
or two edges only of a square element. A transition element is either a trapezoid or a triangle.
Our refinement algorithm ensures that no transition element will be refined during the entire
refinement procedure. Also, for each refinement iteration, we refine any element that contains
a singular node. In that way, we ensure that such a node is contained in the smallest elements
of the final grid.

Figure 7. Refinement of square elements.

The following algorithm states our procedure for generating a base grid.

12 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

Algorithm 2. (Spatial decomposition)

Input: A set of refinement points {Ni}, a set of edges {Ei}, an initial spacing s0 > 0, and a

minimum edge size sm > 0 .

1. Construct a background grid G0 such that it contains all the edges in {Ei} and all its

elements are squares with edge length of s0.

2. For n = 1, 2, 3, . . . , do:

(a) Create an empty list L.

(b) For the square elements that cross the boundaries in Gn−1, do:

• Set the size, s, of that element to be the edge length in that element.

• Determine the distance, d, between the nearest two refinement points.

• If s > d, then add all the corner nodes of that element to L.

• If an element is crossed by two boundary edges and the angle between these two

edges is greater than 90◦, then add all the corner nodes of that element to L.

• If an element has a first-level neighboring element that is crossed by a boundary

edge and the angle between these two edges is greater than 90◦, then add all the

corner nodes of both elements to L.

• If an element has a second-level neighboring element that is crossed by a boundary

edge and the angle between these two edges is greater than 90◦, then add all the

corner nodes of both elements, as well as the element between them, to L.

• If an element has a third-level neighboring element that is crossed by a boundary

edge and the angle between these two edges is greater than 90◦, then add all the

corner nodes of both elements, as well as the two elements between them, to L.

(c) For the square elements in Gn−1 that contain a singular point, add all the corner nodes

of these elements to L.

(d) For the square elements in Gn−1 with at least one corner in L and with no more than

three corners in L, add all the corner nodes of these elements to L.

(e) For the square elements with three corners in L, add the fourth corner to L, until there

is no such element left.

(f) For all square elements with at least one corner in L, do:

• Count the number of edges with both ends in L.

• Refine that element based on the number of edges to be refined.

(g) Set Gn to be the refined grid.

(h) If Gn = Gn−1, stop: Gn is the final grid.

(i) If the sizes s of all square elements in Gn satisfy the condition s < 2sm, stop: Gn is the

final grid.

Output: A base grid Gb = Gn that is adapted to the curvature of the domain boundaries.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 13

We remark that the narrow regions of the boundaries are captured via the refinement of
neighboring elements crossed by the boundaries. Figure 8 shows the first-level, second-level,
and third-level neighbors of an element. This refinement procedure ensures the existence of at
least three square elements inside a narrow region. The minimum edge size, sm, is a parameter
that controls the smallest size of the elements inside narrow regions. Note also that all the
edges are oriented such that the end of an edge is the start of another one, so the angle, α,
between two edges varies from zero (for two edges on the same straight line) and goes up to
180◦ at a very sharp corner. Finally, the purpose of step 2(d) in Algorithm 2 is to refine any
extra layers of square elements in order to eliminate the possibility of refining any edge of a
transition element through the whole process. Hence, this step ensures the minimum angle
requirement of 45◦ and guarantees that the jump ratios in the size of first-level neighboring
elements are bounded by 2.

(a) First Level (b) Second Level (c) Third Level

Figure 8. Neighbors (marked with “o”) of an element (marked with “x”).

In order to test Algorithm 2 and illustrate its feature to adapt to the curvature of the domain
boundaries, we ran the algorithm with a point distribution for domain D1 as input. Figure 9
displays the spatial decomposition obtained for D1.

In order to test the ability of Algorithm 2 to capture the narrow regions of the domain, we
ran the algorithm with a point distribution for domain D2 as input. Figure 10 displays the
spatial decomposition obtained for D2.

4. GRID OPTIMIZATION

Up to this point, we have approximated the boundaries of the domain Γ(Ω) linearly. We will
refer to the approximated boundaries as Γ∗(Ω). We also have a base grid, Gb, that is adapted
to the curvature of Γ(Ω). This base grid fills a bounding box around the domain, Ω, and has
a large number of points outside of that domain. We need to finalize the grid through an
optimization step that will eliminate all these exterior points. This is the most important step
of the whole technique. In this step, we modify the base grid, Gb, to represent the boundaries
of the domain using the edges of the grid elements.

14 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) The whole domain

(b) Zoom A (c) Zoom B (d) Zoom C

Figure 9. Spatial decomposition of D1.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 15

(a) The whole domain

(b) Zoom A (c) Zoom B (d) Zoom C

Figure 10. Spatial decomposition of D2.

16 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

4.1. Buffer zone creation

A buffer zone, Z, that contains Γ∗(Ω) is created and any element with a node, n, such that
n ∈ Z is to be deleted. The distance, dz , between the buffer zone and Γ∗(Ω) at any point
x ∈ Γ∗(Ω) is prescribed using the size of the nearest element to that point. The size of any
element is defined by its minimum edge length, se. We set dz(x) = 1

2
se(x) to be sure that

the new elements created to cover the gap between the terminal edges and Γ∗(Ω) will not be
stretched.

Let NZ be the set of external nodes, i.e., all nodes that exist inside the buffer zone, and
let EZ denote the set of elements that have at least one corner node in NZ . We now define
another set, NT , for the terminal nodes as follows:

NT :=
{

n
∣

∣ n ∈ E , E ∈ EZ , n /∈ NZ

}

.

We denote any element having at least one terminal node as one of its corners as a terminal

element. Moreover, any edge connecting two terminal nodes will be referred to as a terminal

edge.
This step will result in a first approximation for Γ∗(Ω) by the edges connecting the nodes in

NT . Note that any edge connecting two terminal nodes is either horizontal, vertical, or having
slope magnitude of ±1.

In some cases, we may choose to modify, rather than deleting, an element in EZ in order
to ensure the minimum angle requirement for the new elements generated to cover the gap
between Γ∗(Ω) and the terminal edges. Figure 11 shows these cases.

Figure 11. Modification of terminal elements, external nodes are marked with “o”.

These modifications are to guarantee the following property almost everywhere. Let e1 and
e2 be two terminal edges having a common terminal node. Then the external angle, α, between
these two edges satisfies the following relation

135◦ ≤ α ≤ 225◦.

This gives us more freedom in controlling the quality of the elements to be generated within
the gap between Γ∗(Ω) and the terminal edges. Figures 12 and 13 shows the output of this
step for our two test domains D1 and D2.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 17

(a) Internal domain (b) External domain

(c) Zoom A (d) Zoom B (e) Zoom C

(f) Zoom A (g) Zoom B (h) Zoom C

Figure 12. Creation of a buffer zone for internal and external domains for D1.

18 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) Internal domain (b) External domain

(c) Zoom A (d) Zoom B (e) Zoom C

(f) Zoom A (g) Zoom B (h) Zoom C

Figure 13. Creation of a buffer zone for internal and external domains for D2.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 19

4.2. Filling the buffer zone

The goal here is to modify the base grid again so that its boundaries represent Ω more
accurately. This is accomplished by iterating over the terminal edges and constructing an
element per edge by the orthogonal projection of the terminal points of that edge. If the
orthogonal projection fails, we project the terminal node to the nearest singular point. The
elements generated during this step are quadrilaterals with aspect ratio less than 2 or triangles
if both ends of the terminal edge projects to a singular boundary point. In the case of sharp
corners, a quadrilateral is constructed by projecting the nearest node to that corner twice on
the two line segments forming that corner. This quadrilateral can be subdivided as much as
necessary, depending on the desired edge length near that corner. Figure 14 shows an element
constructed and refined near a sharp corner and a regular one. Note that a sharp corner is one
with internal angle α such that α ≤ 90◦.

(a) Sharp corner (b) Regular corner

Figure 14. Elements near corners.

Up to this point, we have conserved the quality of most elements except some elements where
angles are less than 45◦. In order to fix that, all the edges of the new elements perpendicular to
the boundaries of Ω are split and then some of these edges are allowed to rotate to ensure that
the minimum angle is 45◦ for all elements. This step is illustrated in Figure 15. For simulation
of turbulent flows, successive edge splitting can be done until we reach the required number
of points in the viscous sublayer. Note that, as we perform more edge splitting, the boundary
elements become more rectangular with all angles reaching 90◦. Figures 16 and 17 show the
final grids generated using the test domains we have used in the previous sections.

Next we use the shape of one of the Great Lakes to demonstrate the efficiency of our
procedure. The boundaries of this domain consists of seven closed curves with no singular
points. Since the boundaries have much detail and widely-varying curvature, this problem is
often used in the grid-generation literature to test new algorithms. Also, some islands are very
close to the boundaries of the lake that provide another opportunity to test the ability of
our algorithm to capture and represent domains of narrow regions. Figure 18 shows the initial
distribution of the boundary points for Lake Superior, the output of the spatial decomposition,
and the final grid generated by our technique. Some further details of the grid generated using

20 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) Angle less than 45◦ (b) Quality Enhanced

Figure 15. Optimizing the minimum element angle by edge splitting and rotation.

our technique for this domain are presented in Figure 19. For comparison, Figure 20 displays
the grids produced by two other procedures: Ruppert’s algorithm [26] and the quadtree-based
algorithm by Bern, Eppstein, and Gilbert [27]. These results show that our technique has
better adaptivity and produces grids with a larger minimum angle.

Finally, we represent a domain around a multi-element airfoil. The boundaries consist of
three closed curves with curvature varying from zero to infinity. We will use the same domain
in showing our treatment of the boundary layer region in the following section. The results for
a domain to be used in laminar flow simulations are presented in Figure 21.

4.3. The boundary layer region

In simulation of viscous flows, the velocity flow variables have a high gradient near the
boundaries when representing the solid surfaces with a no-slip condition. In order to capture
the flow variables efficiently in these regions, successive one-dimensional refinement, i.e., the
splitting of only the edges normal to these boundaries, is employed to rapidly reduce the length
of these edges. Note that this one-dimensional refinement also acts as an element smoother.
Applying such refinement to the elements close to the boundaries will rapidly increase the
minimum angle of the boundary elements. This fact is demonstrated in Figure 23 where we
started with the worst case, namely an element with a minimum angle of 45◦. After only
three levels of this one dimensional refinement, the minimum angle increased to 83◦ which
indicates that the element is becoming more rectangular. The number of these one-dimensional
refinements depends on the viscous flow length scales described by the Reynolds number and
on the requirements of the employed turbulence model. For example, the Wilcox k–ω model
[28, 29] requires that a few points are located within the viscous sublayer. We can achieve
this requirement usually with 6 to 8 levels of one-dimensional refinements. Note that the
aspect ratio of the boundary elements increases with more levels, however. We ran six levels
of refinements for the grid presented in Figure 21. The details of the boundary layer in some
regions are shown in Figure 24.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 21

(a) Internal domain (b) External domain

(c) Zoom A (d) Zoom B (e) Zoom C

(f) Zoom A (g) Zoom B (h) Zoom C

Figure 16. Internal and external domains for D1.

22 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) Internal domain (b) External domain

(c) Zoom A (d) Zoom B (e) Zoom C

(f) Zoom A (g) Zoom B (h) Zoom C

Figure 17. Internal and external domains for D2.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 23

(a) Distribution of boundary points (b) Spatial decomposition

(c) Our algorithm: minimum angle 45◦

Figure 18. Grid generated for Lake Superior by our technique.

5. SOLUTION-BASED ADAPTATION

In this section, we discuss a procedure for solution-based spatial adaptation. We start this step
with the base grid, Gb, and the grid, Gc, obtained from the last adaptive regridding. If this is
the first adaptive regridding, we simply set Gc = Gb. Using the simulation output, we generate
some function, f , that controls the grid size. For example, f could be an error estimation of a
finite-element solver, or it could be the gradient of one of the solution variables since error is
typically proportional to the gradient. Note that the base grid Gb is coarse everywhere except
near the boundaries. Refining this Gb during different solution times in the simulation will have
the effect that the grid elements are sometimes refined and other times agglomerated, although
we are always refining Gb. The problem with depending on the base grid only is that we may
lose solution accuracy due to neglecting solution information at the fine levels. To overcome
this problem, we use two grids in this algorithm. The base grid is used for regridding and the
one obtained from the last adaptive regridding is used for passing the variables to the new
grid. The details of the algorithm are as follows.

24 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) Zoom A (b) Zoom B

(c) Zoom C (d) Zoom D

Figure 19. Details of the grid generated for Lake Superior by our technique.

Algorithm 3. (Unsteady grid adaptation)

Input: A base grid Gb, a grid Gc, solution variables f defined at every node of Gc from the last

time step, a user-specified integer nR > 0, and a vector rL ∈ RnR of user-specified thresholds

for the refinement levels.

1. Interpolate the solution valuesf from grid Gc to Gb.

2. For i = 1, 2, . . . , nR, do:

• Merge transition elements for that refinement level with its corresponding fine region.

• Refine any elements with a corner node j if the condition

|fj | > rL(i)

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 25

(a) Ruppert algorithm: minimum angle 34.2◦ (b) Algorithm by Bern et al.: minimum angle

18◦

Figure 20. Grid generated for Lake Superior by other algorithms.

(a) Distribution of bound-
ary points

(b) Spatial decomposition (c) Final grid

Figure 21. Three-part airfoil grid produced by our technique.

(a) Zoom A (b) Zoom B (c) Zoom C (d) Zoom D

Figure 22. Details of three-part airfoil grid produced by our technique.

is satisfied.

26 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) Level 0 (45◦) (b) Level 1 (63◦) (c) Level 2 (76◦) (d) Level 3 (83◦)

Figure 23. Effects of the one-dimensional refinement on the minimum angle of a boundary element.

(a) (b) (c) (d)

Figure 24. Details of the boundary-layer region around a multi-element airfoil.

• Interpolate the values of the solution variables for the new point from grid Gc.

3. Set Gc to be the new refined grid.

Output: New refined grid Gc.

Merging transition elements near the boundaries is done to avoid the refinement of any edge
in these elements. Figure 25 demonstrates this problem and how to fix it. Here, if we decide
to refine a square element in the coarse region (marked with an “x”), a grid quality problem
will result as shown in Figure 25(b). The technique used to fix this problem is to merge all the
transition elements for that level. In other words, transform each block of transition elements
into 4 square elements, as shown in Figure 25(c).

In order to show the efficiency of this algorithm, we ran an unsteady flow simulation over
two vertical cylinders at Reynolds number Re = 200. Figure 26 shows the interaction of the
vortex shedding around each cylinder and how the vortices impact each other at the centerline
preserving the symmetry of the flow. Vorticity contours are overlaid onto the computational
grid to show the efficiency of the adaptive regridding. In this case, we chose f to be ∇ω where
ω is the vorticity generated in the domain.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 27

(a) (b) (c)

Figure 25. Merging transition elements.

6. MULTIGRID LEVELS

The application of multigrid solvers was our main motivation for the development of the
proposed grid generation technique. For this particular application, we need a sequence of grid
levels that can be implemented easily in multigrid solvers, and this is exactly what we have
achieved here. Since we are already using a grid-embedding technique, we can easily store
all the grid levels that are generated during the refinement procedure. However, we need to
redefine the near-boundary elements at each level and delete all the elements with deleted
nodes by the optimization step. This modification can be summarized in the following steps
for each grid level. Note that all the near-boundary elements that need to be modified are
squares.

• Delete any element with more than two deleted corners.
• Loop over those elements that have only two corners in the base grid Gb: replace the

other two deleted nodes with the closest two boundary nodes in Gb.
• Loop over those elements that have only three corners in the base grid Gb:

– Identify the two closest corners p1, p2 of such an element to the boundaries and
denote the third one to be p3.

– Identify the closest boundary nodes q1 and q2 in the base grid Gb to p1 and p2.
– Create a triangular element with the nodes p1, p2, p3.
– Create a quadrilateral element with the nodes p1, p2, q2, q1.

Figure 27 displays the output of this algorithm using a grid that was generated during an
unsteady simulation over two vertical cylinders ar Re = 200. The results show that we have
all the levels required for the multigrid method. Note that many of the levels share the same
elements. When applying multigrid techniques to such grids, we need only to smooth the error
at the corners of the non-matching elements to save time.

7. CONCLUSION

We have introduced a technique suitable to create adaptive grids for arbitrarily-shaped two-
dimensional domains. The minimum angle of 45◦ is achieved in all elements, except at

28 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

singular boundary points. Our approach provides more flexibility to approximate regions
near sharp corners. Several application examples of two-dimensional grids have been provided
to illustrate the main features and the efficiency of the proposed approach. Moreover, the
proposed technique is capable of handling problems with complex geometry, such as free-surface
problems with moderate distortion, as well as problems with multiple bodies. This work can be
considered as a preliminary stage toward a comprehensive tree-based decomposition method,
prior to the extension of the algorithm to three dimensions.

ACKNOWLEDGEMENTS

The authors would like to thank Professor Dimitri Mavriplis, University of Wyoming, for
providing the three-part airfoil geometry.

REFERENCES

1. Thompson JF, Soni BK, Weatherill, NP (eds). Handbook of Grid Generation. CRC Press, 1999.
2. Ito Y, Nakahashi K, Surface triangulation for polygonal models based on CAD data. International Journal

for Numerical Methods in Fluids 2002; 39:75–96.
3. Frey PJ. Generation and adaptation of computational surface meshes from discrete anatomical data.

International Journal for Numerical Methods in Engineering 2004; 60:1047–1049.
4. Löhner R. Regridding surface triangulations. Journal of Computational Physics 1996; 126:1–10.
5. De Cougny HL. Refinement and coarsening of surface meshes. Engineering with Computers 1998; 14:214–

222.
6. Wang D, Hassan O, Morgan K, Weatherill N. Enhanced remeshing from STL files with applications to

surface grid generation. Communications in Numerical Methods in Engineering 2007; 23:227–239.
7. Briggs WL, Henson VE, McCormick SF. A Multigrid Tutorial (2nd edn). SIAM, 2000.
8. Connell SD, Braaten DG. A 3D unstructured adaptive multigrid scheme for the Euler equations. AIAA

Journal 1994; 32(8):1626–1632.
9. Perez E. Finite element and multigrid solution of the two dimensional Euler equations on a non structured

mesh. INRIA Research Report No. 442; INRIA, Paris, 1985.
10. Mavriplis DJ. Three dimensional unstructured multigrid for the Euler equations. In Proceedings of the

AIAA 10th Computational Fluid Dynamics Conference. Paper 91-1549, 1991.
11. Mavriplis DJ. Three-dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured

meshes. AIAA Journal 1995; 33(3):445–453.
12. Lallemand MH, Steve H, Dervieux A. Unstructured multigridding by volume agglomeration: current status.

Computers & Fluids 1992; 21:397–433.
13. Jones JE, Vassilevski PS. AMGE based on element agglomeration. SIAM Journal on Scientific Computing

2001; 23(1):109–133.
14. Koobus B, Lallemand MH, Dervieux A. Unstructured volume-agglomeration MG: solution of the Poisson

equation. International Journal for Numerical Methods in Fluids 1994; 18(1):27–42.
15. Mavriplis DJ, Venkatakrishnan V. Agglomeration multigrid for two-dimensional viscous flows. Computers

& Fluids 1995; 245:553–570.
16. Mavriplis DJ. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. Journal of

Computational Physics 1998; 145(1):141–165.
17. Flaherty JE, Paslow PJ, Sheppard MS, Vasilakis JD (eds). Adaptive Methods for Partial Differential

Equations. SIAM, 1989.
18. Babuska I, Zienkiewicz OC, Gago J, de A. Oliveira ER (eds). Accuracy Estimates and Adaptive

Refinements in Finite Element Computations. Wiley, 1986.
19. Zienkiewicz OC, Gago JP, Kelly DW. The hierarchical concepts in finite element analysis. Computers &

Structures 1983; 16:53–65.
20. Davis RL, Dannenhoffer III JF. Decomposition and parallelization strategies for adaptive grid-embedding

techniques. International Journal of Computational Fluid Dynamics 1993; 1:79–93.
21. Frey PJ, Marechal L. Fast adaptive quadtree mesh generation. In Proceedings of the 7th International

Meshing Roundtable 1998; 211–224.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 29

22. Persson PO, Strang G. A simple mesh generator in MATLAB. SIAM Review 2004; 46(2):329–345.
23. Shewchuk JR. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry:

Theory and Applications 2002; 22(1):21–74.
24. Finkel RA, Bentley JL. Quad trees: a data structure for retrieval on composite keys. Acta Informatica

1974; 4(1):1–9.
25. de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational Geometry (2nd edn). Springer-

Verlag, 2000.
26. Ruppert J. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of

Algorithms 1995; 18(3):548–585.
27. Bern M, Eppstein D, Gilbert J. Provably good mesh generation. Journal of Computer and System Sciences

1994; 48(3):384–409.
28. Wilcox DC. Turbulence Modeling for CFD (3rd edn). DCW Industries, 2006.
29. Wilcox DC. Formulation of the k–ω turbulence model revisited. In Proceedings of the 45th AIAA Aerospace

Sciences Meeting and Exhibit. Paper 2007-1408, 2007.

30 M. EBEIDA, R. L. DAVIS, AND R. W. FREUND

(a) t = 1.00 (b) t = 4.00

(c) t = 8.00 (d) t = 12.00

(e) t = 16.00 (f) t = 20.00

Figure 26. Evolution of grid and vorticity contours for flow over two vertical cylinders at Re = 200.

A FAST HYBRID ADAPTIVE GRID GENERATION TECHNIQUE 31

(a) Level 1 (b) Level 2 (c) Level 3

(d) Level 4 (e) Level 5 (f) Level 6

(g) Level 7 (h) Zoom-in of level 7 (i) Level 8

(j) Level 9 (k) Level 10 (l) Level 11

Figure 27. Grid levels for a domain with two vertical cylinders.

