Large-Scale Matrix Computations

Roland W. Freund
Department of Mathematics
University of California, Davis
One Shields Avenue
Davis, CA 95616

freund@math.ucdavis.edu

Computational problems, especially in science and engineering, often involve large matrices.
Examples of such problems include large sparse systems of linear equations [FGN92, Saa03,
vdV03], e.g., arising from discretizations of partial differential equations, eigenvalue prob-
lems for large matrices [BDD00, LMO05], linear time-invariant dynamical systems with large
state-space dimensions [FF94, FF95, Fre03], and large-scale linear and nonlinear optimization
problems [KR91, Wri97, NW99, GMS05]. The large matrices in these problems exhibit special
structures, such as sparsity, that can be exploited in computational procedures for their solu-
tion. Roughly speaking, computational problems involving matrices are called ‘large-scale’ if

they can be solved only by methods that exploit these special matrix structures.

1 Basic Concepts

Many of the most efficient algorithms for large-scale matrix computations are based on approx-
imations of the given large matrix by small matrices obtained via Petrov-Galerkin projections
onto suitably chosen small-dimensional subspaces. In this section, we present some basic con-

cepts of such projections.

Definitions:

Let C € C™", and let V; = [vi v2 --- v;j] € C™ be a matrix with orthonormal columns,
ie.,
0 ifi#k,
Vv = for all i,k=1,2,...,7.
1 ifi=k,

The matrix

Cj =V CV; e ¢/

is called the orthogonal Petrov-Galerkin projection of C onto the subspace
S =span{vi,va,...,V; }

of C" spanned by the columns of V.
Let C € C™" andlet V; =[vy vy -+ v;]€C™and W, =[w; wy --- w;|€C™I

be two matrices such that WjTVj is nonsingular. The matrix
Cj = (W}l'v;) 'wlhev; e i
is called the oblique Petrov-Galerkin projection of C' onto the subspace
S =span{vi,va,...,v; }
of C" spanned by the columns of V; and orthogonally to the subspace
T =span{ wi,ws,...,W; }

of C" spanned by the columns of Wj.

A flop is the work associated with carrying out any one of the elementary operations a + b,
a — b, ab, or a/b, where a, b € C, in floating-point arithmetic.

Let A =[a;] € C™ " be a given matrix. Matrix-vector multiplications with A are said to be
fast if for any x € C", the computation of y = Ax requires significantly fewer than 2mn flops.
A matrix A = [a;] € C™*" is said to be sparse if only a small fraction of its entries a; are
nonzero.

For a sparse matrix A = [a;,] € C™*", nnz(A) denotes the number of nonzero entries of A.

A matrix A = [a;;] € C™*™ is said to be dense if most of its entries a;; are nonzero.

Facts:

The following facts on sparse matrices can be found in [Saa03, Chapter 3] and the facts on

computing Petrov-Galerkin projections of matrices in [Saa03, Chapter 6].

1. For a sparse matrix A = [a;,] € C™*", only its nonzero or potentially nonzero entries

a;, together with their row and column indices 7 and k, need to be stored.

2. Matrix-vector multiplications with a sparse matrix A = [a;;] € C™*™ are fast. More

precisely, for any x € C", y = Ax can be computed with at most 2nnz(A) flops.

3. If C € C"™™ and j < n, the computational cost for computing the orthogonal Petrov-
Galerkin projection of C onto the j-dimensional subspace S = span{vy,vs,...,v; } of

C" is dominated by the j matrix-vector products y; = Cv;, 1 =1,2,..., 7.

4. If C € C"™™ and j < n, the computational cost for computing the oblique Petrov-
Galerkin projection of C onto the j-dimensional subspace S = span{vy,vso,...,v; } of
C" and orthogonally to the j-dimensional subspace T' = span{ w1, ws,...,w; } of C" is

dominated by the j matrix-vector products y; = Cv;, i =1,2,...,7.

5. If matrix-vector products with a large matrix C € C™*" are fast, then orthogonal and
oblique Petrov-Galerkin projections C; of C can be generated with low computational

cost.

2 Sparse Matrix Factorizations

In this section, we present some basic concepts of sparse matrix factorizations. A more detailed

description can be found in [DERS89].

Definitions:

Let A € C™*" be a sparse nonsingular matrix. A sparse LU factorization of A is a factor-
ization of the form

A= PLUQ,

where P,) € R™ " are permutation matrices, L € C"*" is a sparse unit lower triangular
matrix, and U € C"*" is a sparse nonsingular upper triangular matrix.

Fill-in of a sparse LU factorization A = PLUQ is the set of nonzero entries of L and U that
appear in positions (i, k) where a;, = 0.

Let A = A* € C"*", A > 0, be a sparse Hermitian positive definite matrix. A sparse

Cholesky factorization of A is a factorization of the form
A= PLL*PT,

where P € R™*" is a permutation matrix and L € C"*" is a sparse lower triangular matrix.
Fill-in of a sparse Cholesky factorization A = PLL*PT is the set of nonzero entries of L that
appear in positions (%, k) where a; = 0.

Let T € C™*™ be a sparse nonsingular (upper or lower) triangular matrix, and let b € C". A

sparse triangular solve is the solution of a linear system
Tx=Db

with a sparse triangular coefficient matrix 7'.

Facts:

The following facts can be found in [DERS89].

1. The permutation matrices P and () in a sparse LU factorization of A allow for reorderings
of the rows and columns of A. These reorderings serve two purposes. First, they allow for
pivoting for numerical stability in order to avoid division by the number 0 or by numbers
close to 0, which would result in breakdowns or numerical instabilities in the procedure
used for the computation of the factorization. Second, the reorderings allow for pivoting

for sparsity, the goal of which is to minimize the amount of fill-in.

2. For Cholesky factorizations of matrices A = A* > 0, the positive definiteness of A implies
that pivoting for numerical stability is not needed. Therefore, the permutation matrix

P in a sparse Cholesky factorization serves the single purpose of pivoting for sparsity.

3. For both sparse LU and sparse Cholesky factorizations, the problem of ‘optimal’ pivoting
for sparsity, i.e., finding reorderings that minimize the amount of fill-in, is NP-complete.
This means that for practical purposes, minimizing the amount of fill-in of factorizations
of large sparse matrices is impossible in general. However, there is a large number of
pivoting strategies that—while not minimizing fill-in—efficiently limit the amount of

fill-in for many important classes of large sparse matrices; see, e.g., [DER89].
4. A sparse triangular solve with the matrix 7" requires at most 2nnz(T') flops.

5. Not every large sparse matrix A has a a sparse LU factorization with limited amounts
of fill-in. For example, LU or Cholesky factorizations of sparse matrices A arising from
discretization of partial differential equations for three-dimensional problems are often

prohibitive due to the large amount of fill-in.

Examples:

1. Given a sparse LU factorization A = PLUQ of a sparse nonsingular matrix A € C"*",
the solution x of the linear system Ax = b with any right-hand side b € C" can be

computed as follows:
Set ¢ = PTb;

Solve Lz =c for z;
Solve Uy =1z for y;
Set x=Qy.
Since P and @ are permutation matrices, the first and the last step are just reorderings of
the entries of the vectors b and y, respectively. Therefore, the main computational cost
is the two triangular solves with L and U, which requires at most 2(nnz(L) + nnz(U))

flops.

2. Given a sparse Cholesky factorization A = PLL*PT of a sparse Hermitian positive

definite matrix A € C™*™, the solution x of the linear system Ax = b with any right-

hand side b € C" can be computed as follows:

Set ¢ = PTb;
Solve Lz=c for z;
Solve L*y =z for vy;

Set x= PTy.

Since P is a permutation matrix, the first and the last step are just reorderings of the
entries of the vectors b and y, respectively. Therefore, the main computational cost is

the two triangular solves with L and L*, which requires at most 4nnz(L) flops.

. In large-scale matrix computations, sparse factorizations are often not applied to a given
sparse matrix A € C"*™, but to a suitable ‘approximation’ Ay € C"*" of A. For example,
if sparse factorizations of A itself are prohibitive due to excessive fill-in, such approxi-
mations Ay can often be obtained by computing an ‘incomplete’ factorization of A that

simply discards unwanted fill-in entries. Given a sparse LU factorization

Ay = PLUQ

of a sparse nonsingular matrix Ay € C"*"

, which in some sense approximates the original
matrix A € C™*", one then uses iterative procedures that only involve matrix-vector

products with the matrix
C:=Ay'A=QTU 'L 'PT 4,

or possibly its transpose CT. In the context of solving linear systems Ax = b, the
matrix Ap is called a preconditioner, and the matrix C' is called the preconditioned
coefficient matrix.

In general, the matrix C = A; 1A is full. However, if C is only used in the form of

matrix-vector products, then there is no need to explicitly form C. Instead, for any

v € C", the result of the matrix-vector product y = Cv can be computed as follows:

Set ¢ = Av;
Set d = PTc;
Solve Lf=d for f;
Solve Uz =f for gz;
Set y=0Q"z.

Since P and @) are permutation matrices, the second and the last step are just reorderings
of the entries of the vectors ¢ and z, respectively. Therefore, the main computational cost
is the matrix-vector product with the sparse matrix A in the first step, the triangular
solve with L in the third step, and the triangular solve with U in the fourth step, which
requires a total of at most 2(nnz(A) + nnz(L) + nnz(U)) flops. Similarly, each matrix-
product with C7 can be computed with at most 2(nnz(A) 4+ nnz(L) +nnz(U)) flops. In

particular, matrix-vector products with both C and C7 are fast.

. For sparse Hermitian matrices A = A* € C"*", preconditioning is often applied in a

symmetric manner. Suppose

Ay = PLL*PT

is a sparse Cholesky factorization of a sparse matrix Ag = Af € C"*", Ay > 0, which in
some sense approximates the original matrix A. Then the symmetrically preconditioned

matrix C is defined as
C:= (PL) 'A(L*PT) ' = L 'PTAP(L¥) .

Note that C' = C* is a Hermitian matrix. For any v € C", the result of the matrix-vector

product y = Cv can be computed as follows:

Solve L*c¢=v for c;

Set d = Pc;
Set f = Ad;
Set z= PTT;

Solve Ly =2z for y.

The main computational cost is the triangular solve with L* in the first step, the matrix-
vector product with the sparse matrix A in the third step, and the triangular solve with
L in the last step, which requires a total of at most 2(nnz(A) + 2nnz(L)) flops. In

particular, matrix-vector products with C' are fast.

3 Krylov Subspaces

Petrov-Galerkin projections are often used in conjunction with Krylov subspaces. In this
section, we present the basic concepts of Krylov subspaces. In the following, it is assumed that

CeC™™andreC’ r+#0.

Definitions:

The sequence

r,Cr,C%r,... . C7 ', ...
is called the Krylov sequence induced by C' and r.
Let j > 1. The subspace

Kj(C, r) :=span{r,Cr, CQr’ - Cj—lr}

of C™ spanned by the first j vectors of the Krylov sequence is called the jth Krylov subspace
induced by C and r.

A sequence of linearly independent vectors
Vi,V2,...,v; €C"
is said to be a nested basis for the jth Krylov subspace K;(C,r) if
span{ vi,vg,...,v; } = K;(C,r) forall i=1,2,...,7.

Let p(A) = co + 1A + A2 + -+ + ¢4 1A%"1 + A4 be a monic polynomial of degree d with
coefficients in C. The minimal polynomial of C with respect to r is the unique monic
polynomial of smallest possible degree for which p(C)r = 0.

The grade of C with respect to r, d(C,r), is the degree of the minimal polynomial of C

and r.

Facts:
The following facts can be found in [Hou75, Section 1.5], [SB02, Section 6.3], or [Saa03, Section
6.2].
1. The vectors
r,Cr,C%,...,C7' r
are linearly independent if, and only if, j < d(C,r).
2. Let d = d(C,r). The vectors
r,Cr,C%r,...,C%%r 0% 'r,C'r
are linearly dependent for all j > d.

3. The dimension of the jth Krylov subspace K;(C,r) is given by
J if j <d(C,r),

dim K;(C,r) = {
d(C,r) ifj>d(C,r).

4. d(C,r) =rank[r Cr C?r --- C"lr].

4 The Symmetric Lanczos Process

In this section, we assume that C = C* € C"*" is a Hermitian matrix, and that r € C",
r # 0, is a nonzero starting vector. We discuss the symmetric Lanczos process [Lan50] for

constructing a nested basis for the Krylov subspace K;(C,r) induced by C and r.

Algorithm (Symmetric Lanczos process)
Compute 31 = ||r||2, and set vi = r/S31, and vo = 0.
For j =1,2,..., do:

1) Compute v = Cvj, and set v =v — v;_10;.

. — * —_— —_ . .
2) Compute o = viv, and set v =v — v;a;.

3) Compute Bjt1 = [[v]|2-
If Bj+1 = 0, stop.

Otherwise, set vj11 = v/Bj41.

end for

Facts:

The following facts can be found in [CW85], [SB02, Section 6.5.3], or [Saa03, Section 6.6].

1. Inexact arithmetic, the algorithm stops after a finite number of iterations. More precisely,

it stops when j = d(C, r) is reached.

2. The Lanczos vectors

Vi,V2,...,Vj

generated during the first j iterations of the algorithm form a nested basis for the jth

Krylov subspace K;(C,r).

3. The Lanczos vectors satisfy the three-term recurrence relations
Vit1Biv1 = Cvi —via; —vi1 i, i=1,2,...,].

4. These three-term recurrence relations can be written in compact matrix form as follows:

CV; =V;T; + ﬁj+1vj+1eJT = j+1Tj(e)-

10

Here, we set

Vi =[vi vo - vj], e]T:[() 0 --- 0 l]E]RlXj,

_0[1 182 0 07

ﬁ2 a2 ﬁg

. (¢ 1
L= 0 B e 0, T = Biiiel]’ and Vi1 =[V; vl
j+1€5
Bi
L O 0 /Bj o |

Note that T} € CI%J and Tj(e) e CUTD*J are tridiagonal matrices.

. In exact arithmetic, the Lanczos vectors are orthonormal. Since the Lanczos vectors are

the columns of Vj, this orthonormality can be stated compactly as follows:
V]*VJ = Ij and V}-*Vj_|_1 =0.

. These orthogonality relations, together with the above compact form of the three-term
recurrence relations, imply that

13 = V;CV;.

Thus the jth Lanczos matrix T is the orthogonal Petrov-Galerkin projection of C' onto

the jth Krylov subspace K;(C,r).

. The computational cost of each jth iteration of the symmetric Lanczos process is fixed,
and it is dominated by the matrix-vector product v = C'v;. In particular, the computa-
tional cost for generating the orthogonal Petrov-Galerkin projection T} of C' is dominated

by the j matrix-vector products with C.

. If C is a sparse matrix or a preconditioned matrix with a sparse preconditioner, then the
matrix-vector products with C' are fast. In this case, the symmetric Lanczos process is
a very efficient procedure for computing orthogonal Petrov-Galerkin projections T); of C

onto Krylov subspaces K;(C,r).

. The three-term recurrence relations used to generate the Lanczos vectors explicitly en-

force orthogonality only among each set of three consecutive vectors, v;_1, v;, and v; 1.

11

As a consequence, in finite-precision arithmetic, round-off error will usually cause loss of

orthogonality among all Lanczos vectors vi,va,..., V1.

10. For applications of the Lanczos process in large-scale matrix computations, this loss of
orthogonality is often benign, and only delays convergence. More precisely, in such appli-
cations, the Lanczos matrix T} € C7>*J for some j < n is used to obtain an approximate
solution of a matrix problem involving the large matrix C € C"*"™. Due to round-off
error and the resulting loss of orthogonality, the number j of iterations that is needed to
obtain a satisfactory approximate solution is larger than the number of iterations that

would be needed in exact arithmetic.

5 The Nonsymmetric Lanczos Process

In this section, we assume that C' € C"*" is a general square matrix, and that r € C", r # 0,
and 1 € C*, 1 # 0, is a pair of right and left nonzero starting vectors. The nonsymmetric
Lanczos process [Lan50] is an extension of the symmetric Lanczos process that simultane-
ously constructs a nested basis for the Krylov subspace K;(C,r) induced by C and r, and a
nested basis for the Krylov subspace K;(CT,1) induced by C” and 1. In the context of the non-
symmetric Lanczos process, K;(C,r) is called the jth right Krylov subspace, and K;(CT,1)

is called the jth left Krylov subspace.

12

Algorithm (Nonsymmetric Lanczos process)
Compute p; = ||r]|2, m1 = ||l||2, and set vi =r/B1, w1 =1/n1, vo = wo = 0, and dp = 1.

For j =1,2,..., do:

1)

— wlv.
Compute §; = w; v;.

If ; = 0, stop.
2) Compute v = Cvj, and set §; =0;6;/6;—1 and v =v — v,;_13;.
3) Compute aj = w] v, and set v =v — v;a;.
4) Compute w = CTw;, and set v; = p;0;/0;—1 and w = W — w,a; — W;j_17;.
5) Compute pji1 = [[v]l2 and ;11 = ||w]|2.
If pjs1 =0 or nj;1 = 0, stop.
Otherwise, set v 1 = v/pjt1 and w1 = wW/nj41.
end for
Facts:

The following facts can be found in [SB02, Section 8.7.3] or [Saa03, Section 7.1].

1.

3.

The occurrence of §; = 0 in Step 1) of the nonsymmetric Lanczos process is called an
exact breakdown. In finite-precision arithmetic, one also needs to check for §; =~ 0,
which is called a near-breakdown. It is possible to continue the nonsymmetric Lanczos
process even if an exact breakdown or a near-breakdown has occurred, by using so-called
‘look-ahead’ techniques; see, e.g., [FGN93] and the references given there. However, in
practice, exact breakdowns and even near-breakdowns are fairly rare, and therefore, here

we consider only the basic form of the nonsymmetric Lanczos process without look-ahead.

. In exact arithmetic and if no exact breakdowns occur, the algorithm stops after a finite

number of iterations. More precisely, it stops when j = min{ d(C,r),d(C”,1) } is reached.

The right Lanczos vectors and the left Lanczos vectors

Vi,V2,...,V; and Wi, W,...,W;

13

generated during the first j iterations of the algorithm form a nested basis for the jth

right Krylov subspace K;(C,r) and the jth left Krylov subspace K;(C7,1), respectively.

. The right and left Lanczos vectors satisfy the three-term recurrence relations
Vit1pit1 = Ovi —via; —vi1f3i, i=1,2,...,7,
and
witinis1 = CTwi —wios —wi 17, i=1,2,...,j,
respectively.
. These three-term recurrence relations can be written in compact matrix form as follows:
CV; =ViTj+pjvipel = Vi Ty,
C'W; = WiTj +njr1wjie].

Here, we set

Vi =[vi va - v;], Wiy=[w1 w2 --- wj],
‘a1 Bo 0 -+ 0] far 72 0 - 0]
pe a2 By o 2 Q2 Y3
TJ = 0 p3 .'. .'. O y j:}: 0 ’]”3 .'. .'. O y
Bj Do T Ty
[0 - 0 p o] (0 - 0 m o]
. T}
el =[0 0 -~ 0 1]eR™, and T = .
T
Pj+1€;

Note that T}, TJ € ¢7%9, and Tj(e) e CUFDXJ are tridiagonal matrices.
. The matrix Tj(e) has full rank, i.e., rank Tj(e) =7.

. In exact arithmetic, the right and left Lanczos vectors are biorthogonal to each other,
ie.,

0 ifi#k,
wZTvk: forall 4,k =1,2,...,].
6; ifi=k,

14

10.

11.

Since the right and left Lanczos vectors are the columns of V; and W, respectively, the

biorthogonality can be stated compactly as follows:

WiV;=Dj, Wjvju1=0, and V/wj,=0.

Here, D; is the diagonal matrix
Dj = dlag ((51, (52, feey 5]) .

Note that D; is nonsingular, as long as no exact breakdowns occur.

. These biorthogonality relations, together with the above compact form of the three-term

recurrence relations, imply that
— * —1
T; = D;'V;CV; = (W)'V;) ™ W} CV;.

Thus, the jth Lanczos matrix T is the oblique Petrov-Galerkin projection of C' onto
the jth right Krylov subspace K;(C,r), and orthogonally to the jth left Krylov subspace
K;(CT,)).

The matrices T; and T]-T are diagonally similar:

T —1
T!' = D;T;D; .

The computational cost of each jth iteration of the nonsymmetric Lanczos process is
fixed, and it is dominated by the matrix-vector product v = Cv; with C' and by the
matrix-vector product w = CTWj with CT. In particular, the computational cost for
generating the oblique Petrov-Galerkin projection T} of C' is dominated by the j matrix-

vector products with C' and the j matrix-vector products with C7.

If C is a sparse matrix or a preconditioned matrix with a sparse preconditioner, then the
matrix-vector products with C' and C7 are fast. In this case, the nonsymmetric Lanczos
process is a very efficient procedure for computing oblique Petrov-Galerkin projections
T; of C onto right Krylov subspaces K;(C,r) and orthogonally to left Krylov subspaces
K;(CT)1).

15

12. The three-term recurrence relations, which are used to generate the right and left Lanczos
vectors, explicitly enforce biorthogonality only between three consecutive right vectors,
Vj_1, Vj, Vjt+1, and three consecutive left vectors, w;_i, w;, w;j 1. As a consequence,
in finite-precision arithmetic, round-off error will usually cause loss of biorthogonality

between all right vectors vi,va,...,v;1 and all left vectors wi,wo,..., w;1.

13. For applications of the Lanczos process in large-scale matrix computations, this loss of
orthogonality is often benign, and only delays convergence. More precisely, in such appli-
cations, the Lanczos matrix T} € 7% for some j < n is used to obtain an approximate
solution of a matrix problem involving the large matrix C € C™*". Due to round-off
error and the resulting loss of biorthogonality, the number j of iterations that is needed
to obtain a satisfactory approximate solution is larger than the number of iterations that

would be needed in exact arithmetic; see, e.g., [CW86].

14. If C = C* is a Hermitian matrix and 1 =T, i.e., the left starting vector 1 is the complex

conjugate of the right starting vector r, then the right and left Lanczos vectors satisfy
w; =v; forall ¢{=1,2,...,574+1,

and the nonsymmetric Lanczos process reduces to the symmetric Lanczos process.

6 The Arnoldi Process

The Arnoldi process [Arn51] is another extension of the symmetric Lanczos process for
Hermitian matrices to general square matrices. Unlike the nonsymmetric Lanczos process,
which produces bases for both right and left Krylov subspaces, the Arnoldi process generates
basis vectors only for the right Krylov subspaces. However, these basis vectors are constructed
to be orthonormal, resulting in a numerical procedure that is much more robust than the
nonsymmetric Lanczos process.

In this section, we assume that C € C"*™ is a general square matrix, and that r € C",

r # 0, is a nonzero starting vector.

16

Algorithm (Arnoldi process)
Compute p; = ||r]|2, and set vi =r/p;.
For j =1,2,..., do:
1) Compute v = Cv;.
2) Fori=1,2,...,7, do:
Compute h;; = v*v;, and set v =v — v;h;;.
end for
3) Compute hjq1; = ||v]l2.
If hjr1,; =0, stop.

Otherwise, set vj 1 = v/hji1j.

end for

Facts:

The following facts can be found in [Saa03, Section 6.3].

1. Inexact arithmetic, the algorithm stops after a finite number of iterations. More precisely,

it stops when j = d(C, r) is reached.

2. The Arnoldi vectors

Vi,V2,...,Vj

generated during the first j iterations of the algorithm form a nested basis for the jth

Krylov subspace K;(C,r).
3. The Arnoldi vectors satisfy the (i 4+ 1)-term recurrence relations
Vitihiy1,i = Cvi — vihy — vi1hi 1 — -+ — vohoy — vihy;, i=1,2,...,7.
These (i + 1)-term recurrence relations can be written in compact matrix form as follows:

CVj = ViHj + hj1vjrie] = Vip H.

17

Here, we set

Vi =[v1 va - v;], e =[0 0 --- 0 1]eRY™,
(hiy hig has oo by]
ha1 hae has :

Hjy =0 hy - - hjaj|,

hj-1,5
L0 -~ 0 hjj—1 hj
7© :' H;, ad Vies = (Vi voal.
’ by el | e

Note that H; € C/*J and H](-e) e CUtDXJ are upper Hessenberg matrices.
. The matrix H](e) has full rank, i.e., rank H J(-e) =7.

. Since the Arnoldi vectors are the columns of Vj, this orthonormality can be stated com-
pactly as follows:

V;*Vj = I] and ‘/}*vj—i—l =0.

. These orthogonality relations, together with the above compact form of the recurrence
relations, imply that

H; = V; O,
Thus, the jth Arnoldi matrix H; is the orthogonal Petrov-Galerkin projection of C

onto the jth Krylov subspace K;(C,r).

. As in the case of the symmetric Lanczos process, each jth iteration of the Arnoldi process
requires only a single matrix-vector product v = Cv;. If C is a sparse matrix or a
preconditioned matrix with a sparse preconditioner, then the matrix-vector products

with C are fast.

. However, unlike the Lanczos process, the additional computations in each jth iteration
do increase with j. In particular, each jth iteration requires the computation of j inner
products of vectors of length n, and the computation of j SAXPY-type updates of the

form v = v — v;h;; with vectors of length n.

18

9. For most large-scale matrix computations, the increasing work per iteration limits the
number of iterations that the Arnoldi process can be run. Therefore, in practice, the
Arnoldi process is usually combined with restarting, i.e., after a number of iterations
(with the matrix C' and starting vector r), the algorithm is started again with the same

matrix C, but a different starting vector, say ry.

10. On the other hand, the (i + 1)-term recurrence relations used to generate the Arnoldi
vectors explicitly enforce orthogonality among the first 2+ 1 vectors, vi,va, ..., v;y1. As
a result, the Arnoldi process is much less susceptible to round-off error in finite-precision

arithmetic than the Lanczos process.

7 Eigenvalue Computations

In this section, we consider the problem of computing a few eigenvalues, and possibly eigen-
vectors, of a large matrix C € C"*". We assume that matrix-vector products with C are fast.
In this case, orthogonal and, in the non-Hermitian case, oblique Petrov-Galerkin projections

of C onto Krylov subspaces K;(C,r) can be computed efficiently, as long as j < n.

Facts:

The following facts can be found in [CW85], [CW86], and [BDD00].

1. Assume that C = C* € C"*" is a Hermitian matrix. We choose any nonzero starting
vector r € C", r # 0, e.g., a vector with random entries, and run the symmetric Lanczos
process. After j iterations of the algorithm, we have computed the jth Lanczos matrix
T}, which—in exact arithmetic—is the orthogonal Petrov-Galerkin projection of C' onto
the jth Krylov subspace K;(C,r). Neglecting the last term in the compact form of the
three-term recurrence relations used in the first j iterations of the symmetric Lanczos
process, we obtain the approximation

C VJ ~ VjTj-
This approximation suggests to use the j eigenvalues AU), 1 = 1,2,...,7, of the jth

i

19

Lanczos matrix T} € C7*J as approximate eigenvalues of the original matrix C. Further-
more, if one is also interested in approximate eigenvectors, then the above approximation

suggests to use

<D — Vi € cn, where Tyn) — 20N, 49 4o,

% i] %

()

as an approximate eigenvector of C' corresponding to the approximate eigenvalue \;

of C.

. Assume that C' € C"*" is a general square matrix. Here one can use either the nonsym-

metric Lanczos process or the Arnoldi process to obtain approximate eigenvalues.

. In the case of the nonsymmetric Lanczos process, one chooses any nonzero starting
vectors r € C", r 20, and 1 € C", 1# 0, r € C", r # 0. In analogy to the symmetric
case, the eigenvalues of Lanczos matrix T; € C7*J computed by j iterations of the
nonsymmetric Lanczos process are used as approximate eigenvalues of the original matrix
C. Corresponding approximate right eigenvectors are given by the same formula as above.
Furthermore, one can also obtain approximate left eigenvectors from the left eigenvectors
of T; and the first j left Lanczos vectors. A discussion of many practical aspects of using

the nonsymmetric Lanczos process for eigenvalue computations can be found in [CW86].

. In the case of the Arnoldi process, one only needs to choose a single nonzero starting

vector r € C", r # 0. Here, one has the approximation
CV; =~ V;Hj,

where V; is the matrix containing the first ;7 Arnoldi vectors as columns and Hj is the
jth Arnoldi matrix. The eigenvalues /\Z(j), i =1,2,...,5, of H; € C7*J are used as

approximate eigenvalues of C'. Furthermore, for each 1,
xz(-j) = ijgj) € C", where szz(-j) = zz(-j))\z(-j), zz(-j) #0,

()

is an approximate eigenvector of C corresponding to the approximate eigenvalue \;

of C.

20

8 Linear Systems of Equations

In this section, we consider the problem of solving large systems of linear equations,
Cx = b,

where C € C™*" is a nonsingular matrix and b € C". We assume that any possible precon-
ditioning was already applied, and so in general, C is a preconditioned version of the original
coefficient matrix. In particular, the matrix C' may actually be dense. However, we assume
that matrix-vector products with C and possibly CT are fast. This is the case when C is a
preconditioned version of a sparse matrix A and a preconditioner Ay that allows a sparse LU

or Cholesky factorization.

Facts:
The following facts can be found in [FGN92] or [Saa03].

1. Let x¢ € C™ be an arbitrary initial guess for the solution of the linear system, and denote
by
rg = b — CXO

the corresponding residual vector. A Krylov subspace-based iterative method for the
solution of the above linear system constructs a sequence of approximate solutions of the
form

XjEX0+Kj(C,r0), i=12,...,

i.e., the jth iterate is an additive correction of the initial guess, where the correction is
chosen from the jth Krylov subspace K;(C,ro) induced by the coefficient matrix C' and
the initial residual ro. Now let V; € C™*J be a matrix the columns of which form a nested

basis for K;(C,rp). Then, any possible jth iterate can be parametrized in the form
x; = xo + Vjzj, where z;¢€ .
Moreover, the corresponding residual vector is given by
ri =b - Cx; =ry — CVjz,.

21

Different Krylov subspace-based iterative methods are then obtained by specifying the

choice of the basis matrix V; and the choice of the parameter vector z;.

. The biconjugate gradient algorithm (BCG) [Lan52] employs the nonsymmetric Lanc-
z0s process to generate nested bases for the right Krylov subspaces K;(C,r¢) and the left
Krylov subspaces Kj(CT, 1). Here, 1€ C™, 1+ 0, is an arbitrary nonzero starting vector.
The biorthogonality of the right and left Lanczos vectors is exploited to construct the jth
iterate x; such that the corresponding residual vector r; is orthogonal to the left Lanczos
vectors, i.e., WJT r; = 0. Using the recurrence relations of the Lanczos process and the
above relation for r;, one can show that the defining condition WjTrj = 0 is equivalent

to z; being the solution of the linear system
szj = egj)pl,

where egj) denotes the first unit vector of length j. Moreover, the corresponding iterates
x; can be obtained via a simple update from the previous iterate x;_;, resulting in
an elegant overall computational procedure. Unfortunately, in general, it cannot be
guaranteed that all Lanczos matrices T; are nonsingular. As a result, BCG iterates x;

may not exist for every j. More precisely, BCG breaks down if T} is singular, and it

exhibits erratic convergence behavior when 7} is nearly singular.

. The possible breakdowns and the erratic convergence behavior can be avoided by replac-

ing the j x j linear system Tjz; = egj)pl by the (7 4+ 1) x j least-squares problem

. i+1
min ||/ p; — T{z,.
zcC’

Since Tj(e) e cltl)xy always has full rank j, the above least-squares problem has a unique
solution z;. The resulting iterative procedure is the quasi-minimal residual method

(QMR) [FNO1].

. The generalized minimal residual algorithm (GMRES) [SS86] uses the Arnoldi
process to generate orthonormal basis vectors for the Krylov subspaces K;(C,rg). The

orthonormality of the columns of the Arnoldi basis matrix V; allows to choose z; such

22

that the residual vector r; has the smallest possible norm, i.e.,
Irjllz = llro — CVjzjll2 = min |[ro — CVjzll,.
zeC’

Using the compact form of the recurrence relations used to generate the Arnoldi vectors,
one readily verifies that the above minimal residual property is equivalent to z; being
the solution of the least-squares problem

. 1+1
min e/ p1 — Bz,
YA J

where H J(e) e CUtDXJ is an upper Hessenberg matrix.

. The idea of quasi-minimization of the residual vector can also be applied to Lanczos-type
iterations that, in each jth step, perform two matrix-vector products with C, instead of
one product with C' and one product with CT. The resulting algorithm is called the
transpose-free quasi-minimal residual method (TFQMR) [Fre93]. We stress that
QMR and TFQMR . produce different sequences of iterates, and thus QMR and TFQMR

are not mathematically equivalent algorithms.

9 Dimension Reduction of Linear Dynamical Systems

In this section, we discuss the application of the nonsymmetric Lanczos process to a large-scale

matrix problem that arises in dimension reduction of time-invariant linear dynamical systems.

A more detailed description can be found in [Fre03].

Definitions:

Let A, F € C"*". The matrix pencil A— sF, s € C, is said to be regular if the matrix A — sFE

is singular only for finitely many values s € C.

A single-input single-output time-invariant linear dynamical system is a system of

differential-algebraic equations (DAEs) of the form

E%x = Ax + bu(t),

y(t) =1"x(1),

23

together with suitable initial conditions. Here, A, E € C"*" are given matrices such that
A — sE is a regular matrix pencil, b € C", b # 0, and 1 € C", 1 # 0, are given nonzero vectors,
x(t) € C" is the vector of state variables, u(t) € C is the given input function, y(t) € C is
the output function, and n is the state-space dimension.

The rational function
H:C—CUoco, H(s):=1"(sE—-A)"b,

is called the transfer function of the above time-invariant linear dynamical system.
A reduced-order model of state-space dimension j (< n) of the above system is a single-

input single-output time-invariant linear dynamical system of the form

d
Ejoz = Ajz+bju(t),

where A;, E; € C7*J and b;, 1; € C7, together with suitable initial conditions.

Let sg € C be such that the matrix A — sy F is nonsingular. A reduced-order model of state-
space dimension j of the above system is said to be a Padé model about the expansion point
sq if the matrices A;, E; and the vectors bj, 1; are chosen such that the Taylor expansions
about sg of the transfer function H of the original system and of the reduced-order transfer
function

Hj : C— CUoo, Hj(s) = lf (SEj—Aj)_lbj,

agree in as many leading Taylor coefficients as possible, i.e.,
Hy(s) = H(s) + O((s = s0)1),

where ¢(3j) is as large as possible.

Facts:

The following facts can be found in [FF94], [FF95], or [Fre03].

1. In the ‘generic’ case, ¢q(j) = 2j.

24

. In the general case, ¢(j) > 2j; the case ¢(j) > 2j occurs only in certain degenerate

situations.

. The transfer function H can be rewritten in terms of a single square matrix C € C"*"

as follows:
T -1 -1 -1
H(s) =17 (I, + (s = 50)C) 'r, where C:=(soE—A)"'E, r:=(soF— 4)'b.

Note that the matrix C can be viewed as a preconditioned version of the matrix F using

the ‘shift-and-invert’ preconditioner soE — A.

. In many cases, the state-space dimension n of the original time-invariant linear dynamical

C™*™ are sparse. Furthermore,

system is very large, but the large square matrices A, FE €
these matrices are usually such that sparse LU factorizations of the shift-and-invert
preconditioner sgFF — A can be computed with limited amounts of fill-in. In this case,

matrix-vector products with the preconditioned matrix C and its transpose C7 are fast.

. The above definition of Padé models suggests the computation of these reduced-order
models by first explicitly generating the leading ¢(j) Taylor coefficients of H about the
expansion point sg, and then constructing the Padé model from these. However, this
process is extremely ill-conditioned and numerically unstable; see the discussion in [FF94,

FF95).

. A much more stable way to compute Padé models without explicitly generating the
Taylor coefficients is based on the nonsymmetric Lanczos process. The procedure is
simply as follows. One uses the vectors r and 1 from the above representation of the
transfer function H as right and left starting vectors, and applies the nonsymmetric
Lanczos process to the preconditioned matrix C. After j iterations, the algorithm has
produced the j x j tridiagonal Lanczos matrix T;. The reduced-order model defined by
Aj = SOTj - Ij, Ej = Tj, bj = (lTr) eg]), lj = egj)
is a Padé model of state-space dimension j about the expansion point sy. Here egj)

denotes the first unit vector of length j.

25

7. In the large-scale case, Padé models of state-space dimension ;7 < n often provide very
accurate approximations of the original system of state-space dimension n. In particular,
this is the case for applications in VLSI circuit simulation; see [FF95, Fre03] and the

references given there.

8. Multiple-input multiple-output time-invariant linear dynamical systems are extensions of
the above single-input single-output case with the vectors b and 1 replaced by matrices
B € C"™ and L € C"*P, respectively, where m is the number of inputs and p is the
number of outputs. The approach outlined in this section can be extended to the general
multiple-input multiple-output case. A suitable extension of the nonsymmetric Lanczos
process that can handle multiple right and left starting vectors is needed in this case. For
a discussion of such a Lanczos-type algorithm and its application in dimension reduction
of general multiple-input multiple-output time-invariant linear dynamical systems, we

refer the reader to [Fre03] and the references given there.

References

[Arn51] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix

eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.

[BDDOO] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. STAM

Publications, Philadelphia, Pennsylvania, 2000.

[CW85] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigen-

value Computations, Volume 1, Theory. Birkhauser, Basel, Switzerland, 1985.

[CW86] J. K. Cullum and R. A. Willoughby. A practical procedure for computing eigenvalues
of large sparse nonsymmetric matrices. In J. K. Cullum and R. A. Willoughby, ed-
itors, Large Scale Eigenvalue Problems, pages 193—-240. North-Holland, Amsterdam,
The Netherlands, 1986.

26

[DERSY]

[FF94]

[FF95]

[Fre93]

[Fre03]

[FGN92]

[FGN93]

[FN91]

[GMS05]

[Hou75]

[KR91]

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, United Kingdom, 1989.

P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approxima-
tion via the Lanczos process. In Proceedings of EURO-DAC ’94 with EURO-VHDL

’94, pages 170-175, Los Alamitos, California, 1994. IEEE Computer Society Press.

P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approxi-
mation via the Lanczos process. IEEE Trans. Computer-Aided Design, 14:639-649,
1995.

R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian

linear systems. SIAM J. Sci. Comput., 14:470-482, 1993.

R. W. Freund. Model reduction methods based on Krylov subspaces. Acta Numerica,
12:267-319, 2003.

R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems.

Acta Numerica, 1:57-100, 1992.

R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput.,

14:137-158, 1993.

R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for

non-Hermitian linear systems. Numer. Math., 60:315-339, 1991.

P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM Rewv., 47:99-131, 2005.

A. S. Householder. The Theory of Matrices in Numerical Analysis. Dover Publica-
tions, New York, 1975.

N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior
point algorithm for large scale linear programming. Math. Programming, 52:555—

586, 1991.

27

[Lan50]

[Lan52]

[LMO5]

[NW99]

[Saa03]

[SS86]

[SB02]

[vdV03]

[Wri97]

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. J. Res. Nat. Bur. Standards, 45:255-282, 1950.

C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res.

Nat. Bur. Standards, 49:33-53, 1952.

A. N. Langyville and C. D. Meyer. A survey of eigenvector methods for web informa-

tion retrieval. STAM Rev., 47(1):135-161, 2005.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York,
New York, 1999.

Y. Saad. Iterative Methods for Sparse Linear Systems. STAM Publications, Philadel-

phia, Pennsylvania, second edition, 2003.

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856-869,
1986.

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New

York, third edition, 2002.

H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge

University Press, Cambridge, 2003.

S. J. Wright. Primal-dual interior-point methods. STAM Publications, Philadelphia,

Pennsylvania, 1997.

28

