Symmetrizing polytopes and posets

Fu Liu
University of California, Davis

AMS Sectional Meeting

San Luis Obispo, CA May 3–4, 2025

This is joint work with Federico Castillo.

PART I:

Motivation: Permutohedra, Associahedra and Permuto-Associahedra

Polytopes

A *polytope* P can be defined as

- (1) **convex hull** of finitely many points.
- (2) the solution of a finite system of linear **inequalities**.

Polytopes

A *polytope* P can be defined as

- (1) **convex hull** of finitely many points.
- (2) the solution of a finite system of linear inequalities.

Remark: Both definitions give a geometric embedding of a polytope.

Polytopes

A *polytope* P can be defined as

- (1) **convex hull** of finitely many points.
- (2) the solution of a finite system of linear inequalities.

Remark: Both definitions give a geometric embedding of a polytope.

Face posets

The *face poset* of a polytope P, denoted $\mathcal{F}(P)$, is the poset of nonempty faces of P ordered by inclusion.

Polytopes

A *polytope* P can be defined as

- (1) **convex hull** of finitely many points.
- (2) the solution of a finite system of linear inequalities.

Remark: Both definitions give a geometric embedding of a polytope.

Face posets

The *face poset* of a polytope P, denoted $\mathcal{F}(P)$, is the poset of nonempty faces of P ordered by inclusion.

Remark: The face poset $\mathcal{F}(P)$ captures combinatorial properties of the polytope P without specifying its geometric properties.

Permutohedron and its face poset

Definition. The d-dimensional *permutohedron* is defined as

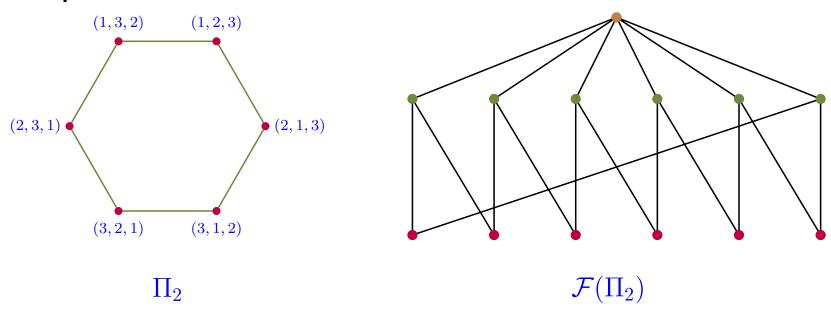
$$\Pi_d := \operatorname{conv}(\pi : \pi \in \mathfrak{S}_{d+1}).$$

Permutohedron and its face poset

Definition. The d-dimensional *permutohedron* is defined as

$$\Pi_d := \operatorname{conv}(\pi : \pi \in \mathfrak{S}_{d+1}).$$

Example.

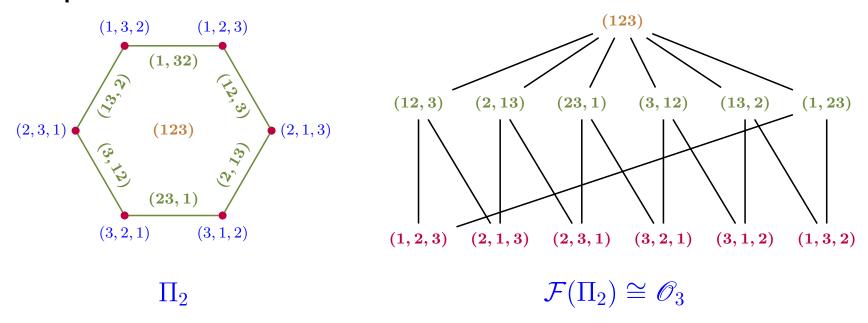


Permutohedron and its face poset

Definition. The d-dimensional *permutohedron* is defined as

$$\Pi_d := \operatorname{conv}(\pi : \pi \in \mathfrak{S}_{d+1}).$$

Example.



It is well-known that

$$\mathcal{F}(\Pi_d) \cong \mathscr{O}_{d+1},$$

the poset on *ordered* (set) partitions of [d+1] ordered by "merging blocks".

Realization problem

Given a "nice" poset \mathcal{F} , the following is a classical question to ask:

Does there exist a polytope P such that $\mathcal{F} \cong \mathcal{F}(P)$?

If the answer is yes, we say \mathcal{F} is *realizable*, and such a polytope P a *(geometric)* realization of \mathcal{F} .

Realizing associahedra

Definition. Let \mathcal{K}_n be the poset on all "valid" bracketings on $(1 * 2 * \cdots * n)$ where the ordering is defined by "*removing brackets*".

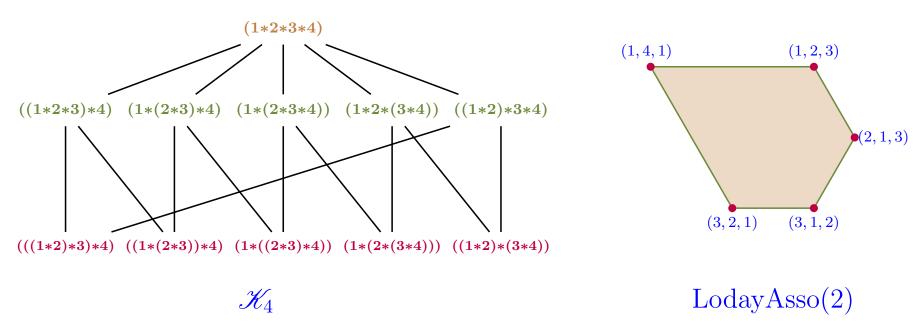
Definition. A d-dimensional *associahedron* is a polytope whose face poset is \mathcal{K}_{d+2} .

Realizing associahedra

Definition. Let \mathcal{K}_n be the poset on all "valid" bracketings on $(1 * 2 * \cdots * n)$ where the ordering is defined by "*removing brackets*".

Definition. A d-dimensional *associahedron* is a polytope whose face poset is \mathcal{K}_{d+2} .

Example.



Kapranov:

(1) defined a poset \mathcal{KA}_{d+1} which is a hybrid between \mathcal{O}_{d+1} and \mathcal{K}_{d+1} , the face posets of the permutohedron and the associahedron.

Kapranov:

- (1) defined a poset \mathcal{KA}_{d+1} which is a hybrid between \mathcal{O}_{d+1} and \mathcal{K}_{d+1} , the face posets of the permutohedron and the associahedron.
 - Elements: Ordered partitions of [d+1] with bracketings, e.g, (15*237*((4*69)*8)) is one element for d=7.

Kapranov:

- (1) defined a poset \mathcal{KA}_{d+1} which is a hybrid between \mathcal{O}_{d+1} and \mathcal{K}_{d+1} , the face posets of the permutohedron and the associahedron.
 - Elements: Ordered partitions of [d+1] with bracketings, e.g, (15*237*((4*69)*8)) is one element for d=7.
 - Covering relation: removing brackets and/or merging blocks.

Below is one maximal chain in $\mathcal{K}A_3$:

$$((3*4)*(2*1)) \prec ((3*4)*12) \prec (3*4*12) \prec 1234$$

Kapranov:

- (1) defined a poset \mathcal{KA}_{d+1} which is a hybrid between \mathcal{O}_{d+1} and \mathcal{K}_{d+1} , the face posets of the permutohedron and the associahedron.
 - Elements: Ordered partitions of [d+1] with bracketings, e.g, (15*237*((4*69)*8)) is one element for d=7.
 - Covering relation: removing brackets and/or merging blocks.

Below is one maximal chain in $\mathcal{K}A_3$:

$$((3*4)*(2*1)) \prec ((3*4)*12) \prec (3*4*12) \prec 1234$$

(2) showed that $\mathcal{K}\mathcal{A}_{d+1}$ is the face poset of a CW-ball.

Kapranov:

- (1) defined a poset \mathcal{KA}_{d+1} which is a hybrid between \mathcal{O}_{d+1} and \mathcal{K}_{d+1} , the face posets of the permutohedron and the associahedron.
 - Elements: Ordered partitions of [d+1] with bracketings, e.g, (15*237*((4*69)*8)) is one element for d=7.
 - Covering relation: removing brackets and/or merging blocks.

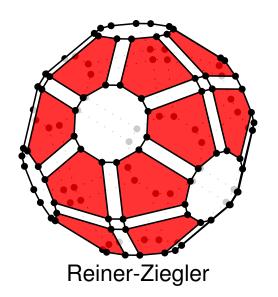
Below is one maximal chain in $\mathcal{K}A_3$:

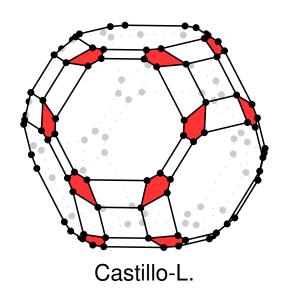
$$((3*4)*(2*1)) \prec ((3*4)*12) \prec (3*4*12) \prec (1234)$$

- (2) showed that $\mathcal{K}\mathcal{A}_{d+1}$ is the face poset of a CW-ball.
- (3) asked whether \mathcal{KA}_{d+1} can be realizable as a polytope. Such a polytope is called a *permuto-associahedron*.

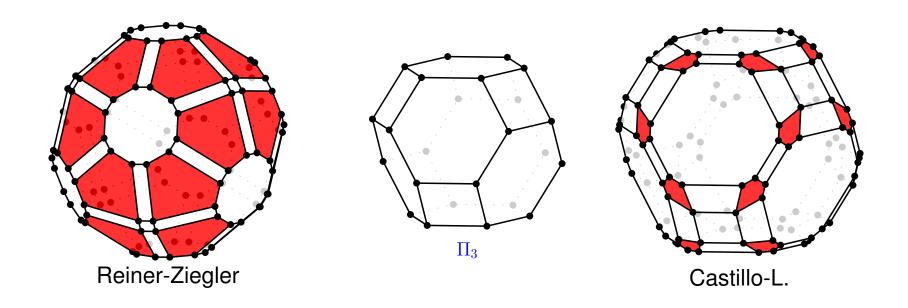
Symmetrization

Realizations of Permuto-associahedra

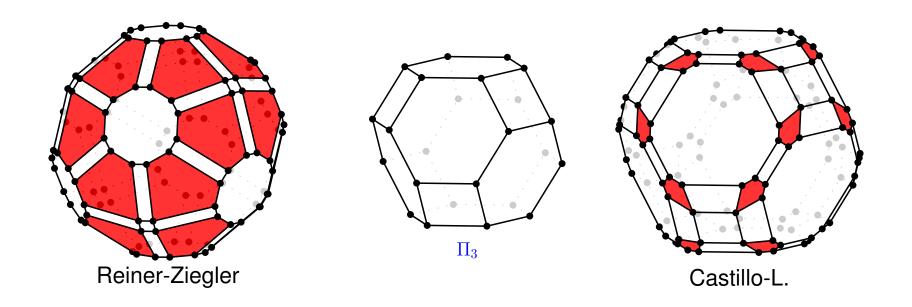




Realizations of Permuto-associahedra



Realizations of Permuto-associahedra



Both Reiner-Ziegler's and our construction of permuto-associahedron can be considered as a \mathfrak{S}_{d+1} -symmetrization of a carefully embedded associahedron.

Questions

ullet What if we symmetrize polytopes P other than associahedra? Can we develop theories to characterize the face poset of the symmetrization in terms of face poset of P?

Questions

- ullet What if we symmetrize polytopes P other than associahedra? Can we develop theories to characterize the face poset of the symmetrization in terms of face poset of P?
- What if we use other reflection group 5 to "symmetrize" polytopes?

PART II:

Symmetrization

• Suppose (W,U) is a pair of dual spaces with a perfect pairing $\langle \cdot, \cdot \rangle : W \times U \to \mathbb{R}$.

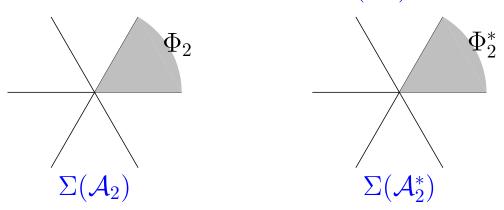
- Suppose (W, U) is a pair of dual spaces with a perfect pairing $\langle \cdot, \cdot \rangle : W \times U \to \mathbb{R}$.
- ullet Let ${\mathcal H}$ be a finite hyperplane arrangement in W with trivial intersection.
 - It induces a simplicial fan on W that we denote $\Sigma(\mathcal{H})$.
 - The reflections defined by hyperplanes in ${\cal H}$ generates a group ${\mathfrak G}$ which acts on W, and dually on U.

- Suppose (W, U) is a pair of dual spaces with a perfect pairing $\langle \cdot, \cdot \rangle : W \times U \to \mathbb{R}$.
- ullet Let ${\mathcal H}$ be a finite hyperplane arrangement in W with trivial intersection.
 - It induces a simplicial fan on W that we denote $\Sigma(\mathcal{H})$.
 - The reflections defined by hyperplanes in ${\mathcal H}$ generates a group ${\mathfrak G}$ which acts on W, and dually on U.
- We assume that
 ö is finite, in which case
 ö is called a finite reflection group.

- Suppose (W, U) is a pair of dual spaces with a perfect pairing $\langle \cdot, \cdot \rangle : W \times U \to \mathbb{R}$.
- ullet Let ${\mathcal H}$ be a finite hyperplane arrangement in W with trivial intersection.
 - It induces a simplicial fan on W that we denote $\Sigma(\mathcal{H})$.
 - The reflections defined by hyperplanes in ${\mathcal H}$ generates a group ${\mathfrak G}$ which acts on W, and dually on U.
- We assume that \mathfrak{G} is finite, in which case \mathfrak{G} is called a *finite reflection group*.
- We arbitrarily choose a chamber Φ of $\Sigma(\mathcal{H})$, and call it the *fundamental chamber*.

- Suppose (W,U) is a pair of dual spaces with a perfect pairing $\langle \cdot, \cdot \rangle : W \times U \to \mathbb{R}$.
- ullet Let ${\mathcal H}$ be a finite hyperplane arrangement in W with trivial intersection.
 - It induces a simplicial fan on W that we denote $\Sigma(\mathcal{H})$.
 - The reflections defined by hyperplanes in ${\mathcal H}$ generates a group ${\mathfrak G}$ which acts on W, and dually on U.
- We assume that of is finite, in which case of is called a finite reflection group.
- We arbitrarily choose a chamber Φ of $\Sigma(\mathcal{H})$, and call it the *fundamental chamber*.

Example. The type-A finite reflection group is isomorphic to \mathfrak{S}_{d+1} . It arises from the braid arrangement \mathcal{A}_d which induces the braid fan $\Sigma(\mathcal{A}_d)$.



Symmetrization

Definition. Let \mathfrak{G} be a finite reflection group and P a polytope in U satisfying certain embedding conditions. The \mathfrak{G} -symmetrization of P is

$$\mathfrak{G}(P) := \operatorname{conv}\{\boldsymbol{x}g : g \in \mathfrak{G}, \boldsymbol{x} \in P\}.$$

Symmetrization

Definition. Let \mathfrak{G} be a finite reflection group and P a polytope in U satisfying certain embedding conditions. The \mathfrak{G} -symmetrization of P is

$$\mathfrak{G}(P) := \operatorname{conv}\{\boldsymbol{x}g : g \in \mathfrak{G}, \boldsymbol{x} \in P\}.$$

Goals

Our main goal is to find the connection between the combinatorics of $\mathfrak{G}(P)$ and that of P. This includes:

- Recover the combinatorics of P from that of $\mathfrak{G}(P)$.
- Describe the combinatorics of $\mathfrak{G}(P)$ in terms of that of P using the geometry of \mathfrak{G} .

Symmetrization

Definition. Let \mathfrak{G} be a finite reflection group and P a polytope in U satisfying certain embedding conditions. The \mathfrak{G} -symmetrization of P is

$$\mathfrak{G}(P) := \operatorname{conv}\{\boldsymbol{x}g : g \in \mathfrak{G}, \boldsymbol{x} \in P\}.$$

Goals

Our main goal is to find the connection between the combinatorics of $\mathfrak{G}(P)$ and that of P. This includes:

- Recover the combinatorics of P from that of $\mathfrak{G}(P)$.
- Describe the combinatorics of $\mathfrak{G}(P)$ in terms of that of P using the geometry of \mathfrak{G} .

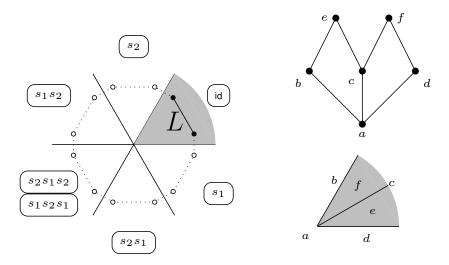
Note: Since for any polytope Q, its face poset $\mathcal{F}(Q)$ is dual to the face poset $\mathcal{F}(\Sigma(Q))$ of its normal fan $\Sigma(Q)$, we study the normal fans instead.

Fundamental Fan

Definition. The *fundamental fan* of P, and denote by $\mathrm{FFan}(P)$ is the (non-complete) fan induced by the intersections $\{\sigma \cap \Phi : \sigma \in \Sigma(P)\}$.

We denote by $\mathcal{Z}(P)$ the face poset of the fundamental fan FFan(P).

Example. Consider the line segment L shown on the left of the figure below.

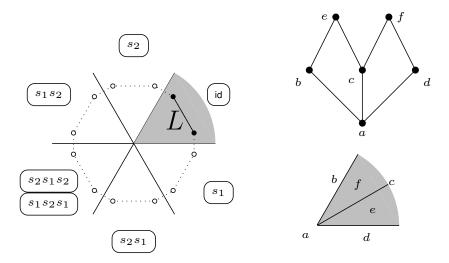


Fundamental Fan

Definition. The *fundamental fan* of P, and denote by $\mathrm{FFan}(P)$ is the (non-complete) fan induced by the intersections $\{\sigma \cap \Phi : \sigma \in \Sigma(P)\}$.

We denote by $\mathcal{Z}(P)$ the face poset of the fundamental fan FFan(P).

Example. Consider the line segment L shown on the left of the figure below.



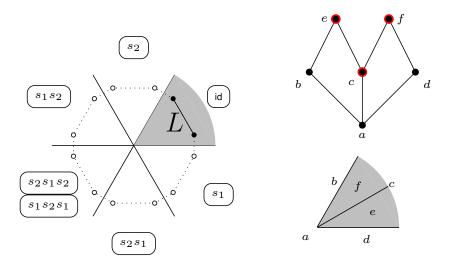
Proposition (Castillo-L.). The face poset $\mathcal{F}(P)$ of P is determined by $\mathcal{Z}(P)$.

Fundamental Fan

Definition. The *fundamental fan* of P, and denote by $\mathrm{FFan}(P)$ is the (non-complete) fan induced by the intersections $\{\sigma \cap \Phi : \sigma \in \Sigma(P)\}$.

We denote by $\mathcal{Z}(P)$ the face poset of the fundamental fan FFan(P).

Example. Consider the line segment L shown on the left of the figure below.

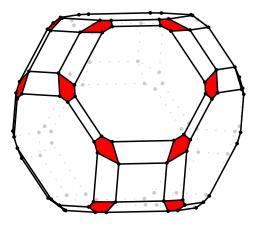


Proposition (Castillo-L.). The face poset $\mathcal{F}(P)$ of P is determined by $\mathcal{Z}(P)$.

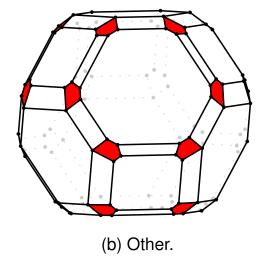
Fundamental Fan (cont'd)

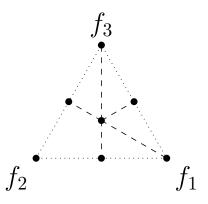
Unfortunately, $\mathcal{Z}(P)$ does **not** determines the combinatorics of $\mathfrak{G}(P)$.

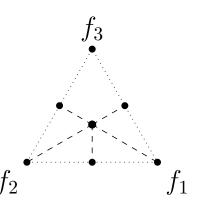
Example. The following two symmetrizations of a pentagon are combinatorially different, while they have combinatorial equivalent fundamental fans.



(a) Permuto-associahedron.



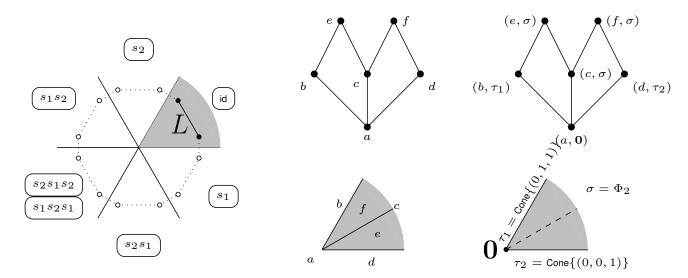




Refined Fundamental Fan

This motivates us to introduce the *refined fundamental fan* of P by separating cones in FFan(P) into different sets according to which face of Φ they "belong to". We denote its face poset by $\mathcal{R}(P)$.

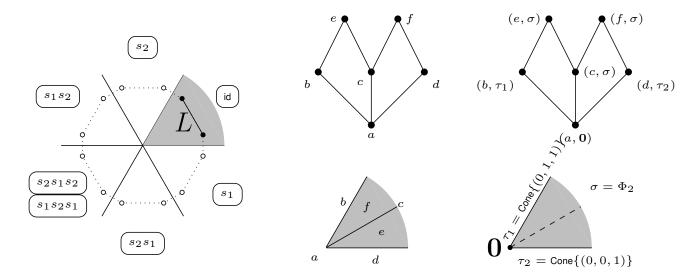
Example. Consider the line segment L again.



Refined Fundamental Fan

This motivates us to introduce the *refined fundamental fan* of P by separating cones in FFan(P) into different sets according to which face of Φ they "belong to". We denote its face poset by $\mathcal{R}(P)$.

Example. Consider the line segment L again.



Theorem (Castillo-L.). The \mathfrak{G} -symmetrization of $\mathcal{R}(P)$ is isomorphic to the dual of $\mathcal{F}(\mathfrak{G}(P))$, so it determines the combinatorics of $\mathfrak{G}(P)$.

Application: Realizing a &-symmetric poset

Given a \mathfrak{G} -symmetric poset \mathcal{F} , e.g., Kapranov's poset \mathcal{KA}_{d+1} is a \mathfrak{S}_{d+1} -symmetric poset.

Want to realize \mathcal{F} as a \mathfrak{G} -symmetrization of some polytope P.

Application: Realizing a \mathfrak{G} -symmetric poset

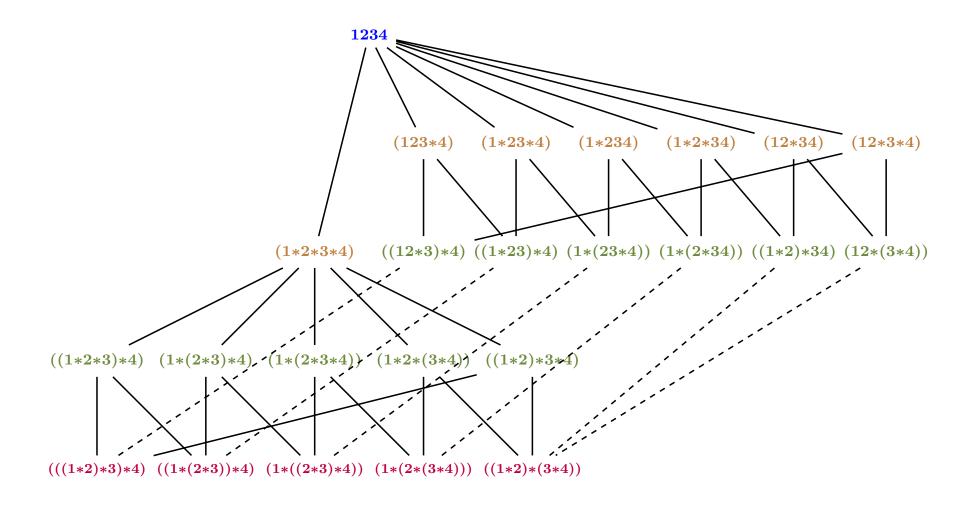
Given a \mathfrak{G} -symmetric poset \mathcal{F} , e.g., Kapranov's poset \mathcal{KA}_{d+1} is a \mathfrak{S}_{d+1} -symmetric poset.

Want to realize \mathcal{F} as a \mathfrak{G} -symmetrization of some polytope P.

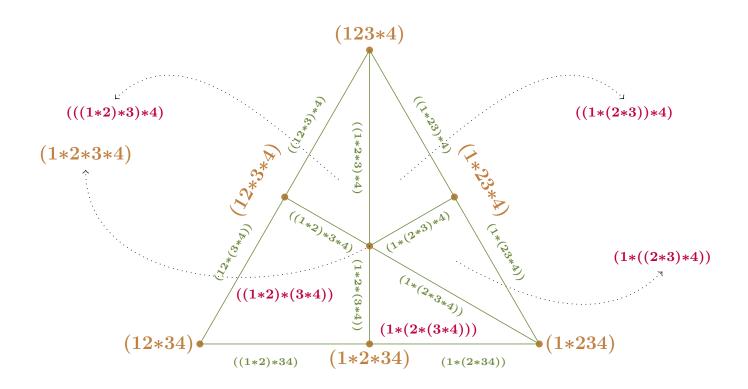
Main Idea:

- Find a \mathfrak{G} -generator \mathcal{T} of \mathcal{F} , that is "compatible" with Φ .
- ullet Our results reduce the original realization problem to realizing the dual of ${\mathcal T}$ as the fundamental fan of some polytope P.

Generator of Kapranov's poset $\mathcal{K}\mathcal{A}_3$



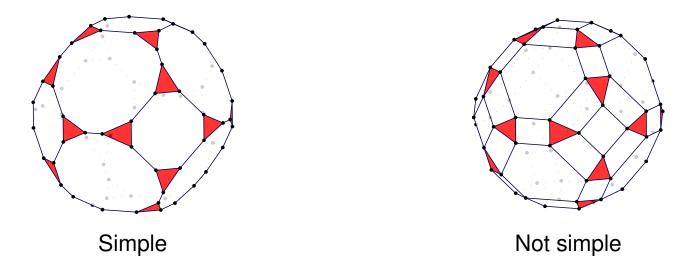
Realizing the generator of Kapranov's poset



THANK YOU!

More Questions

Example. The \mathfrak{S}_4 -symmetrizations of a triangle embedde in two different ways.



Question. How many different combinatorial types are there?