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Abstract Ever since the 1960s, the semiconductor industry has heavily relied on
simulation in order to analyze and verify the design of integrated circuits before ac-
tual chips are manufactured. Over the decades, the algorithms and tools of circuit
simulation have evolved in order to keep up with the ever-increasing complexity
of integrated circuits, and at certain points of this evolution, new simulation tech-
niques were required. Such a point was reached in the early 1990s, when a new
approach was needed to efficiently and accurately simulate the effects of the ever-
increasing amount of on-chip wiring on the proper functioning of the chip. The in-
dustry’s proposed solution for this task, the AWE approach, worked well for small-
to moderate-size networks of on-chip wiring, but suffered from numerical issues
for larger networks. It turned out that for the special case of networks with single
inputs and single outputs, these problems can be remedied by exploiting the connec-
tion between AWE and the classical Lanczos algorithm for single starting vectors.
However, the general case of on-chip wiring involves networks with multiple inputs
and outputs, and so a Lanczos-type algorithm was needed that could handle such
multiple starting vectors. Since no such extension existed, a new band Lanczos al-
gorithm for multiple starting vectors was developed. It turned out that this new band
approach can also be employed to devise extensions of other Krylov-subspace meth-
ods. In this chapter, we describe the band Lanczos algorithm and the band Arnoldi
process and how their developments were driven by the need to efficiently and ac-
curately simulate the effects of on-chip wiring of integrated circuits.
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1 Introduction

Since the invention of integrated circuits in the late 1950s, the semiconductor in-
dustry has succeeded in manufacturing chips with ever-decreasing feature size and
ever-increasing complexity. As a result, the number of transistors on state-of-the-art
chips evolved from tens of transistors on a single chip in the late 1950s to tens of
billions of transistors on a single chip in 2019. Already early in this evolution, it
became apparent that computer simulation is indispensable in order to analyze and
verify circuit designs before actual chips are manufactured. The methods, tools, and
software used for such simulations are referred to as electronic circuit simulation
or simply circuit simulation; see, e.g., [33]. The basic framework of circuit simula-
tion was created in the 1960s and early 1970s, culminating in Nagel’s SPICE circuit
simulator [28]; accounts of these developments can be found in [31, 35]. Most of
the circuit simulators in use today are variants or derivatives of SPICE.

1.1 The Central Numerical Task in Circuit Simulation

Circuit simulation uses the lumped-element approach to model integrated circuits
as networks of idealized electrical circuit elements, such as resistors, capacitors, in-
ductors, diodes, and transistors. The branches of such a network model correspond
to the circuit elements, and the nodes of the network correspond to the interconnec-
tions of the circuit elements. The electrical performance of the network model is
characterized by three types of equations. Kirchhoff’s current law (KCL) states that
for each node of the network, the currents flowing in and out of that node sum up
to zero. Kirchhoff’s voltage law (KVL) states that for each closed loop of the net-
work, the voltage drops along that loop sum up to zero. Branch constitutive relations
(BCRs) are equations that characterize the electrical performance of the idealized
electrical circuit elements. For example, the BCR of a linear resistor is Ohm’s law.
The BCRs are linear equations for simple devices, such as linear resistors, capaci-
tors, and inductors, and they are nonlinear equations for more complex devices, such
as diodes and transistors. In general, the BCRs involve first time-derivatives of the
unknowns and are thus first-order ordinary differential equations (ODEs). On the
other hand, the KCLs and KVLs are linear algebraic equations that only depend on
the topology of the network. The KCLs, KVLs, and BCRs can be summarized as a
system of first-order, in general nonlinear, differential-algebraic equations (DAEs)
of the form

d
d t

q(x, t)+ f (x, t) = 0, (1)
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together with suitable initial conditions. Here, f and q are vector-valued functions,
each with N scalar component functions1, and the unknown x = x(t) is a vector-
valued function of length N the entries of which are the circuit variables at time t.
We stress that (1) is a system of DAEs rather than ODEs due to the fact that all KCLs
and KVLs and the BCRs of some elements (e.g., resistors) are algebraic equations.
In particular, the Jacobian E = Dx q(x, t) of q(x, t) with respect to x is a singular
matrix in general.

The numerical solution of systems (1) is the central task in circuit simulation.
This is a very challenging task for a number of reasons. The electrical performance
of circuits typically involves vastly different time scales, resulting in equations (1)
that exhibit stiffness in general. Only a small fraction of the huge arsenal of meth-
ods for solving nonstiff ODEs are suitable for stiff DAEs. In particular, implicit
methods need to be used. These are computationally expensive since the solution
of a system of N algebraic equations for N unknowns is required at each time step.
Moreover, since these systems are nonlinear in general, some variant of Newton’s
method needs to be employed, which in turn involves the solution of a system of N
linear algebraic equations for N unknowns at each Newton step. Finally, the num-
ber N of circuit variables is so large that special algorithms for large-scale matrix
computations need to be used in order to make the numerical solution of systems (1)
feasible.

1.2 Large-Scale Matrix Computations and Krylov-Subspace
Methods

The archetype of a matrix computation is the numerical solution of linear systems
of equations

M z = b. (2)

Here, M is a given N×N matrix, b is a given vector of length N, and z is the unknown
solution vector of (2). For small to moderately large N, the standard approach for
computing z is Gaussian elimination, which is based on factoring M into a product
of a lower-triangular matrix L and an upper-triangular matrix U . For problems (2)
with large N that actually arise in meaningful applications, the matrices M usually
exhibit special structures, such as sparsity. An N×N matrix M is called sparse if
only a small fraction of its N2 entries are nonzero. The problem (2) is said to be
large-scale if its solution z can be computed only by employing algorithms that
exploit the special structure of M.

As we discussed in Sect. 1.1, the numerical solution of circuit equations (1) re-
quires the repeated solution of linear systems of the form (2). For realistic circuit
simulations, all these linear systems are large-scale and have sparse coefficient ma-

1 We use the upper-case letter N for the number of components to indicate that this number is
large in circuit simulation. The lower-case letter n is used to denote the iteration index in Krylov-
subspace methods.
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trices M. Furthermore, the matrices M are such that the linear systems (2) can be
solved by means of variants of Gaussian elimination that are adapted to sparse ma-
trices. The key feature of these variants is to generate reorderings of the rows and
columns of M such that the triangular factors L and U of the reordered version
of M remain reasonably sparse. For general sparse matrices, such reorderings are
not always possible. However, for matrices M arising in circuit simulation, sparse
Gaussian elimination works amazingly well and produces triangular factors L and U
that are nearly as sparse as M. In fact, all circuit simulators employ some form of
sparse Gaussian elimination to solve the large-scale linear systems (2) that arise in
the context of the numerical solution of (1).

For general matrix computations, the same terminology as for linear systems (2)
is used. A matrix computation problem is said to be large-scale if it can be solved
only by employing algorithms that exploit special structures of the matrices describ-
ing the problem; see, e.g., [20].

One of the most versatile tools for large-scale matrix computations are iterative
methods based on Krylov subspaces. Let M be a given N ×N matrix and r be a
given vector of length N. For any n = 1,2, . . . , the subspace of the space of vectors
of length N that is spanned by the vectors

r, Mr, M2r, . . . , Mn−1r (3)

is called the n-th Krylov subspace (induced by M and r) and denoted by Kn(M,r).
For many large-scale matrix computations arising in actual applications, very good
approximate solutions of the large-scale problem in N-dimensional space can be ob-
tained by solving corresponding n-dimensional problems that are obtained by means
of n-th Krylov subspaces Kn(M,r) with n� N. However, the basis (3) used to de-
fine Kn(M,r) is not suitable for actual computations since the vectors (3) quickly
become linearly dependent in finite-precision arithmetic as n increases. Instead, so-
called Krylov-subspace methods are employed to generate more suitable bases. An
important feature of these methods is that the matrix M is used only in the form of
matrix-vector products with M and possibly with the transpose MT of M. In partic-
ular, these products can be computed cheaply when M is sparse.

The two classical Krylov-subspace methods, the Lanczos algorithm [27] and the
Arnoldi process [3], were introduced in the early 1950s in the context of iterative
methods for systems of linear equations and eigenvalue computations. The Arnoldi
process produces an orthonormal (and thus optimal) basis for Kn(M,r). Since the
construction of such an orthonormal basis involves (n+1)-term recurrences of vec-
tors of length N, the Arnoldi process requires O

(
n2N

)
operations, which makes its

use problematic for very large-scale problems. The Lanczos algorithm generates a
pair of bases, one for Kn(M,r) and one for the n-th Krylov subspace Kn(MT , l) in-
duced by MT and a second given vector l of length N. The vectors of the two bases
are constructed to be biorthogonal to each other, but neither one of the two Lanc-
zos bases is orthonormal. As a result, the Lanczos bases are not as well-behaved in
actual computations as the Arnoldi basis. However, since the construction of such
biorthogonal bases can be done with three-term recurrences of vectors of length N,
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the Lanczos algorithm process requires only O
(
nN
)

operations, which allows its
use for much larger problems than the Arnoldi process.

In the 6 decades since the introduction of the Lanczos algorithm and the Arnoldi
process, Krylov-subspace methods have been studied extensively and have proven
to be useful in many other applications besides the solution of systems of linear
equations and eigenvalue computations. For example, the Lanczos algorithm was
shown to be closely related to Padé approximation of transfer functions of single-
input single-output time-invariant linear dynamical systems; see, e.g., Gragg’s 1974
paper [24]. This so-called Lanczos-Padé connection is the basis for the PVL algo-
rithm described in Sect. 2.2.

1.3 The Special Case of Circuit Interconnect Analysis

Given the success of sparse Gaussian elimination in solving the linear systems aris-
ing in the context of general circuit equations (1), there never was a need for even
considering the use of Krylov-subspace methods for solving these linear systems.
Nevertheless, in the early 1990s, Krylov-subspace methods turned out to be very ef-
ficient tools for tackling the special case of circuit equations (1) that arise in circuit
interconnect analysis.

Integrated circuits contain tiny on-chip “wires” to connect transistors and other
components to each other. This on-chip wiring is called the circuit interconnect. As
the number of transistors on a single chip evolved from tens of transistors in the late
1950s to tens of billions of transistors in 2019, the amount of interconnect increased
accordingly. A state-of-the-art chip in 2019 contains interconnect wires with a total
length of tens of miles. Interconnect analysis uses simulation to verify and correct
the interconnect design of a chip in order to ensure that the on-chip wiring does not
interfere with the proper functioning of the chip.

Circuit interconnect analysis employs the lumped-element approach described in
Sect. 1.1 to model interconnect structures as RCL networks of resistors, capacitors,
and inductors that correspond to small pieces of wires of the overall interconnect.
Since the BCRs of all these circuit elements are linear time-invariant equations, the
electrical performance of the interconnect network is described by a system of equa-
tions of the form (1) with functions f and q that are linear in x. Moreover, the main
interest in interconnect analysis is the input-output behavior of the interconnect.
Given input functions, such as the voltages of voltage sources and the currents of
current sources, which drive the interconnect, the task is to compute certain output
functions, such as the currents of the voltage sources and the voltages of the current
sources. In this case, the input-output behavior of the interconnect is described by a
system of linear DAEs of the form

E
d
d t

x = Ax+Bu(t),

y(t) = LT x(t),
(4)
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together with suitable initial conditions. Here, A and E are N×N matrices, B is an
N×m matrix, L is an N× p matrix, u is a vector-valued function of length m, y is
a vector-valued function of length p, and the unknown x = x(t) is a vector-valued
function of length N the entries of which are the circuit variables at time t. The m
entries of u = u(t) are the given input functions, and the p entries of y = y(t) are the
output functions of interest. The numbers m≥ 1 and p≥ 1 are small and m, p� N.
In general. the matrix E is singular and thus (4) is a system of DAEs, rather than
ODEs. Finally, we always assume that the matrix pencil

sE−A, s ∈ C, (5)

is regular, i.e., the matrix sE−A is singular only for finitely many values of s ∈ C.
Here, C denotes the set of all complex numbers. The assumption of regularity of the
matrix pencil (5) is satisfied for any realistic circuit interconnect simulation, see,
e.g., [17].

Systems of equations of the form (4) are called m-input p-output linear time-
invariant linear dynamical systems. They arise in many applications and not just
in circuit simulation. However, in most applications the size N of (4) is small or
only of moderate size, whereas one has to deal with large-scale systems in circuit
simulation. In the large-scale case, the main interest is usually in the input-output
behavior u(t) → y(t) of the system (4), rather than the complete solution vector
x(t). In fact, for very large N, it may not even be feasible to compute x. A standard
approach to tackle large-scale systems (4) is to employ model order reduction; see,
e.g. [38]. The basic idea is to replace the quantities of size N in (4) by corresponding
quantities of size n. More precisely, a reduced-order model (ROM) of (4) is a system
of the form

En
d
d t

x̃(t) = An x̃(t)+Bn u(t),

ỹ(t) = LT
n x̃(t),

(6)

where An and En are n× n matrices, Bn is an n×m matrix, Ln is an n× p matrix,
and n� N. Note that u = u(t) is the same given input function in both the original
system (4) and its ROM (6). The challenge of model order reduction is to find a
value n� N and matrices An, En, Bn, and Ln such that

ỹ(t) ≈ y(t) for all ‘relevant’ times t. (7)

A standard approach in model order reduction of time-invariant linear dynam-
ical systems is to transform (4) from time domain into complex Laplace domain.
Applying the Laplace transform to (4), we obtain the Laplace-domain system

sE x̂(s) = Ax̂(s)+Bû(s),

ŷ(s) = LT x̂(s),
(8)

where s ∈ C. Elimination of x̂(s) from (8) results in the Laplace-domain input-
output relation
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ŷ(s) = H(s) û(s), (9)

where
H : C 7→

(
C∪∞

)p×m
, H(s) := LT (sE−A

)−1B. (10)

The function (10) is called the transfer function of the time-invariant linear dynam-
ical system (4). We remark that H is a (p×m)-matrix-valued rational function with
potential poles at the finitely many values of s ∈ C for which the matrix sE−A is
singular. Analogously, the Laplace-domain input-output relation of the ROM (6) is
given by

ˆ̃y(s) = Hn(s) û(s), (11)

where
Hn : C 7→

(
C∪∞

)p×m
, Hn(s) := LT

n
(
sEn−An

)−1Bn, (12)

is the transfer function of the ROM (6). Finally, in view of (9) and (11), the de-
sired approximation property (7) in time domain translates into the approximation
property

Hn(s) ≈ H(s) for all ‘relevant’ values of s ∈ C (13)

in Laplace domain.
In control theory, the problem of constructing good approximations Hn of H

in (13) has been studied extensively and many powerful methods have been devel-
oped. However, only few of these approaches are feasible in the large-scale case.
The approach that is relevant for circuit interconnect analysis is moment matching.
It is based on selecting a suitable expansion point s0 ∈ C and then constructing Hn
such that the Taylor series of Hn(s) and H(s) about s0 agree in as many of their
leading Taylor coefficients as possible.

1.4 Outline

In the first three decades of integrated circuits, it was sufficient to use a simple met-
ric, the Elmore delay [7], to capture the effects of interconnect. Around 1990, the
complexity of integrated circuits had reached the point where this simple metric
was no longer accurate enough. Building on the concept of Elmore delay, asymp-
totic waveform evaluation (AWE) [32, 34] was proposed. Unfortunately, the initial
excitement over AWE was followed by the disappointment that actual implementa-
tions of the method did not perform as expected. The remedy for these numerical
problems was the Padé via Lanczos (PVL) algorithm [8, 9], which is based on the
classical Lanczos algorithm [27]. In Sect. 2, we describe AWE and the PVL al-
gorithm for the case m = p = 1 of single-input single-output linear time-invariant
linear dynamical systems (4). The success of PVL quickly led to the question of
how to extend the PVL algorithm to the case of general m-input p-output systems.
Surprisingly, a corresponding extension of the classical Lanczos algorithm for gen-
eral m, p≥ 1 did not exist at that time, and so a new such Krylov-subspace method,
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the band Lanczos method, was developed. We describe the underlying concept of
block Krylov subspaces for multiple starting vectors in Sect. 3 and the band Lanczos
method itself in Sect. 4. An important issue in interconnect simulation is to preserve
crucial properties, such as passivity and reciprocity, of the interconnect network
model in the ROMs that are constructed via suitable Krylov-subspace methods. In
Sect. 5, we discuss the problem of structure preservation in reduced-order inter-
connect models and the construction of such structure-preserving models by means
of explicit projections. In Sect. 6, we describe a new Krylov-subspace method, the
band Arnoldi process, that was developed to facilitate reliable implementations of
such projection approaches. Finally, in Sect. 7, we mention some open problems
and make some concluding remarks.

2 From AWE to the PVL Algorithm

In this section, we consider only circuit interconnect models with single input and
single output functions. The system of DAEs describing such models is given by (4)
with m = p = 1. Since B and L in (4) are vectors in this case, we use b and l instead
of upper-case letters. The system of DAEs is thus of the form

E
d
d t

x = Ax+bu(t),

y(t) = lT x(t),
(14)

and its transfer function is given by

H : C 7→
(
C∪∞

)
, H(s) := lT (sE−A

)−1b. (15)

Note that H is a scalar rational function.

2.1 Elmore Delay and AWE

Until the late 1980s, it was sufficient to model circuit interconnect as RC networks,
i.e., networks that contain only resistors and capacitors, but no inductors, and the
Elmore delay was used as a simple metric for such RC networks. In this approach,
the RC network model of the interconnect is replaced by a simple reduced model
that contains only a single resistor with resistance R and a single capacitor with ca-
pacitance C. The product of R and C is the actual Elmore delay. This whole process
can be viewed as the construction of an approximation of the form

H1(s) =
a1

s−b1
(16)
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to the transfer function H of the RC network model. Here a1 and b1 are real param-
eters that are determined such that the leading two Taylor coefficients of the Taylor
series of H1(s) and H(s) about the expansion point s0 = 0 match:

H1(s) = H(s)+O
(
s2).

The values of R and C are readily obtained from a1 and b1; see, e.g., [18].
AWE generalizes the simple approximation (16) to rational functions of the form

Hn(s) =
a1

s−b1
+

a2

s−b2
+ · · ·+ an

s−bn
, (17)

where the 2n parameters a1,a2, . . . ,an,b1,b2, . . . ,bn are determined such that the
leading 2n Taylor coefficients of the Taylor series of Hn(s) and H(s) about some
suitable expansion point s0 ∈ C match:

Hn(s) = H(s)+O
(
(s− s0)

2n). (18)

In principle, any s0 ∈ C, except for the finitely many poles of H, can be chosen as
expansion point in (18). For interconnect models, all poles of H have negative real
parts and thus any s0 with nonnegative real part is a safe choice. Since real values
of s0 are preferable in order to avoid complex arithmetic, expansion points s0 ≥ 0
are chosen in practice.

In theory, by increasing n in (17) until a sufficiently accurate approximation Hn
of H is obtained, AWE should be able to easily handle much more complex intercon-
nect models than the Elmore delay. However, in practice, the accuracy of Hn tends
to stagnate already at modest values of n. The reason for this behavior is not the
defining property (18) of Hn, but the algorithm that is used in AWE to compute Hn.
AWE first explicitly generates the leading 2n coefficients (the so-called moments)
of the Taylor series of H(s) about the expansion point s0 and then constructs the
values of the 2n parameters in (17) such that Hn has the same 2n moments as H.
Unfortunately, the computation of the moments is extremely sensitive to numerical
round-off error and is viable only for very small values of n. For a detailed discus-
sion of the numerical issues of AWE, we refer the reader to [9].

We remark that a function Hn defined by (17) and (18) is called a Padé approx-
imant of H; see, e.g., [4]. The PVL algorithm generates the same Padé approxi-
mant Hn as AWE, but does so without computing the moments.

2.2 PVL Algorithm

The basis of the PVL algorithm is the connection between Padé approximants Hn to
transfer functions H of the form (15) and the Lanczos algorithm.

Recall from Sect. 1.2 that the Lanczos algorithm involves an N×N matrix M and
two vectors r and l of length N, and thus we rewrite (15) as follows:
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H(s) = lT
(
sE−A

)−1b = lT
(
I +(s− s0)M

)−1r,

where M :=
(
s0 E−A

)−1E, r :=
(
s0 E−A

)−1b,
(19)

and I denotes the identity matrix of the same size as M.
Running n iterations of the Lanczos algorithm (with M, r, and l from (19))

generates a pair of biorthogonal bases for the subspaces Kn(M,r) and Kn(MT , l).
The scalars in the three-term recurrences used to construct these bases is all that is
needed to obtain Hn. More precisely,

Hn = (lT r)eT
1
(
I +(s− s0)Tn

)−1e1, (20)

where e1 denotes the first unit vector of length n and

Tn =



α1 β2 0 · · · 0

ρ2 α2 β3
. . .

...

0 ρ3
. . . . . . 0

...
. . . . . . . . . βn

0 · · · 0 ρn αn


(21)

is an n×n tridiagonal matrix whose entries are computed during the first n iterations
of the following algorithm.

Algorithm 1 (Lanczos algorithm)
Set v̂1 = r, ŵ1 = l, v0 = w0 = 0, and δ0 = 1.
For n = 1,2, . . . , do:

1) Compute ρn = ‖v̂n‖2 and ηn = ‖ŵn‖2.
If ρn = 0 or ηn = 0, set n = n−1 and stop.
Otherwise, set vn = v̂n/ρn and wn = ŵn/ηn.

2) Compute δn = wT
n vn.

If δn = 0, stop: look-ahead would be needed to continue.
3) Compute v̂n+1 = Mvn.

Set βn = ηnδn/δn−1 and v̂n+1 = v̂n+1− vn−1βn.
4) Compute αn = wT

n v̂n+1/δn.
Set v̂n+1 = v̂n+1− vnαn.

5) Compute ŵn+1 = MT wn.
Set γn = ρnδn/δn−1 and ŵn+1 = ŵn+1−wnαn−wn−1γn.

For details and properties of the Lanczos algorithm, the reader is referred to [20,
Sect. 64.5] or [37, Sect. 7.1]. Next, we list some facts about Algorithm 1 that are
relevant for its use in the PVL algorithm and its extension to the band Lanczos
method in Sect. 4:

1. In exact arithmetic, the algorithm terminates after finitely many iterations. Since
Kn(M,r) and Kn(MT , l) are subspaces of N-dimensional space, their dimensions
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cannot exceed N. As a result, the check in step 1) is satisfied for some n≤ N+1.
If ρn = 0, then Kn−1(M,r) has reached its maximum dimension n−1. If ηn = 0,
then Kn−1(MT , l) has reached its maximum dimension n−1.

2. In general, the algorithm may stop prematurely due to δn = 0 in step 2). Such an
event is called an exact breakdown. In practice, one also needs to stop if δn 6= 0,
but
∣∣δn
∣∣ is ‘close’ to 0. Such an event is called a near-breakdown. Exact break-

downs and near-breakdowns can be avoided altogether by employing so-called
‘look-ahead’ strategies; see [22] and the references given there. The resulting
look-ahead Lanczos algorithm is necessarily quite a bit more involved than Al-
gorithm 1. To keep the exposition simple, we only discuss the Lanczos algorithm
and the band Lanczos method without look-ahead.

3. The vectors v1,v2, . . . ,vn form a basis of Kn(M,r), and the vectors w1,w2, . . . ,wn
form a basis of Kn(MT , l). In exact arithmetic, the two bases are biorthogonal to
each other. Using the notation

Vn :=
[

v1 v2 · · · vn
]

and Wn :=
[

w1 w2 · · · wn
]
, (22)

the biorthogonality of the two bases can be stated compactly as follows:

W T
n Vn = ∆n := diag

(
δ1,δ2, . . . ,δn

)
=


δ1 0 · · · 0

0 δ2
. . .

...
...

. . . . . . 0
0 · · · 0 δn

. (23)

The recurrences to that are used in to generate the vectors v1,v2, . . . ,vn, v̂n+1 and
w1,w2, . . . ,wn, ŵn+1 can be stated compactly as follows:

MVn =VnTn +
[

0 0 · · · 0 v̂n+1
]
,

MTWn =WnT̃n +
[

0 0 · · · 0 ŵn+1
]
.

(24)

Here Tn is the tridiagonal matrix (21) and T̃n is the tridiagonal matrix given by

T̃n =



α1 γ2 0 · · · 0

η2 α2 γ3
. . .

...

0 η3
. . . . . . 0

...
. . . . . . . . . γn

0 · · · 0 ηn αn


.

These two tridiagonal matrices are related as follows:

∆nTn = T̃n
T

∆n. (25)
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4. By multiplying the first equation in (24) from the left by W T
n and by using (23)

and W T
n v̂n+1 = 0, we obtain the expression

Tn =
(
W T

n Vn
)−1W T

n MVn = ∆
−1
n W T

n MVn (26)

for Tn. Since the columns of Vn and Wn are biorthogonal bases of Kn(M,r) and
Kn(MT , l), the relation (26) means that the n×n matrix Tn is the oblique projec-
tion of the N×N matrix M onto the subspace Kn(M,r) and orthogonally to the
subspace Kn(MT , l).

5. For the PVL algorithm, only the tridiagonal matrix Tn is needed. Its entries are
generated as scalar coefficients of the three-term recurrences that are used to
produce the two biorthogonal bases. In order to run these recurrences, only the
6 vectors vn−1,vn, v̂n+1,wn−1,wn, ŵn+1 need to be stored at any stage of Algo-
rithm 1.

6. Each iteration of Algorithm 1 requires one matrix-vector product with M and one
with MT . For the PVL algorithm, M is of the form M =

(
s0 E −A

)−1E, where
A and E are large-scale sparse matrices. To compute the matrix-vector products
efficiently in this case, one employs sparse Gaussian elimination to precompute a
sparse LU factorization of the matrix s0 E−A. Each matrix-vector product with
M or MT can then be computed cheaply via one multiplication with a sparse
matrix and two sparse triangular solves.

2.3 An Example

The following example, which is taken from [8, 9], illustrates the numerical differ-
ences between AWE and the PVL algorithm. The circuit simulated here is a voltage
filter, where the frequency range of interest is 1 ≤ ω ≤ 1010. In Fig. 1(a) we show
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(a) Results with AWE
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(b) Results with PVL

Fig. 1 Simulation of a voltage filter
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the exact function |H(iω)| and the approximations |Hn(iω)| generated by AWE for
n = 2, 5, 8. Note that H8 has clearly not yet converged to H. It turns out that the Hn’s
practically do not change anymore for n ≥ 8, and so AWE never converges in this
example. In Fig. 1(b) we show the exact function |H(iω)| and the approximations
|Hn(iω)| generated by the PVL algorithm for n = 2, 8, 28. Note that the results for
n = 8 (the dotted curves) in Fig. 1(a) and Fig. 1(b) are vastly different, although
they both correspond to the same function H8. Furthermore, note that the algorithm
PVL converges, with the computed Padé approximant H28 being practically identi-
cal to H.

3 Krylov Subspaces with Multiple Starting Vectors

While the PVL algorithm remedies the numerical issues of AWE, it can be used
only for the special case of single-input single-output systems (14). Since circuit in-
terconnect models have multiple inputs and outputs in general, after its introduction
in 1994, it quickly became clear that the PVL algorithm needed to be extended to
m-input p-output systems (4). To motivate the type of Krylov-subspace method that
is needed for such an extension, we first rewrite the transfer function (10) of (4) as
follows:

H(s) = LT
(
sE−A

)−1B = LT
(
I +(s− s0)M

)−1R,

where M :=
(
s0 E−A

)−1E and R :=
(
s0 E−A

)−1B.
(27)

Note that M is an N×N matrix, R is an N×m matrix, L is an N× p matrix, and H
is a (p×m)-matrix-valued function. Instead of starting vectors r and l in the PVL
algorithm, we now have blocks R and L of multiple starting vectors. A Lanczos-
type algorithm that produces Padé approximants Hn of H via a suitable adaption of
the PVL formula (4) to the m-input p-output case needs to be able to handle such
multiple starting vectors.

In this section, we describe the concept of block Krylov subspaces for multiple
starting vectors and briefly review the block Lanczos method.

3.1 Block Krylov Subspaces

Recall that for a single starting vector r, the n-th Krylov subspace Kn(M,r) is de-
fined as the n-dimensional subspace spanned by the vectors (3). Here, 1≤ n≤ nmax
and nmax denotes the maximum value of n such that the vectors (3) are still linearly
independent.

For a block R of m starting vectors, we have N×m matrices MiR, i = 0,1, . . . ,
instead of vectors (3). To properly define Krylov subspaces Kn(M,R) in this case,
we put the first N of these matrices into a single N×mN right block Krylov matrix
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as follows: [
R MR M2R · · · MN−1R

]
. (28)

Next, we scan the mN columns of this matrix from left to right and delete any col-
umn that is linearly dependent on columns to its left. The result of this operation is
the matrix [

R1 MR2 M2R3 · · · Mimax−1Rimax

]
(29)

the columns of which are all linearly independent. This process of detecting and
deleting the linearly dependent columns of the matrix (28) is called exact deflation.
Note that a column of the form Mir being linearly dependent on columns to its
left in (28) implies that any column M jr, j = i, i+ 1, . . . , is linearly dependent on
columns to its right. Therefore, in (29), for each i = 1,2, . . . , imax, the matrix Ri is a
submatrix of Ri−1, where, for i = 1, we set R0 = R. Denoting by mi the number of
columns of Ri, the number of columns of the matrix (29) is given by

n(R)max := m1 +m2 + · · ·+mimax . (30)

By construction, the matrix (29) has full column rank n(R)max.
For n = 0,1, . . . ,n(R)max, the n-dimensional subspace of the space of vectors of

length N that is spanned by the first n columns of the matrix (29) is called the
n-th block Krylov subspace (induced by M and R) and denoted by Kn(M,R).

To define Kn(MT ,L), where L is a block of p starting vectors, we proceed anal-
ogously. Applying the process of exact deflation to the left block Krylov matrix[

L MT L (MT )2L · · · (MT )N−1L
]
,

we obtain an N×n(L)max matrix of the form[
L1 MT L2 (MT )2L3 · · · (MT ) jmax−1L jmax

]
, (31)

where each L j is a submatrix of L j−1. The matrix (31) has full column rank

n(L)max := p1 + p2 + · · ·+ p jmax , (32)

where p j denotes the number of columns of L j.
For n = 0,1, . . . ,n(L)max, the n-dimensional subspace of the space of vectors of

length N that is spanned by the first n columns of the matrix (31) is called the
n-th block Krylov subspace (induced by MT and L) and denoted by Kn(MT ,L).

To distinguish the two types of block Krylov subspaces, we refer to Kn(M,R)
and Kn(MT ,L) as right and left block Krylov subspaces, respectively.
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3.2 Block Lanczos Method

In 1994, the problem of extending the Lanczos process for single to multiple start-
ing vectors was not new, and a number of algorithms had been proposed. With the
exception of Ruhe’s band variant [36] of the symmetric Lanczos algorithm, all ex-
isting algorithms at that time are based on a block-wise construction of basis vectors
for the underlying block Krylov subspaces.

For symmetric matrices M = MT and starting vectors r = l, the right and left
Krylov subspaces Kn(M,r) and Kn(MT , l) are identical, and the general Lanczos
algorithm simplifies to the symmetric Lanczos algorithm. The first block extensions
of the Lanczos algorithm were developed for this special case [5, 39, 23, 6]. Since
the matrices M in (27) are nonsymmetric in general, block variants of the symmetric
Lanczos algorithm cannot be used to extend the PVL algorithm to m-input p-output
systems (4).

For the general case, Kim and Craig [25, 26] were the first to develop a block
version of the classical Lanczos algorithm. Their block Lanczos method requires
that m = p and is essentially a variant of Algorithm 1, where vectors are replaced
by blocks of m vectors, scalars are replaced by m×m matrices, and division by a
scalar is replaced by multiplication with the inverse of an m×m matrix. The m×m
matrices are chosen such that the generated blocks of basis vectors for the right and
left block Krylov subspaces are block-biorthogonal to each other. Clearly, such a
block approach cannot be extended to the case m 6= p, as this would involve ‘in-
verses’ of nonsquare matrices. Furthermore, even for the special case m = p, the
block Lanczos method requires that the sizes for the right and left blocks of basis
vectors remain the same throughout the run of the algorithm. As a result, necessary
deflations to handle linearly dependent blocks can only be performed if these linear
dependencies occur simultaneously in the right and left blocks. However, this is not
the case in general.

In order to extend the PVL algorithm to general m-input p-output systems of the
form (4), a new Lanczos-type method was needed to overcome the limitations of
the block Lanczos method. Such a procedure needs to be able to handle the gen-
eral case m, p ≥ 1 and include an efficient deflation procedure. The band Lanczos
method, which we describe in Sect.. 4, is such a procedure. The key to the devel-
opment of the band Lanczos method was the insight to construct the basis vectors
of the right and left block Krylov subspaces to be vectorwise biorthogonal to each
other, instead of the blockwise biorthogonality that is used in the block Lanczos
method.

4 A New Approch: the Band Lanczos Method

As in Sect. 3, we assume that M is an N×N matrix, R is an N×m matrix, and L is
an N×N matrix. We use the notation
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R =
[

r1 r2 · · · rm
]

and L =
[

l1 l2 · · · lp
]

(33)

for the columns of R and L.

4.1 Defining Properties

Like Algorithm 1, the band Lanczos method generates two sets of right and left
Lanczos vectors

v1,v2, . . . ,vn and w1,w2, . . . ,wn (34)

that are constructed to be (vectorwise) biorthogonal to each other. If only exact
deflations are performed in the method, the vectors (34) form bases of the right and
left block Krylov subspaces Kn(M,R) and Kn(MT ,L). Using the notation from (22)
and (23), the biorthogonality of the vectors (34) can be stated compactly as

W T
n Vn = ∆n := diag

(
δ1,δ2, . . . ,δn

)
. (35)

At any stage of the band Lanczos method, there are right and left candidate vectors

v̂n+1, v̂n+2, . . . , v̂n+mc and ŵn+1, ŵn+2, . . . , ŵn+pc (36)

for the Lanczos vectors vn+1,vn+2, . . . ,vn+mc and wn+1,wn+2, . . . ,wn+pc to be gener-
ated in the following iterations. The vectors (36) are constructed to be biorthogonal
to the Lanczos vectors (34):

W T
n v̂n+ j = 0, j = 1,2, . . . ,mc, and V T

n ŵn+k = 0, k = 1,2, . . . , pc. (37)

At the start of the algorithm, the right and left candidate vectors are initialized as
the columns of R and L in (33), mc = m, and pc = p.

The candidate vectors (36) allow for an easy way to check for necessary defla-
tions. The next exact deflation in the right block Krylov matrix (28) occurs if, and
only if, v̂n+1 = 0. The next exact deflation in the left block Krylov matrix (31) oc-
curs if, and only if, ŵn+1 = 0. In practice, one also needs to perform deflations when
these vectors are ‘close’ to zero vectors. In an actual algorithm, we check if

‖v̂n+1‖2 ≤ dftolv or ‖ŵn+1‖2 ≤ dftolw, (38)

where dftolv,dftolw are suitably small deflation tolerances. If the first check
in (38) is true, v̂n+1 is labeled a deflated right vector, the indices of v̂n+2, . . . , v̂n+mc

are shifted by −1, and mc is reduced by 1. If the second check in (38) is true, ŵn+1
is labeled a deflated left vector, the indices of ŵn+2, . . . , ŵn+pc are shifted by −1,
and pc is reduced by 1. We refer to this process as deflation in general, and as exact
deflation when both deflation tolerances in (38) are set to 0. Note that m−mc and
p− pc is the number of deflations of right and left vectors, respectively, that have
occurred so far.
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Similar to the relations (24) for Algorithm 1, the recurrences that are used to
generate the vectors (34) and (36) can be stated compactly as follows:

MVn =VnTn +
[

0 0 · · · 0 v̂n+1 v̂n+2 · · · v̂n+mc

]
+V (dl)

n ,

MTWn =WnT̃n +
[

0 0 · · · 0 ŵn+1 ŵn+2 · · · ŵn+pc

]
+W (dl)

n .
(39)

The matrices V (dl)
n and W (dl)

n contain mostly zero columns, together with the m−mc

right and p− pc left deflated vectors, respectively. In particular, V (dl)
n and W (dl)

n are
zero matrices if no deflations have occurred so far or if only exact deflations are per-
formed. The matrices Tn and T̃n contain the scalar coefficients of the recurrences that
are used to generate the Lanczos vectors and the candidate vectors. Since these re-
currences involve at most mc + pc +1 terms, the matrices Tn and T̃n are ‘essentially’
banded. More precisely, Tn has lower bandwidth mc+1 and upper bandwidth pc+1,
where the lower bandwidth is reduced by 1 every time a right vector is deflated and
the upper bandwidth is reduced by 1 every time a left vector is deflated. In addition,
each deflation of a left vector causes Tn to have nonzero elements in a fixed row
outside and to the right of the banded part. Analogously, T̃n has lower bandwidth
pc + 1 and upper bandwidth mc + 1, where the lower bandwidth is reduced by 1
every time a left vector is deflated, and the upper bandwidth is reduced by 1 every
time a right vector is deflated. In addition, each deflation of a right vector causes T̃n
to have nonzero elements in a fixed row outside and to the right of the banded part.

Recall that the tridiagonal matrices from Algorithm 1 are connected via the rela-
tion (25). The banded parts of Tn and T̃n in (39) are related in a similar way:

∆nT (pr)
n =

(
T̃n

(pr))T
∆n, (40)

where

T (pr)
n := Tn +∆

−1
n W T

n V (dl)
n and T̃ (pr)

n := T̃n +∆
−1
n V T

n W (dl)
n . (41)

Note that the matrix ∆−1
n W T

n V (dl)
n and ∆−1

n V T
n W (dl)

n has nonzero entries only below
the banded part of Tn and T̃n and in the columns corresponding to the m−mc deflated
right vectors and p− pc deflated left vectors, respectively.

By multiplying the first equation in (39) from the left by W T
n and using (35), (37),

and (41), we obtain the expression

T (pr)
n =

(
W T

n Vn
)−1W T

n MVn = ∆
−1
n W T

n MVn (42)

for T (pr)
n . The relation (42) means that the n×n matrix T (pr)

n is the oblique projection
of the N×N matrix M onto the subspace spanned by v1,v2, . . . ,vn and orthogonally
to the subspace spanned by w1,w2, . . . ,wn. If only exact deflations are performed,
then these vectors span the right and left block Krylov subspaces and thus T (pr)

n is
the oblique projection of M onto Kn(M,R) and orthogonally to Kn(MT ,L).
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4.2 Reduced-Order Models and Matrix Padé Approximants

In this subsection, we discuss the use of the band Lanczos method in model order
reduction of m-input p-output systems (4). For this application, M, R, and L are the
matrices from the representation (27) of the transfer function H of (4). In addition to
the oblique projection (42), T (pr)

n , of M onto the subspaces generated by n iterations
of the band Lanczos method, we also need the one-sided oblique projections of R
and L corresponding to (42). These projections are defined as follows:

ρ
(pr)
n := ∆

−1
n W T

n R and η
(pr)
n := ∆

−1
n V T

n L.

Using the quantities T (pr)
n , ρ

(pr)
n , η

(pr)
n , and ∆n, we define the approximation

Hn(s) =
(
η
(pr)
n
)T

∆n

(
I +(s− s0)T (pr)

n

)−1
ρ
(pr)
n (43)

of H. An actual reduced-order model (ROM) (6) that corresponds to Hn is read-
ily obtained by comparing the representation (12) of the ROM transfer function
with (43) and defining the matrices in (6) as follows:

An := I− s0T (pr)
n , En := T (pr)

n , Bn := ρ
(pr)
n , and Ln := ∆nη

(pr)
n .

We remark that (43) generalizes the PVL formula (20) for the single-input single-
output case to the general multiple-input multiple-output case. In fact, for m= p= 1,
the band Lanczos method reduces to Algorithm 1 and formula (43) reduces to (20).

The ROM transfer function (12), Hn, is called an n-th matrix Padé approximant
(about the expansion point s0) of the transfer function H of (4) if

Hn(s) = H(s)+O
(
(s− s0)

q(n)),
where q(n) is as large as possible. The ROM transfer function (43) generated via the
band Lanczos method is an n-th matrix Padé approximant of H provided that only
exact deflations are performed. To properly state this result, recall the definitions of
n(R)max and n(L)max in (30) and (32). In addition, we define j(n) and k(n) as the largest
values of j and k such that

m1 +m2 + · · ·+m j ≤ n and p1 + p2 + · · ·+ pk ≤ n.

Theorem 2. Let max{m1, p1 } ≤ n≤min{n(R)max, n(L)max }. If only exact deflations are
performed in the band Lanczos method, then the function (43), Hn, is an n-th matrix
Padé approximant of the function (27), H, and

Hn(s) = H(s)+O
(
(s− s0)

j(n)+k(n)).
A proof of Theorem 2 is given in [11].
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4.3 An Actual Algorithm

The first simple version of the band Lanczos method appeared in the 1995 pa-
per [10]. The algorithm in [10] has no built-in deflation procedure, and the com-
putation of the Lanczos vectors is arranged such that rectangular n× (n+m) and
n× (n+ p) matrices instead of the n× n matrices T (pr)

n and T̃n
(pr) are generated.

After that, in the joint work [1] with Aliaga, Boley, and Hernández, we developed a
complete version of this algorithm that included a proper deflation procedure and a
look-ahead strategy to deal with potential breakdowns.

Working on actual code for the band Lanczos method, it became clear that ar-
ranging the computations so that square matrices T (pr)

n and T̃n
(pr) are produced is

preferable. A first version of this rearranged band Lanczos method appeared in [12].
The connection (40) of the matrices T (pr)

n and T̃n
(pr) is exploited to explicitly com-

pute only half of the entries of these matrices. An improved version of this algorithm
was included in the survey paper [14] on Krylov-subspace methods for model order
reduction. The following algorithm is essentially the version from [14]. The quan-
tities T (pr)

n , ρ
(pr)
n , η

(pr)
n , and ∆n, which are needed to form the ROM corresponding

to (43), are generated as outputs of this algorithm.

Algorithm 3 (Band Lanczos algorithm)
For k = 1,2, . . . ,m, set v̂k = rk.
For k = 1,2, . . . , p, set ŵk = lk.
Set mc = m, pc = p, and Iv = Iw = /0.
For n = 1,2, . . . , until convergence or mc = 0 or pc = 0 or δn = 0 do:

1) Compute tn,n−mc = ‖v̂n‖2.
Decide if v̂n should be deflated. If yes, do the following:

a) Set v̂(dl)
n−mc = v̂n and store this deflated vector. Set Iv = Iv∪{n−mc }.

b) Set mc = mc−1. If mc = 0, set n = n−1 and stop.
c) For k = n,n+1, . . . ,n+mc−1, set v̂k = v̂k+1.
d) Repeat all of step 1).

2) Compute t̃n,n−pc = ‖ŵn‖2.
Decide if ŵn should be deflated. If yes, do the following:

a) Set ŵ(dl)
n−pc = ŵn and store this deflated vector. Set Iw = Iw∪{n− pc }.

b) Set pc = pc−1. If pc = 0, set n = n−1 and stop.
c) For k = n,n+1, . . . ,n+ pc−1, set ŵk = ŵk+1.
d) Repeat all of step 2).

3) Set vn = v̂n/tn,n−mc and wn = ŵn/t̃n,n−pc .
4) Compute δn = wT

n vn.
If δn = 0, stop: look-ahead would be needed to continue.

5) For k = n+1,n+2, . . . ,n+mc−1, do:
Compute tn,k−mc = wT

n v̂k/δn and set v̂k = v̂k− vntn,k−mc .
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6) For k = n+1,n+2, . . . ,n+ pc−1, do:
Compute t̃n,k−pc = ŵT

k vn/δn and set ŵk = ŵk−wnt̃n,k−pc .
7) Compute v̂n+mc = Mvn.
8) a) For k ∈Iw (in ascending order), do:

Compute σ̃ =
(
ŵ(dl)

k

)T vn and set t̃n,k = σ̃/δn.
If k > 0, set tk,n = σ̃/δk and v̂n+mc = v̂n+mc − vktk,n.

b) Set kv = max{1, n− pc }.
c) For k = kv,kv +1, . . . ,n−1, do:

Set tk,n = t̃n,kδn/δk and v̂n+mc = v̂n+mc − vktk,n.
d) Compute tn,n = wT

n v̂n+mmc/δn and set v̂n+mmc = v̂n+mmc − vntn,n.
9) Compute ŵn+pc = MT wn.

10) a) For k ∈Iv (in ascending order), do:
Compute σ = wT

n v̂(dl)
k and set tn,k = σ/δn.

If k > 0, set t̃k,n = σ/δk and ŵn+pc = ŵn+pc −wkt̃k,n.
b) Set kw = max{1, n−mc }.
c) For k = kw,kw +1, . . . ,n−1, do:

Set t̃k,n = tn,kδn/δk and ŵn+pc = ŵn+pc −wkt̃k,n.
d) Set t̃n,n = tn,n and ŵn+pc = ŵn+pc −wnt̃n,n.

11) Set T (pr)
n =

[
ti,k
]

i,k=1,2,...,n and ∆n = diag
(
δ1,δ2, . . . ,δn

)
.

Set kρ = m+min{0, n−mc } and ρ
(pr)
n =

[
ti,k−m

]
i=1,2,...,n;k=1,2,...,kρ

.

Set kη = p+min{0, n− pc } and η
(pr)
n =

[
t̃i,k−p

]
i=1,2,...,n;k=1,2,...,kη

.
12) Check if n is large enough. If yes, stop.

5 Structure Preservation

An important class of interconnect models are RCL networks with only independent
voltage and current sources. Such models are described by DAEs of the form (4)
where m = p. Moreover, the equations in (4) can be formulated such that

B = L, E = ET � 0, A+AT � 0 (44)

and the matrices A, E, and B have certain block structures; see, e.g., [17, 19]. Here,
the notation “�” and “�” means that a matrix is symmetric positive semidefinite
and symmetric negative semidefinite, respectively. In this section, we consider the
problem of model order reduction of DAEs (4) for this class of RCL networks.

An important property of RCL networks is passivity, which means that such net-
works do not generate energy. In fact, the matrix properties (44) imply passivity. It
is desirable and for some applications crucial that ROMs of RCL networks are also
passive. One of the disadvantages of Lanczos-based approaches is that the resulting
ROMs are not guaranteed to be passive for general RCL networks.

A simple approach to generate passive ROMs is based on explicit projection of
the matrices in (4). Let Vn be a real N×n matrix with full column rank n. Setting
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An :=V T
n AVn, En :=V T

n AVn, Bn :=V T
n B, and Ln := Bn, (45)

one obtains a ROM (6) with matrices that satisfy the same conditions (44) as the
matrices of (4). In particular, this ROM is passive.

By combining the projection approach with block Krylov subspaces, the trans-
fer function Hn of the ROM defined by (45) satisfies a Padé-type approximation
property. To this end, we choose a suitable expansion point s0 ≥ 0 and rewrite the
transfer function of (4) (with B = L) as follows:

H(s) = BT
(
sE−A

)−1B = BT
(
I +(s− s0)M

)−1R,

where M :=
(
s0 E−A

)−1E and R :=
(
s0 E−A

)−1B.
(46)

If we choose the matrix Vn such that its range2 contains the n̂-the block Krylov
subspace Kn̂(M,R) for some n̂ ≤ n, then the ROM transfer function Hn is an n-th
matrix Padé-type approximant of H. As in Theorem 2, n(R)max is the integer defined
in (30) and j(n̂) denotes the largest value of j such that m1 +m2 + · · ·+m j ≤ n̂.

Theorem 4. Let Vn be an N×n matrix with full column rank n, and assume that

Kn̂(M,R)⊆ range(Vn) (47)

for some m1 ≤ n̂ ≤ n(R)max. Then, the ROM transfer function Hn is an n-th matrix
Padé-type approximant of the transfer function (46), H, and

Hn(s) = H(s)+O
(
(s− s0)

j(n̂)). (48)

A proof of Theorem 4 is given in [16].
The first ROM algorithm based on explicit projection was PRIMA [29, 30]. It

employs a simple block variant of the Arnoldi process without deflation to generate
an orthonormal basis for Kn(M,R), and uses these basis vectors as the columns
of the projection matrix Vn. Note that for PRIMA, we have n̂ = n and equality of
the two subspaces in (47). While the ROMs generated by PRIMA are passive by
construction, they do not preserve any of the other properties of RCL networks, such
as reciprocity and the block structure of the matrices A, E, and B. We also remark
that for a robust implementation of PRIMA, a variant of the Arnoldi process with
a proper built-in deflation procedure needs to be used. The band Arnoldi process
discussed in Sect. 6 is such a variant.

SRIM [15, 19] was introduced as an improvement of PRIMA that in addition to
passivity, preserves both reciprocity and the block structure of the matrices A, E,
and B. SPRIM employs the band Arnoldi process to first generate an orthonormal
basis for Kn̂(M,R). Let Vn̂ denote the N× n̂ matrix the columns of which are these
basis vectors. Instead of using Vn̂ as the projection matrix, Vn̂ is turned into an N×n

2 The range, denoted by range(M), of a matrix M is defined as the subspace spanned by the
columns of M.
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matrix Vn for some n̂ < n ≤ 2n̂ such that (47) is satisfied and the projected ma-
trices (45) of the SPRIM ROMs preserve both reciprocity and the block structure
of A, E,and B; see [17, 19] for details of the construction of Vn. Finally, we remark
that the block structure of the SPRIM ROMs imply a higher accuracy than the cor-
responding PRIMA ROMs. More precisely, as shown in [16], the SPRIM transfer
function Hn is an n-th matrix Padé-type approximant of H that matches 2 j(n̂) mo-
ments instead of j(n̂) moments in (48).

The following example, which is taken from [19], illustrates the higher accuracy
of SPRIM. The example is a RCL network with m= p= 16 and N = 1841 that mod-
els the pin package of a chip. The expansion point s0 = 2π×1010 was used. For this
example, n̂ = 128 was needed for the SPRIM transfer function Hn to converge to the
exact transfer function H. Fig. 2 depicts the absolute values of the (8,1)-component
of the transfer functions. Note that for n̂ = 128 PRIMA has not converged yet.

Fig. 2 Package example,
(8,1)-component of transfer
functions
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6 Band Arnoldi Process

In this section, we state an algorithm for the band Arnoldi process applied to an
N×N matrix M and an N×m matrix R. This is essentially the algorithm that first
appeared in [14]. Since M and R are complex matrices for some applications of the
band Arnoldi process, we use the complex conjugate transpose vH := vT instead of
the transpose vT in the statement of the algorithm.

The notation is similar to the one we used in Sect. 4. The algorithm produces
Arnoldi vectors and candidate vectors

v1.v2, . . . ,vn and vn+1,vn+2, . . . ,vn+mc , (49)
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where the Arnoldi vectors are constructed to be orthonormal to each other and the
candidate vectors are constructed to be orthogonal to the Arnoldi vectors. Using the
notation from (22), the orthogonality of the vectors (49) can be stated compactly as

V H
n Vn = I, and V H

n vn+ j = 0, j = 1,2, . . . ,mc, (50)

where I denotes the n× n identity matrix. The recurrences that are employed to
generate the vectors (49) can be stated compactly as follows:

MVn =VnHn +
[

0 0 · · · 0 v̂n+1 v̂n+2 · · · v̂n+mc

]
+V (dl)

n . (51)

Similarly to Algorithm 3, the following algorithm produces the matrices

H(pr)
n := Hn +V H

n V (dl)
n , ρ

(pr)
n :=V H

n R (52)

as outputs. We remark that by multiplying (51) from the left by V H
n and using (50)

and (52), it follows that H(pr)
n = V H

n MVn. In particular, H(pr)
n and ρ

(pr)
n are the or-

thogonal projections of M and R onto the subspace spanned by the Arnoldi vec-
tors v1.v2, . . . ,vn. If only exact deflations are performed in the algorithm or if no
deflations occur, then these vectors span the n-th block Krylov subspace Kn(M,R).

Algorithm 5 (Band Arnoldi process)
For k = 1,2, . . . ,m, set v̂k = rk.
Set mc = m and I = /0.
For n = 1,2, . . . , until convergence or mc = 0 do:

1) Compute hn,n−mc = ‖v̂n‖2.
Decide if v̂n should be deflated. If yes, do the following:

a) Set v̂(dl)
n−mc = v̂n and store this deflated vector. Set I = I ∪{n−mc }.

b) Set mc = mc−1. If mc = 0, set n = n−1 and stop.
c) For k = n,n+1, . . . ,n+mc−1, set v̂k = v̂k+1.
d) Repeat all of step 1).

2) Set vn = v̂n/hn,n−mc .
3) For k = n+1,n+2, . . . ,n+mc−1, do:

Compute hn,k−mc = vH
n v̂k and set v̂k = v̂k− vnhn,k−mc .

4) Compute v̂n+mc = Mvn.
5) For k = 1,2, . . . ,n, do:

Compute hk,n = vH
k v̂n+mc and set v̂n+mc = v̂n+mc − vkhk,n.

Compute hn,k = vH
n v̂(dl)

k if k ∈I , and set hn,k = 0 if k 6∈I .

6) Set H(pr)
n =

[
hi,k
]

i,k=1,2,...,n.

Set kρ = m+min{0, n−mc } and ρ
(pr)
n =

[
hi,k−m

]
i=1,2,...,n;k=1,2,...,kρ

.
7) Check if n is large enough. If yes, stop.
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7 Concluding Remarks

In this chapter, we gave an account of how the need to efficiently and accurately
simulate the effects of on-chip wiring of integrated circuits has led to the develop-
ment of new band versions of the Lanczos algorithm and the Arnoldi process for
multiple starting vectors. We stress that the applications of these new band Krylov-
subspace methods are not restricted to electronic circuit simulation. In fact, they can
be employed wherever there is a need for model order reduction of large-scale time-
invariant linear dynamical systems with multiple inputs and outputs. Such appli-
cations include structural analysis, microelectromechanical systems, transport net-
works, and computational acoustics. Multiple starting vectors also arise in the con-
text of matrix functions. The use of band Krylov-subspace methods in the efficient
evaluation of matrix functions has yet to be explored.

Just as the classical Lanczos algorithm is related to formally orthogonal polyno-
mials (FOPs), there is a connection of the band Lanczos method to matrix-valued
FOPs. Some of the underlying relations were derived in [13], but as the recent pa-
per [2] indicates, the connection to matrix-valued FOPs needs to be explored further.

Robust implementations of band Krylov-subspace methods, especially of the
band Lanczos method, are not as straightforward as implementations of the classical
Krylov-subspace methods. In order to facilitate the use of these band algorithms, the
author has produced the software package BANDITS [21], which provides Matlab
implementations of various band Krylov-subspace methods.

The band Lanczos method described in this chapter (and implemented in BAN-
DITS) does not include a look-ahead procedure to deal with potential breakdowns.
While a version of the band Lanczos method with look-ahead is described in [1], this
algorithm was never implemented in an actual code. Since Algorithm 3 is preferable
to the one in [1], a version of Algorithm 3 with look-ahead should be developed and
implemented in a production-quality code.
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Lanczos process. In: Proceedings of EURO-DAC ’94 with EURO-VHDL ’94, pp. 170–175.
IEEE Computer Society Press, Los Alamitos, California (1994)

9. Feldmann, P., Freund, R.W.: Efficient linear circuit analysis by Padé approximation via the
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