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1. Introduction

Many fundamental methods in numerical analysis are closely related to Padé
or Padé-type approximation [2]; see, e.g., [18,19,21,22,30]. Examples include
implicit discretization schemes of parabolic differential equations, which can
be viewed as certain Padé approximations to the exponential function [30], the
‘Lanczos-Padé connection’ [19,21,22] of the classical Lanczos process [23,24]
for large-scale matrix computations, and Padé-based methods [3,7] for model
order reduction of large-scale linear dynamical systems.

The Lanczos-Padé connection can be employed to devise efficient and nu-
merically well behaved algorithms [4,17,5,6,20] for model order reduction of
large-scale linear dynamical systems. For the case of single-input single-output
systems, one such method is the Padé Via Lanczos (PVL) algorithm [4,5], and
the extension to the case of general multi-input multi-output systems is the
Matrix-Padé Via Lanczos (MPVL) algorithm [6]. These methods are opti-
mal in the sense of Padé approximation of the underlying transfer functions.
More precisely, the transfer function H of the original large-scale system is a
p × m-matrix-valued rational function of the form

H(s) = CH(sE − A)−1
B, s ∈ C,

where A, E ∈ CN×N , B ∈ CN×m, C ∈ CN×p, N is the state-space dimension,
m is the number of inputs, and p is the number of outputs. The transfer
function Hn of any reduced-order model of state-space dimension n (< N) of
the original system is a p × m-matrix-valued rational function of the form

Hn(s) = CH
n (sEn − An)−1

Bn, s ∈ C,

where An, En ∈ C
n×n, Bn ∈ C

n×m, and Cn ∈ C
n×p. The reduced-order transfer

function Hn is called an n-th Padé approximant of H (with respect to the
expansion point s0 ∈ C) if

Hn(s) = H(s) + O
(

(s − s0)
q(n)

)

, (1)

where q(n) is as large as possible. It turns out that

q(n) ≥
⌊

n

m

⌋

+

⌊

n

p

⌋

,

with equality in the generic case; see, e.g., [6]. For any fixed expansion point s0,
the MPVL algorithm generates reduced-order models of state-space dimen-
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sion n that are optimal in the sense that the corresponding transfer functions
Hn are n-th Padé approximants of the original transfer function H .

Unfortunately, Padé-based order reduction methods such as MPVL do not
preserve all the important properties and structures of the original large-scale
system. For example, any meaningful original system will at least be stable, but
Padé-based reduced-order models are not stable in general. One remedy is to
relax (1) and to require instead that Hn is only an n-th Padé-type approximant

of H , i.e.,

Hn(s) = H(s) + O
(

(s − s0)
q̃(n)

)

, (2)

where q̃(n) < q(n). A simple approach to constructing reduced-order mod-
els characterized by such a Padé-type approximation property is to employ
projection onto suitable block Krylov subspaces [29,26–28]. For example, if
block Krylov subspaces with the input matrix B as initial block are used, the
transfer functions Hn of the resulting reduced-order models are n-th Padé-
type approximants of the original transfer function H . Moreover, in (2), we
have

q̃(n) ≥
⌊

n

m

⌋

, (3)

with equality in the generic case; see, e.g., [29,28,8,9]. Algorithms character-
ized by such a Padé-type approximation property include PRIMA [26–28] and
SPRIM [10,13,12]. While the approximation order (3) is best possible in the
general case, in the case of SPRIM, there are certain special cases [10,11] where
the Padé-type approximation property (2) even holds true with q̃(n) replaced
by 2q̃(n). The reason is that the original system exhibits certain symmetries
and that these symmetries are preserved in the reduced-order models.

In this paper, we present a general framework that explains this higher accu-
racy of Padé-type reduced-order models. In particular, we use the notion of
J-Hermitian linear dynamical systems to show that in the case of J-Hermitian
linear dynamical systems, the reduced-order transfer functions match twice as
many Taylor coefficients of the original transfer function as in the general case.
An application to the SPRIM algorithm for order reduction of general RCL
electrical networks is also discussed.

The remainder of this article is organized as follows. In Section 2, we re-
call some basic facts about linear dynamical systems, Krylov subspace-based
model order reduction, and the resulting Padé-type reduced-order models. In
Section 3, we introduce the notion of J-Hermitian time-invariant linear dy-
namical systems and establish the main result of this paper on Padé-type
reduced-order models in the J-Hermitian case. In Section 4, we apply this
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main result to obtain the Padé-type approximation property of the SPRIM
algorithm. Finally, in Section 5, we make some concluding remarks.

Throughout this paper the following notation is used. The set of real and
complex numbers is denoted by R and C, respectively. Unless stated otherwise,
all vectors and matrices are allowed to have real or complex entries. For (real
or complex) matrices M = (mjk ), we denote by MT = (mkj ) the transpose

of M , and by MH := ( mkj ) the Hermitian (or complex conjugate transpose)
of M . The n × n identity matrix is denoted by In. If the dimension of In is
apparent from the context, we drop the index and simply use I. The zero
matrix is denoted by 0. The actual dimension of 0 will always be apparent
from the context. For any matrix V , we denote by range(V ) the range of V ,
which is defined as the subspace spanned by the columns of V .

2. Padé-type model order reduction of linear dynamical systems

In this section, we recall some basic facts about linear dynamical systems,
Krylov subspace-based model order reduction, and the resulting Padé-type
reduced-order models.

2.1. Time-invariant linear dynamical systems

We consider m-input p-output time-invariant linear dynamical systems given
by a state-space description of the form

E
dx

dt
= Ax + Bu(t),

y(t) = CHx(t),

(4)

together with suitable initial conditions. Here, A, E ∈ CN×N , B ∈ CN×m,
and C ∈ CN×p are given matrices, x(t) ∈ CN is the vector of state variables,
u(t) ∈ Cm is the vector of inputs, y(t) ∈ Cp is the vector of outputs, N is the
state-space dimension, and m and p are the number of inputs and outputs,
respectively. We remark that the second relation in (4) can be replaced by the
more general equation

y(t) = CHx(t) + Du(t),

where D ∈ Cp×m is an additional given matrix. The resulting transfer function
differs from the transfer function (see (6) below) of the system (4) only in the
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additive constant D, which has no effect on Padé-type model order reduction.
Therefore, for simplicity, we restrict ourselves to the case (4).

We stress that the matrix E in (4) is allowed to be singular; in this case, the
first equation in (4) is a system of differential-algebraic equations. However,
we always assume that the matrix pencil

sE − A, s ∈ C, (5)

is regular, i.e., the characteristic polynomial φ(s) = det(sE − A) of (5) is
not the zero polynomial. Since φ is a polynomial of degree at most N , the
matrix sE − A is then nonsingular for all except at most N values of s ∈ C.
Furthermore, to check regularity of the pencil (5) it is sufficient to show that
the matrix s0E − A is nonsingular for one s0 ∈ C.

The regularity of the matrix pencil (5) guarantees that

H(s) := CH(sE − A)−1
B, s ∈ C, (6)

is a well-defined rational m × p-matrix-valued function with possible poles
at the finitely many values s ∈ C for which sE − A is singular. We remark
that (6) is called the transfer function of the linear dynamical system (4).

2.2. Model order reduction via projection

A reduced-order model of the linear dynamical system (4) is a system of the
same form as (4), but with smaller state-space dimension n (< N). More pre-
cisely, a reduced-order model of (4) with state-space dimension n is a system
of the form

En

dxn

dt
= Anxn + Bnu(t),

yn(t) = CH
n xn(t),

(7)

where An, En ∈ Cn×n, Bn ∈ Cn×m, and Cn ∈ Cn×p. The problem of model
order reduction of linear dynamical systems (4) is to determine an appropriate
reduced state-space dimension n and to construct matrices An, En, Bn, and Cn

such that the reduced-order model (7) is a sufficiently accurate approximation
to the original system (4). In analogy to (6), the transfer function of (7) is
defined by

Hn(s) := CH
n (sEn − An)−1

Bn, s ∈ C. (8)
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Again, Hn is a well-defined rational m × p-matrix-valued function, provided
that the reduced-order matrix pencil

sEn − An, s ∈ C, (9)

is assumed to be regular.

A simple approach to model order reduction is to use projection. Let n be an
appropriate reduced state-space dimension, and let

Vn ∈ C
N×n, rank(Vn) = n, (10)

be any given matrix with full column rank. Then, by setting

An := V H
n AVn, En := V H

n EVn, Bn := V H
n B, Cn := V H

n C, (11)

one obtains reduced data matrices that define a reduced-order model (7). We
remark that the rank condition in (10) is necessary for the regularity of the
reduced-order matrix pencil (9).

The simple projection approach (11) yields powerful model-order reduction
techniques when the subspace spanned by the columns of the matrix (10), Vn,
contains certain block Krylov subspaces.

2.3. Block Krylov subspaces

Let s0 ∈ C be arbitrary, but fixed, such that the matrix s0E−A is nonsingular.
Note that, in view of the regularity of the matrix pencil (5), this assumption
only excludes at most N values of s0 ∈ C.

We can rewrite the transfer function (6), H , as follows:

H(s) = CH
(

s0E − A + (s − s0)E
)

−1
B = CH

(

I + (s − s0)M
)

−1
R, (12)

where M := (s0E − A)−1
E, R := (s0E − A)−1

B. (13)

We will use block Krylov subspaces induced by the matrices M and R in (13)
to generate the projected data matrices (11).

Next, we briefly review the notion of block Krylov subspaces; see [1] for a
more detailed discussion. The matrix sequence R, MR, M2R, . . . , M j−1R, . . .

is called a block Krylov sequence. The columns of the matrices in this sequence
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are vectors of length N , and thus at most N of these columns are linearly
independent. By scanning the columns of the matrices in the block Krylov
sequence from left to right and deleting each column that is linearly dependent
on earlier columns, we obtain the deflated block Krylov sequence

R(1), MR(2), M2R(3), . . . , M j−1R(j), . . . , M jmax−1R(jmax). (14)

This process of deleting linearly dependent vectors is called deflation. In (14),
each R(j) is a submatrix of R(j−1), and R(1) is a submatrix of R. Denoting
by mj the number of columns of R(j), we thus have

m ≥ m1 ≥ m2 ≥ · · · ≥ mj ≥ · · · ≥ mjmax
≥ 1. (15)

By construction, the columns of the matrices (14) are linearly independent,
and for each n̂, the subspace spanned by the first n̂ of these columns is
called the n̂-th block Krylov subspace (induced by M and R) and denoted
by Kn̂(M, R) in the sequel. Note that, by construction, we have

dimKn̂(M, R) = n̂. (16)

For j = 1, 2, . . . , jmax, we set

n̂(j) := m1 + m2 + · · · + mj . (17)

For n̂ = n̂(j), the n̂-th block Krylov subspace is given by

Kn̂(M, R) = range
(

R(1) MR(2) M2R(3) · · · M j−1R(j)
)

. (18)

Note that, by (17), n̂(j) ≤ m · j with n̂(j) = m · j if no deflation has occurred.

Remark 1. The deflation process described in this subsection assumes exact

arithmetic, and is sometimes referred to as exact deflation. In actual imple-

mentations of block Krylov subspace methods in finite-precision arithmetic,

one also needs to deflate columns that are ‘almost’ linearly independent on

earlier columns. The need for this so-called inexact deflation arises in any

block Krylov subspace method. We refer the reader to [14] for a discussion of

inexact deflation in the case of the block QMR method for systems of linear

equations with multiple right-hand sides.
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2.4. A Padé-type approximation property

We now employ the projection approach (11) with matrices (10), Vn, that
satisfy

Kn̂(M, R) ⊆ range(Vn). (19)

We remark that, in view of (10) and (16), the condition (19) implies that
n ≥ n̂. Moreover, n = n̂ if, and only if, the two subspaces in (19) are equal; in
this case, the matrix Vn̂ is said to be a basis matrix of the n̂-th block Krylov
subspace Kn̂(M, R).

Let (7) be the associated reduced-order model defined by the reduced data
matrices (11). We assume that the matrix s0En − An is nonsingular. Note
that this assumption guarantees the regularity of the reduced-order matrix
pencil (9).

In analogy to (12) and (13), the reduced-order transfer function (8), Hn, can
be rewritten as follows:

Hn(s) = CH
n

(

In + (s − s0)Mn

)

−1
Rn, (20)

where Mn := (s0En − An)−1
En, Rn := (s0En − An)−1

Bn. (21)

It turns out that the Taylor expansions of the reduced-order transfer func-
tion (8), Hn, and of the original transfer function (6), H , agree in a number
of leading terms. This means that Hn is a Padé-type approximant of H . More
precisely, we have the following result, which is well known; see, e.g., [8] for
the general case, [3] for the special case of linear dynamical systems (4) with
E = I, and [20] for the special case that no deflation occurs in the underlying
block Krylov subspaces.

Theorem 2. Let Vn ∈ C
N×n and s0 ∈ C be such that the matrices s0E − A

and s0En − An are nonsingular and (19) holds true for an n̂ = n̂(j) of the

form (17) for some 1 ≤ j ≤ jmax. Then the transfer function (6), H, of the

linear dynamical system (4) and the transfer function (8), Hn, of the reduced-

order model (7) defined by the projected data matrices (11) satisfy

Hn(s) = H(s) + O
(

(s − s0)
j
)

. (22)

Theorem 2 readily follows from Lemma 3 below, which we will also need to
establish the main result of this paper in Section 3.
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For the sake of completeness, we include this short proof of Theorem 2.

Proof of Theorem 2. Using the representations (12) and (20) to expand H

and Hn about s0, we obtain

H(s) =
∞
∑

i=0

(−1)iCHM iR(s − s0)
i,

Hn(s) =
∞
∑

i=0

(−1)iCH
n M i

nRn(s − s0)
i.

(23)

With these expansions, the claim (22) is equivalent to

CHM iR = CH
n M i

nRn for all i = 0, 1, . . . , j − 1.

However, these relations follow directly from (24) below, by multiplying (24)

from the left by CH and using the definition of Cn in (11). 2

Lemma 3. Under the assumptions of Theorem 2,

M iR = VnM i
nRn for all i = 0, 1, . . . , j − 1. (24)

Here, M , R, Mn, and Rn are the matrices defined in (13) and (21).

The result of Lemma 3 is established as part of the proof of [11, Theorem 1].
In order to keep this paper self-contained, we include the proof of Lemma 3
in Appendix A.

3. Model order reduction of J-Hermitian systems

In this section, we introduce the notion of J-Hermitian time-invariant linear
dynamical systems and establish the main result of this paper on Padé-type
reduced-order models in the J-Hermitian case.

3.1. J-Hermitian time-invariant linear dynamical systems

Definition 4. Let J ∈ CN×N be a nonsingular matrix. A matrix M ∈ CN×N

is called J-Hermitian if

JM = MHJ.
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We stress that J is allowed to be any nonsingular matrix. In some applica-
tions, such as the one to the SPRIM algorithm in Section 4, the matrix J is
Hermitian, and in Remark 7 below, we will briefly comment on the case

J = JH . (25)

Remark 5. The matrix J ∈ CN×N induces the sesquilinear form

[·, ·] : C
N × C

N 7→ C defined by [x, y] := yHJx, x, y ∈ C
N ;

see, e.g., [25, Section XIII, §7]. A matrix M ∈ CN×N is J-Hermitian if, and

only if, M is self-adjoint with respect to the sesquilinear form [·, ·], i.e.,

[Mx, y] = [x, My] for all x, y ∈ C
N .

Definition 6. Let J ∈ CN×N be a nonsingular matrix. The time-invariant

linear dynamical system (4) is said to be J-Hermitian if the following three

conditions are satisfied:

(i) The matrices A and E are J-Hermitian;

(ii) The number of inputs and outputs are the same, i.e., m = p;

(iii) The matrices B and C satisfy

JB = CF (26)

for some nonsingular matrix F ∈ Cm×m.

Note that the condition (26) is equivalent to range(JB) = range(C).

Remark 7. If the linear dynamical system (4) is J-Hermitian with F = I

in (26), then its transfer function (6), H, can be rewritten as follows:

H(s) = BHJHJ−1(sEH − AH)−1
C, s ∈ C.

In particular, in the Hermitian case (25), we have

HH(s) := BH(sEH − AH)−1
C = H(s), s ∈ C. (27)

The property (27) is called Hamiltonian symmetry [15,16]; transfer functions

that satisfy this kind of symmetry are studied in detail in [15,16].

3.2. Reduced-order models of J-Hermitian systems

We now assume that the linear dynamical system (4) is J-Hermitian, and
we consider model order reduction of such systems via the projection ap-
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proach (10), (11). The following result gives conditions that guarantee that
the n-th projected reduced-order model is Jn-Hermitian.

Proposition 8. Let J ∈ CN×N and Jn ∈ Cn×n be nonsingular matrices,

and let Vn ∈ CN×n be a matrix with full column rank n. Assume that the

linear dynamical system (4) is J-Hermitian. Then the reduced-order model (7)
defined by the projected data matrices (11) is Jn-Hermitian provided that the

matrices An and En are Jn-Hermitian and the matrices J , Jn, and Vn satisfy

the compatibility condition

V H
n J = JnV

H
n . (28)

Moreover, we have

JnBn = CnF, (29)

where F is the same matrix as in (26).

Proof. We only need to show (29). The remaining conditions for the reduced-
order model (7) to be Jn-Hermitian are satisfied, in view of the assumptions
of this proposition.

Multiplying (26) from the left by V H
n and using (28) and the definitions of

Bn and Cn in (11), we obtain

JnBn = JnV
H
n B = V H

n JB = V H
n CF = CnF.

Thus the proof is complete. 2

3.3. The Padé-type property in the J-Hermitian case

For the remainder of this section, let J ∈ CN×N and Jn ∈ Cn×n be given
nonsingular matrices and Vn ∈ CN×n be a given matrix with full column
rank n. We assume that the time-invariant linear dynamical system (4) is
J-Hermitian, and we consider the reduced-order model (7) defined by the pro-
jected data matrices (11). Moreover, we assume that the matrices An and En

are Jn-Hermitian and that the matrices J , Jn, and Vn satisfy the compati-
bility condition (28). Note that, in view of Proposition 8, the reduced-order
model (7) is Jn-Hermitian.

In this case of Jn-Hermitian reduced-order models of J-Hermitian systems, we
have the following stronger Padé-type approximation property, instead of the
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corresponding property (22) of Theorem 2 for the general case.

Theorem 9. Let Vn ∈ CN×n and s0 ∈ R be such that the matrices s0E − A

and s0En − An are nonsingular and (19) holds true for an n̂ = n̂(j) of the

form (17) for some 1 ≤ j ≤ jmax. Then the transfer function (6), H, of the

J-Hermitian linear dynamical system (4) and the transfer function (8), Hn,

of the Jn-Hermitian reduced-order model (7) satisfy

Hn(s) = H(s) + O
(

(s − s0)
2j
)

. (30)

Proof. Recall the expansions (23) of H and Hn about s0. By (23), the claim
(30) is equivalent to

CHM iR = CH
n M i

nRn for all i = 0, 1, . . . , 2j − 1. (31)

In view of (34) below, we have

CHM i1Vn = CH
n M i1

n , i1 = 0, 1, . . . , j, (32)

and from Lemma 3, we have

M i2R = VnM i2
n Rn, i2 = 0, 1, . . . , j − 1. (33)

Using (33) and (32), it follows that

CHM iR = CHM i1+i2R = CHM i1M i2R = CHM i1VnM
i2
n Rn

= CH
n M i1

n M i2
n Rn = CH

n M i1+i2
n Rn = CH

n M i
nRn

for all i = i1 + i2 = 0, 1, . . . , 2j − 1. Thus, the proof is complete. 2

In the following proposition, we show that (34) indeed holds true.

Proposition 10. Under the assumptions of Theorem 9,

CHM iVn = CH
n M i

n, i = 0, 1, . . . , j. (34)

Proof. Instead of (34), we show the equivalent relation

V H
n (MH)iC = (MH

n )iCn, i = 0, 1, . . . , j. (35)

For i = 0, (35) reduces to V H
n C = Cn, which is just the definition of Cn in (11).

Now let 1 ≤ i ≤ j. Since A and E are J-Hermitian and s0 ∈ R, we have

J(s0E − A) = (s0E − A)HJ,

or, equivalently,

(s0E − A)−HJ = J(s0E − A)−1.
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Recall that s0 is assumed to be chosen such that the matrix s0E − A is non-
singular. Using the definition of M in (13) and the fact that E is assumed to
be J-Hermitian, it follows that

MHJ = EH(s0E − A)−HJ = EHJ(s0E − A)−1 = JE(s0E − A)−1.

This relation implies

(MH)iJ = JE
(

(s0E − A)−1E
)i−1

(s0E − A)−1

= JEM i−1(s0E − A)−1.

(36)

Using (36), (26), and (13), one readily verifies that

(MH)iCF = (MH)iJB = JEM i−1(s0E − A)−1B = JEM i−1R. (37)

Similarly, since the reduced-order model (7) is Jn-Hermitian and Bn and Cn

satisfy (29), one shows that

(MH
n )iCnF = JnEnM

i−1
n Rn. (38)

Furthermore, note that, by (28) and the fact that En is Jn-Hermitian,

V H
n JEVn = JnV H

n EVn = JnEn. (39)

By multiplying (37) from the left by V H
n and using (24) and subsequently (39),

we obtain

V H
n (MH)iC = V H

n JE(M i−1R) = V H
n JE(VnM i−1

n Rn)

= JnEnM i−1
n Rn.

(40)

Since the right-hand sides of (38) and (40) are identical, the left-hand sides
must agree as well, i.e.,

V H
n (MH)iCF = (MH

n )iCnF.

Recall that F is nonsingular, and by multiplying this last relation from the

right by F−1, we obtain (35). The proof of claim (35) is thus complete. 2

4. Application to the SPRIM algorithm

In this section, we apply the result of Theorem 9 to establish a Padé-type
approximation property of the SPRIM algorithm.
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SPRIM is a reduction technique tailored to the problem of order reduction of
the very large-scale RCL networks that arise in the simulation of electronic
circuits. An RCL network is an electronic circuit that consists of only resis-
tors, capacitors, and inductors, and that is powered by voltage and current
sources. SPRIM was first proposed in [10] for the somewhat simpler case of
RCL networks with only current sources. Recently [12,13], SPRIM was ex-
tended to the case of general RCL networks. Such networks can be described
by m-input m-output linear dynamical systems of the form (4), where the
matrices A, E, B, and C have additional structures; see, e.g. [13].

Here, we only recall from [13] the essential structures of the data matrices
in (4) that are needed to verify that linear dynamical systems (4) describing
general RCL networks are indeed J-Hermitian. The matrices A and E exhibit
the following block structures:

A =









A1 A2 A3

−AH
2 0 0

−AH
3 0 0









, E =









E1 0 0

0 E2 0

0 0 0









,

where A1 = AH
1 ∈ Cν1×ν1 , A2 ∈ Cν1×ν2 , A3 ∈ Cν1×ν3,

E1 = EH
1 ∈ Cν1×ν1 , E2 = EH

2 ∈ Cν2×ν2.

(41)

Moreover, the matrices B and C are identical and of the form

B = C =









B1 0

0 0

0 B2









, where B1 ∈ C
ν1×µ1 , B2 ∈ C

ν3×µ2 . (42)

Using (41) and (42), one readily verifies that the corresponding linear dynam-
ical system (4) is J-Hermitian with J given by

J :=









Iν1
0 0

0 −Iν2
0

0 0 −Iν3









(43)

and the nonsingular matrix F in (26) given by

F :=

(

Iµ1
0

0 −Iµ1

)

. (44)

Note that for the block sizes in (41)–(44), we have ν1 + ν2 + ν3 = N and
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µ1 + µ2 = m, and that the number of inputs and outputs in (4) is the same,
i.e., m = p.

The SPRIM algorithm employs the projection approach (11) with a ma-
trix (10), Vn, that satisfies the block-Krylov subspace inclusion (19). The main
feature of SPRIM is that by carefully choosing the matrix Vn, it is possible
to preserve the block structures (41), (42) of the data matrices of the original
system (4).

More precisely, let Vn̂ be a basis matrix of the n̂-th block Krylov subspace
Kn̂(M, R), and let

Vn̂ =









V̂1

V̂2

V̂3









(45)

be the partitioning of Vn̂ corresponding to the block sizes of the matrices A

and E in (41). For each l = 1, 2, 3, we first determine nl := rank(V̂l) and
set Vl = V̂l if nl = n. Furthermore, if nl < n, we construct (e.g. via an LQ

factorization) a matrix Vl ∈ CNl×nl with

range (Vl) = range(V̂l), rank(Vl) = nl.

Finally, we set

n := n1 + n2 + n3 and Vn :=









V1 0 0

0 V2 0

0 0 V3









. (46)

By construction,

Kn̂(M, R) = range(Vn̂) ⊆ range(Vn),

and thus the inclusion (19) is indeed satisfied. Furthermore, in view of (46),
the projected data matrices (11) of the n-th SPRIM reduced-order model now
exhibit block structures corresponding to those of the original data matrices
(41), (42). It follows that both An and En are Jn-Hermitian, with the matrix
Jn given by

Jn :=









In1
0 0

0 −In2
0

0 0 −In3









. (47)
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Using (46) and (47), one immediately verifies that

V H
n J =









V H
1 0 0

0 −V H
2 0

0 0 −V H
3









= JnV H
n ,

which is just the compatibility condition (28). In view of Proposition 8, the
n-th SPRIM reduced-oder models are thus Jn-Hermitian. We can thus apply
Theorem 9 and obtain the following result about the Padé-type approximation
property of the SPRIM algorithm.

Corollary 11. Assume that the data matrices of the linear dynamical sys-

tem (4) are of the form (41), (42). Let (7) be the n-th SPRIM reduced-order

model of (4), where s0 ∈ R and the dimension n̂ = n̂(j) of the underlying

block Krylov subspace Kn̂(M, R) is of the form (17) for some 1 ≤ j ≤ jmax.

Assume that the matrices s0E −A and s0En −An are nonsingular. Then the

transfer function (6), H, of the linear dynamical system (4) and the transfer

function (8), Hn, of the n-th SPRIM reduced-order model (7) satisfy

Hn(s) = H(s) + O
(

(s − s0)
2j
)

.

We stress that for the PRIMA order-reduction method, a result analogous to
Corollary 11 is not true. The reason is that the PRIMA reduced–order models
of J-Hermitian linear dynamical systems do not exhibit any Jn-Hermitian
structure.

5. Concluding remarks

Projection onto block Krylov subspaces is a simple, yet powerful approach to
construct reduced-order models of large-scale linear dynamical systems. The
resulting models can be characterized by a Padé-type approximation property
of the reduced-order transfer functions. In this paper, we have used the no-
tion of J-Hermitian linear dynamical systems to provide a general framework
that explains the stronger Padé-type approximation property in the case of
systems with certain additional structures. While the creation of this general
framework was motivated by the SPRIM algorithm for model order reduction
of RCL networks in circuit simulation, there are other classes of order reduc-
tion problems that are covered by the proposed framework. For example, the
Padé-type approximation properties for Hermitian higher-order linear dynam-
ical systems discussed in [11] can also be obtained as a corollary to the main
result of this present paper.
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Appendix A. A proof of Lemma 3

In this appendix, we give a proof of Lemma 3.

First, note that by construction of the block Krylov subspace (18), Kn̂(M, R),

range(M iR) ⊆ Kn̂(M, R) for all i = 0, 1, . . . , j − 1.

Thus, the assumption (19) guarantees the existence of matrices Xi ∈ CN×m

such that

M iR = VnXi, i = 0, 1, . . . , j − 1. (A1)

Moreover, since Vn has full column rank n, each matrix Xi is unique. In fact,
we will show that

Xi = M i
nRn, i = 0, 1, . . . , j − 1. (A2)

By inserting (A2) into (A1), we then obtain the claim (24) of Lemma 3.

It thus remains to prove (A2). To this end, we use induction on i. For i = 0,
we note that, by (A1) and the definition of R in (13),

VnX0 = R = (s0E − A)−1B.

Multiplying this relation from the left by the matrix

(s0En − An)−1V H
n (s0E − A) (A3)

and using the definitions (11) of An and En and the definition (21) of Rn, it
follows that X0 = Rn. This is just the relation (A2) for i = 0.

Now assume that (A2) holds true for i − 1, i.e., Xi−1 = M i−1
n Rn, for some

1 ≤ i ≤ j − 1. Together with (A1), it follows that

VnXi = M iR = M(M i−1R) = MVnXi−1 = MVnM
i−1
n Rn. (A4)

In view of the definitions of M , En, and Mn in (13), (11), and (22), we have

(s0En − An)−1V H
n (s0E − A)MVn = (s0En − An)−1V H

n EVn = Mn. (A5)
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Multiplying (A4) from the left by the matrix (A3) and using (A5), we obtain

Xi = Mn(M i−1
n Rn) = M i

nRn.

This completes the proof of Lemma 3.
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Cambridge University Press, New York, New York, 1996.

[3] C. de Villemagne and R. E. Skelton, Model reductions using a projection
formulation, Internat. J. Control 46 (1987) 2141–2169.

[4] P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé
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