Math 21A–C, Fall 2005. Nov. 23, 2005.

MIDTERM EXAM 2

NAME(print in CAPITAL l	letters, first name first): KEY	
ID#:		
answer it in the space provide CREDIT. Clarity of your so or notes are not allowed.	four problems is worth 25 points. Read each question ded. YOU MUST SHOW ALL YOUR WORK TO RE olutions may be a factor in determining credit. Calca total of 5 pages (including this one) with 4 problems. nning to work.	ECEIVE FULL culators, books
1		
2		
3		
4		
TOTAL		

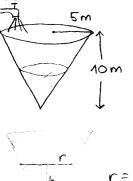
1.(a) Compute the derivative of $y = \sqrt{1 + \sqrt{\sin x}}$. Do not simplify!

$$y' = \frac{1}{2} \left(1 + \sqrt{\sin x} \right)^{-1/2} \cdot \frac{1}{2} \left(\sin x \right)^{-1/2}, \cos x$$

(b) Find the slope of the tangent line to the curve $x^2 + y^3 + xy = 7$ at the point (2,1).

$$2x + 3y^2 \frac{dy}{dx} + y + x \cdot \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{2x + y}{3y^2 + x}$$


Plug 10
$$x=2$$
, $y=1$, to get
$$-\frac{4+1}{3+2} = -\frac{1}{2}$$

(c) Compute the linearization of $f(x) = x + \ln(x^2 - 3)$ at x = 2. (2) = 2

$$f'(x) = 1 + \frac{1}{x^2 - 3} \cdot 2x$$
; $f(2) = 5$

$$L(x) = 2 + 5(x-2) = 5x - 8$$

- 2. Water flows into a conical reservoir as shown in the picture. At one point, the water level in the reservoir is measured to be 4 m, and the rate of inflow of water is measured to be 2 m³/sec. Find the following two rates. (The volume of a cone is $\frac{1}{3}\pi r^2 h$, where r is the radius of the circular base of the cone and h is its height.)
- (a) The rate at which the water level in the reservoir is increasing.

$$V = \frac{1}{3} \pi r^2 h = \frac{1}{12} \pi h^3$$

$$\frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt}$$

$$Plug nu h = 4, \frac{dV}{dt} = 2$$

$$2 = \frac{1}{4} \pi \cdot 16 \cdot \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{1}{2\pi} \qquad (-m/sec)$$

(b) The rate at which the area of the water surface in the reservoir is increasing.

$$A = \pi r^2 = \frac{\pi}{4} h^2$$

$$\frac{dA}{dt} = \frac{\pi}{4} 2h \frac{dh}{dt} = \frac{\pi}{2} h \frac{dh}{dt}$$

$$P \log m \quad h = 4, \quad \frac{dh}{dt} = \frac{1}{2\pi} \text{ to get}$$

$$\frac{dA}{dt} = 1 \quad \left(\frac{m^2}{4ec}\right)$$

3. At time t, the position (x, y) of a particle moving on a plane is given by $x = t^2 - t$, $y = t^2 - 2t$. (a) Find the tangent to the curve on which the particle is moving at t = 3.

$$\frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dt}} = \frac{2t-2}{2t-1}$$
Att=3, slope = \frac{4}{5}, pout: (6,3)

Tangent: $y-3 = \frac{4}{5}(x-6)$; $y = \frac{4}{5}x - \frac{9}{5}$

(b) Find the time t at which the tangent to the curve is perpendicular to the line $y = -\frac{1}{3}x + 17$.

Slape of the tangent = 3
$$2t-2 = 3 \qquad 2t-2 = 3(2t-1)
2t-1 \qquad 2t-2 = 6t-3
4t = 1
$$t = \frac{1}{4}$$$$

4. Consider the function $f(x) = 20x^3 - 3x^5$.

$$\frac{0 \, dd}{f(-x)} = 20(-x)^3 - 3(-x)^5 = -(20x^3 - 3x^5) = -f(x)$$

$$f'(x) = 60x^2 - 15x^4 = 15x^4 (4 - x^2)$$

 $x = 0, 2, -2$

(c) Determine the absolute maximum and the absolute minimum of this function on [-1,3]. (Help with calculations: $20 \cdot 3^3 - 3^6 = -189$.) Then do the same for the interval [-3,1].

$$\frac{x}{-1}$$
 $\frac{+(x)}{-17}$
 $\frac{0}{0}$ $\frac{0}{2}$ $\frac{20.8 - 3.32 = 64}{3} + max$
 $\frac{3}{-189}$ $\frac{4}{-189}$ min $\frac{1}{100}$ $\frac{1$

As the function is odd, the max. on
$$[-1,3]$$
 is 189, and the min. there is -64 .