Math 21A–C, Fall 2005. Dec. 12, 2005.

## FINAL EXAM

| NAME(print in                                                    | CAPITAL letters, first name first): KEY                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ID#:                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| points. Read ea<br>ALL YOUR We<br>in determining<br>Make sure th | Problem 1 is worth 20 points, and problems 2 through 7 are each worth 30 ch question carefully and answer it in the space provided. YOU MUST SHOW ORK TO RECEIVE FULL CREDIT. Clarity of your solutions may be a factor credit. Calculators, books or notes are not allowed. at you have a total of 10 pages (including this one) with 7 problems. Note that 7 are each given on two pages. Read through the entire exam before beginning |
| 1                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TOTAL                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                         |

3. Consider the function

$$f(x) = \begin{cases} -3x^2, & x < -1, \\ ax + b, & -1 \le x \le 1, \\ x^2, & x > 1. \end{cases}$$
 2 x -1

(a) Determine the numbers a and b so that y = f(x) is continuous for all x.

Continuity at 1: 
$$a+b = 1$$
  
Continuity at -1:  $-a+b = -3$   
 $2b = -2$ ,  $b = -1$ ,  $a = 1-b = 2$ 

(b) Assume a and b are determined as in (a). Is y = f(x) differentiable at x = 1?

$$\lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{+}} \frac{(1+h)^{2} - 1}{h} = \lim_{h \to 0^{+}} \frac{x(2+h) + h^{2} - x}{h}$$

$$= \lim_{h \to 0^{+}} \frac{x(2+h)}{h} = 2$$

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{2(x+h) - x}{h} = 2$$

The two limits are MEST

1. Compute the following limits, in any correct way you can. Give each answer as a finite number,  $+\infty$  or  $-\infty$ .

(a) 
$$\lim_{x\to 2^+} \frac{x^2 - 9x + 3}{\ln(x - 1)} = -\infty$$

$$\lim_{x\to 2^+} \frac{x^2 - 9x + 3}{\ln(x - 1)} = -\infty$$

$$\lim_{x\to 2^+} \frac{x^2 - 9x + 3}{\ln(x - 1)} = -\infty$$

$$\lim_{x\to 2^+} \frac{x^2 - 9x + 3}{\ln(x - 1)} = -\infty$$

$$\lim_{x\to 2^+} \frac{x^2 - 9x + 3}{\ln(x - 1)} = -\infty$$

$$\lim_{x\to 2^+} \frac{x^2 - 9x + 3}{\ln(x - 1)} = -\infty$$

(b) 
$$\lim_{x\to 0} \frac{e^{2x} - 2x - 1}{x^2} = \lim_{x\to 0} \frac{2e^{2x} - 2}{2x} = \lim_{x\to 0} \frac{4e^{2x}}{2} = \frac{2}{2}$$

$$\left(\frac{0}{0}\right), L' + \text{topital} \qquad \left(\frac{0}{0}\right), L' + \text{topital}$$

(c) (Here 
$$x > 0$$
.)  $\lim_{h \to 0} \frac{(x+h)^{3/4} - x^{3/4}}{h} = f'(x) = \frac{3}{4} \times \frac{-1/4}{4}$ 

$$f(x) = x^{3/4}$$

(d) 
$$\lim_{x \to \infty} \left( \sqrt{x^2 + 2x} - \sqrt{x^2 - 2x} \right) = \lim_{x \to \infty} \frac{x^2 + 2x - (x^2 - 2x)}{\sqrt{x^2 + 2x} + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to \infty} \frac{4x}{\sqrt{x^2 + 2x} + \sqrt{x^2 - 2x}} = \lim_{x \to \infty} \frac{4}{\sqrt{1 + \frac{2}{x}} + \sqrt{1 - \frac{2}{x}}}$$

$$= \underline{2}$$

(a)  $f(x) = x^4 \cdot \sqrt{1 - x^3}$  Compute f'(x). Do not simplify.

$$f'(x) = 4 x^3 \sqrt{1-x^3} + x^4 \cdot \frac{1}{2} (1-x^3)^{-1/2}, (-3x^2)$$

(b)  $f(x) = x^2 \tan(3x)$ . Compute f'(x). Do not simplify.

$$f'(x) = 2x \tan(3x) + x^2, \frac{1}{\cos^2 3x}, 3$$

(c) Assume that f(x) satisfies the equation  $(x + f(x))^4 + xf(x) - f(x) = 0$  and that f(0) = 1. Compute f'(0).

$$4(x+f(x))^{3} (1+f'(x)) + f(x) + xf'(x) -f'(x) = 0$$

$$x=0, f(0) = 1:$$

$$4(1+f'(0)) + 1 - f'(0) = 0$$

$$5 + 3f'(0) = 0$$

$$f'(0) = -\frac{5}{3}$$

4. Throughout this problem,  $f(x) = \frac{9(x^2 - 3)}{x^3} = 9(x^{-1} - 3x^{-3}).$ 

Some help with computations below: use  $\sqrt{3} \approx 1.7$ ,  $\sqrt{18} = 3\sqrt{2} \approx 4$ ,  $f(3\sqrt{2}) \approx 1.8$ .

(a) Is this function odd or even?

$$\frac{0dd}{x} : \varphi(-x) = \frac{9(x^2-3)}{-x^3} = -\varphi(x)$$

(b) Determine the domain of y = f(x), its intercepts, and horizontal and vertical asymptotes.

Domain: 
$$x \neq 0$$
  
Interceps:  $(\sqrt{3}, 0)$ ,  $(-\sqrt{3}, 0)$   
In  $f(x) = 0$   $y=0$  honizontal asymptote  
 $x \rightarrow \infty$   $f(x) = -\infty$ ,  $\lim_{x \to 0+} f(x) = +\infty$   $\chi = 0$  vertical asymptote

(c) Determine the intervals on which y = f(x) is increasing and the intervals on which it is decreasing.

$$f'(x) = g(-x^{-2} + gx^{-4}) = -gx^{-4}(x^{2} - g)$$
Critical pts.:  $x = 0, 3, -3$ 

$$\frac{|(-\infty, -3)|(-3, 0)|(0, 3)|(3, \infty)}{|(-\infty, -3)|(-3, 0)|(0, 3)|(3, \infty)}$$
of  $f'$ 

$$\frac{|(-3, -2)|}{|(-3, -2)|}$$
It al min.
$$\frac{|(-3, -2)|}{|(-3, -2)|}$$
It al min.

(d) Determine the intervals on which y = f(x) is concave up and the intervals on which it is concave down.

concave down.

$$f''(x) = g(+2x^{-3} - 36x^{-5}) = 18x^{-5}(x^{2} - 18)$$
 $f''(0) = 0$  at  $x = \pm \sqrt{18}$  undefined at  $x = 0$ .

Sign of  $f(x) = \frac{1}{18} =$ 

Problem 4, continued.

(e) Sketch the graph of y = f(x). Label clearly all local maxima and minima, and inflection points.



(f) Let  $g(x) = \sqrt{x}$ . Determine the domain and range of the composite function f(g(x)). (No further computations are necessary for this!)

Domain: 
$$x>0$$
, i.e.,  $(0,\infty)$   
Range:  $(-\infty, 2]$ 

5. Provide straightforward, and fully justified, answers to the following questions. In each of them, assume that f(x) is a continuous function defined for all x, and f'(x) and f''(x) exist and are continuous for all x.

are continuous for all x. (a)  $f''(x) = \frac{1+3x^2+5x^4}{1+7(\sin x)^2}$ . Can f have a local maximum?

NO[x] f''(x) > 0 for all x, so any critical point is a local minimum.

(b) Let  $f(x) = 5x - 4\cos x$ . How many x-intercepts does f have? Lim  $f(X) = \infty$  ,  $\lim_{X \to -\infty} f(X) = -\infty$  , and  $f(X) = -\infty$  , and f(X

(c) f(0) = 5, f''(0) = 1. Is it possible that  $f(x) \le 5$  for all x?

No. If  $f(x) \leq 5$  for all x, then f has a local max at x=0, so that f'(0)=0.

But the then there must be a local min at x=0 since f''(0)>0. This is impossible.

(d) f(1) = f(3) = f(5) = 0. Must there be an x for which f''(x) = 0?

There must be  $C_1$  in (1,3) so that  $f'(C_1)=0$ . There must be  $C_2$  in (3,5) so that  $f'(C_2)=0$ . Then there must be a number c between  $c_1$  and  $c_2$  so that f''(c)=0. [YES] 6. You have a piece of paper in the shape of semi-circle with radius 1cm. You wish to cut a rectangle from this piece of paper so that one side of the rectangle is along the diameter. Find the dimensions of the rectangle with the largest possible area.

$$A = xy$$

$$\frac{x^2}{4} + y^2 = 1$$

$$y = \sqrt{1 - \frac{x^2}{4}}$$

$$\frac{dA}{dx} = \sqrt{1 - \frac{x^2}{4}} + x \cdot \frac{1}{2} \cdot \left(1 - \frac{x^2}{4}\right)^{-1/2} \cdot \frac{-2x}{4} = 0$$

$$1 - \frac{x^2}{4} + \frac{x^2}{4} = 0$$

$$1 - \frac{x^2}{2} = 0$$

$$x = \sqrt{2}$$

$$y = \frac{\sqrt{2}}{2}$$

$$x = 0$$

7. Let  $f(x) = \frac{1}{2}x^{3/2}$  throughout this problem. Restrict x to  $[0, \infty)$ , the domain of this function. (a) Is y = f(x) one-to-one?

$$f'(x) = \frac{3}{4} x^{1/2} > 0$$
 when  $x > 0$ .  
So  $f$  is increasing, so one -to-one. [YES]

(b) Find the point on the graph which is closest to (2,0). (Don't forget that it is enough to minimize the square of the distance between (2,0) and a point (x,y) on the graph! Also note that  $64 + 4 \cdot 3 \cdot 16 = 16^2$ .)

$$g(x) = D^{2} = (x-2)^{2} + \frac{1}{4} \times^{3}$$

$$g'(x) = 2(x-2) + \frac{3}{4} \times^{2} = 0$$

$$3x^{2} + 8x - 16 = 0$$

$$x = -8 \pm \sqrt{64 + 4 \cdot 2 \cdot 16} = -8 \pm 16 = \frac{4}{3}$$

$$| (0, \frac{4}{3}) | (\frac{4}{3}, \infty) |$$

$$| (0, \frac{4}{3}) | (\frac{4}{3}, \infty) |$$

$$| Global num at x = \frac{4}{3}$$
Point on the graph:  $(\frac{4}{3}, \frac{4}{3\sqrt{3}})$ 

Point on the graph: 
$$\left(\frac{4}{3}, \frac{4}{3\sqrt{3}}\right)$$

Problem 7, continued (still with  $f(x) = \frac{1}{2}x^{3/2}$ ). (c) A particle is moving on the graph of y = f(x). Its position is described by (x, y), where xand y are both functions of time t. At one instant, you observe that x=2 and  $\frac{dx}{dt}=5$ . At what rate is the distance between the particle and point (2,0) changing at this instant?

$$D^{2} = (x-2)^{2} + \frac{1}{4}x^{3}$$
When  $x = 2$ ,  $D^{2} = 2$ ,  $D = \sqrt{2}$ .
$$2D \cdot \frac{dD}{dt} = 2(x-2)\frac{dx}{dt} + \frac{3}{4}x^{2}\frac{dx}{dt}$$
Plug in  $x = 2$ ,  $\frac{dx}{dt} = 5$ ,  $D = \sqrt{2}$ ,
$$2\sqrt{2}\frac{dD}{dt} = 3.5$$

$$\sqrt{\frac{dD}{dt}} = \frac{15}{2\sqrt{2}}$$

(d) Find a point on the graph of y = f(x) at which the tangent line goes through the point (2,0).

Point: 
$$(a, \frac{1}{2}a^{3/2})$$
  
Slope:  $\frac{3}{4}a^{1/2}$   
Line:  $\frac{3}{4}a^{1/2}(x-a) = y - \frac{1}{2}a^{3/2}$   
Plug in  $x = 2$ ,  $y = 0$ :  
 $\frac{3}{4}a^{1/2}(2-a) = -\frac{1}{2}a^{3/2}$   
 $\frac{3}{4}a^{1/2}(2-a) = -2a$   
 $(6-3a) = -2a$   
 $\frac{a=6}{b}$   
Pt.  $(6, \frac{1}{2}b^{3/2})$