
Math bC, Winter 2020
Mar. 4, 2020

MIDTERM EXAM 2

NAME(print in CAPITAL letters, first name first): - -

N’AME(sign):

ID#:

Instructions: Each of the 1 problems has equal worth. Read each question carefully and answer it
in the space provided. You must show all your work for full credit. Clarity of your solutions may be a
factor when determining credit. Calculators, books or notes are not allowed. The proctors have been
directed not to answer any interpretation questions.

Make sure that you have a total of 5 pages (including this one) with 4 problems.
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1. Find and classify all critical points of the function

1
f(x,y) = x2y — 2xy
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2. Use Lagrange multipliers to find the maximum and the minimum of the function f(x, y) = xy on
the ellipse 4x2 + 9y2 = 32.
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3. Consider the function f(z,y) = x2y.
(a) Find the volume of the solid which is bounded above by the surface z = f(x, y), and below by the
triangle I? in the xy plane with vertices (0,0), (0,2) and (1,0). (Write the double integral in both
orders, but evaluate only in one order.) a a —_x
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(a) Find the average value of the function z = f(x,y) on the triangle R. &
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(a) Compute: _L_
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(b) Determine whether the sequence given by a = converges or not, and, if it

2n+I + 371+ + 5
converges, compute its limit.
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