Math 16C, Winter 2020 Mar. 4, 2020

MIDTERM EXAM 2

NAME(print in CAPITAL letters, first name first):

NAME(sign): _____

ID#: _____

Instructions: Each of the 4 problems has equal worth. Read each question carefully and answer it in the space provided. *You must show all your work for full credit*. Clarity of your solutions may be a factor when determining credit. Calculators, books or notes are not allowed. The proctors have been directed not to answer any interpretation questions.

Make sure that you have a total of 5 pages (including this one) with 4 problems.

1	
2	
3	
4	
TOTAL	

1. Find and classify all critical points of the function

$$f(x,y) = x^{2}y - 2xy - \frac{1}{2}y^{2}.$$

$$f_{x} = 2xy - 2y = 2y(x-1) = 0 \quad x = 1 \text{ if } y = 0$$

$$f_{y} = x^{2} - 2x - y = 0$$
When $x = 1$, $y^{2} = x^{2} - 2x = -1$ $(1, -1)$
When $y = 0$, $x^{2} - 2x = 0$, $x(x-2) = 0$, $x = 0$, $x = 2$
 $(0, 0)$, $(\frac{2}{3}0)$

$$f_{xx} = 2y$$

$$0 \quad 0 \quad -2$$

$$f_{yy} = -1 \quad -1 \quad -1$$

$$f_{xy} = 2x-2 \quad -2 \quad 2$$

$$d = f_{xx} \cdot f_{yy} \quad (f_{xy})^{2} \quad -4 \quad -4$$

$$g_{xddle} \quad f_{xddle} \quad f_{xddle}$$

$$f_{yax}$$

2. Use Lagrange multipliers to find the maximum and the minimum of the function f(x,y) = xy on the ellipse $4x^2 + 9y^2 = 32$.

$$F = xy - \lambda (4x^{2} + 9y^{2} - 32)$$

$$F_{x} = y - 8 \times \lambda = 0 \quad \times \quad 8x^{2}X = 18y^{2}X (\lambda \neq 0)$$

$$F_{y} = x - 18y\lambda = 0 \quad y \quad 4x^{2} = 9y^{2}$$

$$F_{\lambda} = -(4x^{2} + 9y^{2} - 32) = 0$$

$$4x^{2} + 4x^{2} = 32$$

$$8x^{2} = 32, \quad x^{2} = 4, \quad x = \pm 2$$

$$y^{2} = \frac{4}{9}x^{2} = \frac{16}{9}, \quad y = \pm \frac{4}{3}$$

Four C.p. J. XY

$$(-2, -\frac{4}{3})$$
 $\frac{8/3}{6}$ \in max
 $(-2, \frac{4}{3})$ $\frac{-8/3}{-8/3}$ \in mm
 $(2, -\frac{4}{3})$ $\frac{-8/3}{-8/3}$ $(2, \frac{4}{3})$ $\frac{8/3}{6}$

3

3. Consider the function $f(x, y) = x^2 y$.

(a) Find the volume of the solid which is bounded above by the surface z = f(x, y), and below by the triangle R in the xy plane with vertices (0,0), (0,2) and (1,0). (Write the double integral in both orders, but evaluate only in one order.)

(a) Find the average value of the function z = f(x, y) on the triangle R. from (A).

$$\frac{\int \frac{1}{p} dA}{arca of(R)} = \frac{1}{15}$$

area of (R)=1

4.
(a) Compute:
$$\sum_{n=2}^{\infty} \frac{3^{n-2}5^{-n}}{2^n} = \sum_{n=2}^{\infty} \frac{1}{9} \left(\frac{3}{10}\right)^n$$

 $= \frac{1}{9} \cdot \left(\frac{3}{10}\right)^2 \cdot \frac{1}{1 - \frac{3}{10}}$
 $= \frac{1}{10} \cdot \frac{1}{7} = \frac{1}{70}$

(b) Determine whether the sequence given by $a_n = \frac{2^n + 3^n + 4}{2^{n+1} + 3^{n+1} + 5}$ converges or not, and, if it converges, compute its limit.

$$\lim_{N \to \infty} a_{N} = \lim_{N \to \infty} \frac{\binom{2}{3}^{n} + 1 + \frac{4}{3n}}{2\binom{2}{3}^{n} + 3 + \frac{5}{3n}} = \frac{1}{3}$$