
Math/Stat 235, Fall 2005 (J. Gravner).

�����������
	������������	�����������	������������

1. Total variation distance.

Let X and Y be integer-valued random variables. The total variation distance between two laws µX

and µY (or, with an abuse of terminology, X and Y , or X and µY , etc.)

dTV (X, Y ) = dTV (µX , µY ) = sup
A⊂Z

|P (X ∈ A) − P (Y ∈ A)|.

Proposition 1.

dTV (X, Y ) =
1

2

∑

k∈Z

|P (X = k) − P (Y = k)|.

Proof. Denote the RHS by M . Use |x| = 2x+ − x = 2x− + x, to get

M =
∑

k∈Z

(P (X = k) − P (Y = k))+ =
∑

k∈Z

(P (X = k) − P (Y = k))−,

as the sum without the absolute value is 0. Let a =
∑

k∈A(P (X = k) − P (Y = k))+, b =
∑

k∈A(P (X =
k)−P (Y = k))−. Then 0 ≤ a, b ≤ M , so |P (X ∈ A)−P (Y ∈ A)| = |a− b| ≤ M . This demonstrates the
“≤” part, to get the “≥” one, take A = {k : P (X ∈ A) > P (Y ∈ A)}. �

From now on, let Pλ denote the Poisson probability function with parameter λ, that is Pλ(k) =
e−λλk/k! for k ≥ 0, and Pλ(A) =

∑

k∈A Pλ(k).

Proposition 2. For any α, λ > 0,
dTV (Pλ, Pλ+α) ≤ α.

In fact, we also have the upper bound α/
√

λ + α. For the proof, see the book “Poisson Approximation,”
by A. D. Barbour, Lars Holst, and Svante Janson, on which these notes are based. We will not use this
inequality.

Proof. Recall that Pλ+α is the law of the indpendent sum of two Poissons, with laws Pλ and Pα. Trivially,
Pλ is the independent sum of a Pλ r.v. and a random variable with law δ0 = 1{0}. Therefore

∑

k∈Z

|Pλ+α(k) − Pλ(k)|

=
∑

k

|
∑

`

(Pλ(`)Pα(k − `) − Pλ(`)δ0(k − `)|

≤
∑

`

Pλ(`)
∑

k

|Pα(k − `) − δ0(k − `)|

=
∑

`

Pλ(`)
∑

k

|Pα(k) − δ0(k)|

=
∑

k

|Pα(k) − δ0(k)|

= dTV (Pα, δ0) = 2
∑

k

(Pα(k) − δ0(k))− = 2(1 − e−α) ≤ 2α. �
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2. The key estimate.

Fix an A ⊂ Z+. Then the Stein’s equation for the function fA : Z+ → R is

(1) 1{k∈A} − Pλ(A) = λfA(k + 1) − kfA(k), fA(0) = 0,

where Pλ is the Poisson probability. Note that fA is uniquely determined by (1).
In other words, if L is the operator on functions f : Z → R, given by Lf(k) = λf(k + 1) − kf(k),

k ≥ 0, and gA(k) = 1{k∈A} − Pλ(A), then fA is the unique function that solves Lf = gA, f(0) = 0. Note
right away that L is linear, and

gA∪B = gA + gB if A ∩ B = ∅,
gAc = −gA.

These properties imply

(2)
fA∪B = fA + fB if A ∩ B = ∅,
fAc = −fA.

For f : Z → R, let
∆f = sup{|f(k + 1) − f(k)| : k ≥ 1}.

If fact fA can be computed – by induction we get

fA(k + 1) =
1

λ
1{k∈A} +

k

λ2
1{k−1∈A} +

k(k − 1)

λ3
1{k−2∈A} + · · · + k!

λk+1
1{0∈A}

−
(

1

λ
+

k

λ2
+

k(k − 1)

λ3
+ · · · + k!

λk+1

)

Pλ(A).

Then, if we set Uk = {0, 1, . . . , k},

(3)

fA(k + 1) =
k!

λk+1
eλ[Pλ(A ∩ Uk) − Pλ(A)Pλ(Uk)]

=
k!

λk+1
eλ[Pλ(A ∩ Uk) − Pλ(A ∩ Uk)Pλ(Uk) + Pλ(A ∩ Uk)Pλ(Uk) − Pλ(A)Pλ(Uk)]

=
k!

λk+1
eλ[Pλ(A ∩ Uk)Pλ(U c

k) + Pλ(A ∩ U c
k)Pλ(Uk)].

For A ⊂ Z, write An = A ∩ Un and A′
n = A \ An. Then it follows from the first line of (3) that, for

every fixed k, fA′

n
(k + 1) → 0 as n → ∞. Therefore, by the first line of (2),

(4) fAn
(k + 1) → fA(k + 1) as n → ∞,

pointwise in k.

Lemma. ∆fA ≤ λ−1(1 − e−λ) ≤ min(1, λ−1).

Proof. What we need to demonstrate is that

(5) fA(k + 1) − fA(k) ≤ λ−1(1 − e−λ),
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uniformly in A and k ≥ 1. Indeed, by (5) and the second line of (2),

fA(k + 1) − fA(k) = −(fAc(k + 1) − fAc(k)) ≥ −λ−1(1 − e−λ),

thus |fA(k + 1) − fA(k)| ≤ λ−1(1 − e−λ).
To prove (5) we may, by (4), assume that A is finite. In this case, we have, by (2),

(6) fA =
∑

j∈A

fj

where fj is the abbreviation for f{j}. By the first line of (3),

fj(k + 1) =
k!

λk+1
eλPλ(j)[1{j≤k} − Pλ(Uk)].

If k ≥ j, then

fj(k + 1) =
1

λ
Pλ(j)

∞
∑

i=1

λi

(i + k)(i − 1 + k) · · · (1 + k)
,

which is positive and decreasing in k. If k < j, then

fj(k + 1) = − 1

λ
Pλ(j)

(

1 +
k

λ
+

k(k − 1)

λ2
+ · · · + k!

λk

)

,

which is negative and decreasing in k. The only k ≥ 1 for which fj(k + 1)− fj(k) ≥ 0 then is k = j. For
j ≥ 1, by the third line of (3),

fj(j + 1) − fj(j) =
j!

λj+1
eλPλ(j)Pλ(U c

j ) − (j − 1)!

λj
eλPλ(j)Pλ(Uj−1)

=
1

λ

∞
∑

i=j+1

λi

i!
e−λ +

1

j

j−1
∑

i=0

λi

i!
e−λ

=
e−λ

λ





∞
∑

i=j+1

λi

i!
+

j
∑

i=1

λi

i!
· i

j





≤ e−λ

λ

∞
∑

i=1

λi

i!
= λ−1(1 − e−λ).

For j = 0, we merely observe that f0(k + 1) − f0(k) ≤ 0 for k ≥ 1. Thus we have, by (6), for every A
and k ≥ 1,

fA(k + 1) − fA(k) =
∑

j∈A

(fj(k + 1) − fj(k)) ≤ fk(k + 1) − fk(k) ≤ λ−1(1 − e−λ),

which proves (5) and ends the proof. �

The essence of the Chen-Stein method is that an estimate

(7) E[λfA(W + 1) − WfA(W )] ≤ α,
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where α does not depend on A, immediately implies (as we can apply it to fAc = −fA) the same bound
for the absolute value and hence for the total variation distance from Pλ:

dTV (W, Pλ) = sup
A

|P (W ∈ A} − Pλ(A)| = sup
A

|E[λfA(W + 1) − WfA(W )]| ≤ α.

To get (7) using the Lemma, one needs to produce ∆fA as a factor in an upper bound for E[λfA(W +
1) − WfA(W )]. This can be done in many cases when W is a sum of mildly dependent indicators.

3. The theorems.

Suppose that Ii, i ∈ Γ are indicators, where Γ is a finite index set. Let pi = E(Ii), W =
∑

i∈Γ Ii,
Wi = W − Ii, and λ = EW =

∑

i∈Γ pi.
Assume first that these are independent indicators. Then Wi is independent of Ii, so that

E[λfA(W + 1) − WfA(W )] =
∑

i∈Γ

[piEfA(W + 1) − E(IifA(W ))]

=
∑

i∈Γ

[piEfA(W + 1) − E(IifA(Wi + 1))]

=
∑

i∈Γ

[piEfA(W + 1) − piE(fA(Wi + 1))]

=
∑

i∈Γ

p2
i E[fA(W + 1) − fA(Wi + 1)|Ii = 1],

the last line because W +1 = Wi +1 on {Ii = 0}. On {Ii = 1}, however, W +1 = (Wi +1)+1, therefore
the above expression is bounded above by ∆fA ·∑i∈Γ p2

i . This implies the following theorem, originally
due to L. Le Cam.

Theorem 1. If Ii are independent

dTV (W, Pλ) ≤ min(1, λ−1)
∑

i∈Γ

p2
i .

.
The first generalization of Theorem 1 is in the direction of local dependence. Assume that each

indicator Ii has a set of indices Γi so that i /∈ Γi and so that i 6= j /∈ Γi implies Ij is independent of Ii.

Theorem 2.

dTV (W, Pλ) ≤ min(1, λ−1)





∑

i∈Γ

p2
i +

∑

i∈Γ,j∈Γi

(pipj + E(IiIj))



 .

.

Proof. Let Zi =
∑

j∈Γi
Ij and Yi = W − Ii − Zi. The point is that Yi are independent Ii. From here on

the proof proceeds on familiar grounds

E[λfA(W + 1) − WfA(W )]

=
∑

i∈Γ

[piEfA(W + 1) − E(IifA(Wi + 1))]

=
∑

i∈Γ

[piE(fA(W + 1) − fA(Yi + 1)) − E(IifA(Yi + Zi + 1) − fA(Yi + 1))].
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Now by telescoping

fA(W + 1) − fA(Yi + 1) ≤ ∆fA · (Zi + Ii),

|fA(Yi + Zi + 1) − fA(Yi + 1)| ≤ ∆fA · Zi,

and so

E[λfA(W + 1) − WfA(W )] ≤ ∆fA ·
∑

i∈Γ

[pi(EZi + pi) + E(IiZi)]

≤ min(1, λ−1)
∑

i∈Γ

[p2
i + piEZi + E(IiZi)],

by the Lemma, and this is equivalent to the claim. �

The second approach is coupling . The basic version requires that, for a fixed i, Ij and Jji are con-
structed on the same probability space so that the following equality in distribution between the two
vectors holds

(Jji)j 6=i
d
= (Ij)j 6=i | Ii = 1.

For the method to work, we expect Jji not to be very far from Ij , otherwise any coupling (say, the
independent one) would do.

Theorem 3. Under any coupling as above

dTV (W, Pλ) ≤ min(1, λ−1)





∑

i∈Γ

p2
i + pi

∑

j 6=i

E|Jji − Ij |



 .

Proof. Let Vi =
∑

j 6=i Jji. Then

Vi + 1
d
= W | Ii = 1.

Now,

E[λfA(W + 1) − WfA(W )]

=
∑

i∈Γ

[piEfA(W + 1) − E(IifA(W ))]

=
∑

i∈Γ

pi[EfA(W + 1) − E(fA(W )|Ii = 1)]

=
∑

i∈Γ

pi[EfA(W + 1) − E(fA(Vi + 1))]

≤ ∆fA ·
∑

i∈Γ

piE|W − Vi|

≤ min(1, λ−1)





∑

i∈Γ

piE(Ii +
∑

j 6=i

|Ij − Jji|)



 ,

which is equivalent to the claim. �

If a coupling exists so that Jji ≥ Ij (resp. Jji ≤ Ij) for all i and j 6= i, then Ii are positively (resp.
negatively) related .
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Note that positively related indicators are positively correlated:

E(Ij) ≤ E(Jji) = E(Ij |Ii = 1) = E(IiIj)/E(Ii).

The opposite implication does not hold, as positive relatedness is about more than pairs of indicators.
In the positively related case,

piE|Jji − Ij | = piE(Jji − Ij) = E(IiIj) − pipj ,

while in the negatively related case,

piE|Jji − Ij | = piE(Ij − Jji) = pipj − E(IiIj).

Corollary 1.

(1) In the positively related case

dTV (W, Pλ) ≤ min(1, λ−1)



 2
∑

i∈Γ

p2
i +

∑

i,j,i6=j

E(IiIj) − λ2





= min(1, λ−1)

[

2
∑

i∈Γ

p2
i + VarW − λ

]

.

(2) In the negatively related case

dTV (W, Pλ) ≤ min(1, λ−1)



λ2 −
∑

i,j,i6=j

E(IiIj)





= min(1, λ−1) [ λ − Var W ] .

Note that the indicators Jji do not explicitly appear in the Corollary. It is therefore enough to know
that they exist without an explicit construction. Such existence theorems do exist for many cases (see
Barbour et al.). Note also that for negatively related indicators, for W to be close to a Poisson random
variable, it is enough that EW be close to VarW , something that almost looks too good to be true!

Next corollary covers the case when positive relatedness is violated locally. A similar result of course
holds for negative relatedness.

Corollary 2. Assume that Γn
i are sets of indices such that i /∈ Γn

i and such that i 6= j /∈ Γn
i implies

Jji ≥ Ij . Then

dTV (W, Pλ)

≤ min(1, λ−1)



 2
∑

i∈Γ

p2
i − λ2 +

∑

i,j,i6=j /∈Γn

i

E(IiIj) +
∑

i,j,j∈Γn

i

(2pipj + E(IiIj))



 .

Proof. For j ∈ Γn
i simply estimate piE|Jji − Ij | ≤ piE(Jji + Ij) = E(IiIj) + pipj to get

∑

i∈Γ



 p2
i + pi

∑

j 6=i

E|Jji − Ij |





≤
∑

i

p2
i +

∑

i,i6=j /∈Γn

i

(E(IiIj) − pipj) +
∑

i,i6=j∈Γn

i

(E(IiIj) + pipj)

=
∑

i

p2
i +

∑

i,i6=j /∈Γn

i

E(IiIj) −
∑

i,j

pipj +
∑

i

p2
i +

∑

i,i6=j∈Γn

i

pipj

+
∑

i,i6=j∈Γn

i

(E(IiIj) + pipj).
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This finishes the proof, as
∑

i,j pipj = λ2. �

4. Examples.

Example 1: Records . Here, Ii, i = 1, . . . , n are independent with pi = 1/i. Then λ = λn = 1 + · · · + 1
n

and by Theorem 1

dTV (W, Pλ) ≤ min(1, λ−1)

n
∑

i=1

p2
i = O

(

1

log n

)

,

which is of some worth by itself, but we also get the CLT (assuming Z is a r.v. with µZ = Pλ, and N a
standard normal r.v.)

P

(

W − λn√
λn

≤ x

)

= P

(

Z − λn√
λn

≤ x

)

+ O
(

1

log n

)

→ P (N ≤ x)

as n → ∞, by the CLT for Poisson.

Example 2: Birthday Problem. Fix an integer a ≥ 2 throughout. Sample, with replacement, k times (i.e.,
choose k people) from a set of n birthdays. Let Γ be the set of all subsets of size a of k people, Ii the
indicator of the event that all members of i have the same birthday and W = Wn, k =

∑

i∈Γ Ii. Note

that |Γ| =
(

k
a

)

. Then

λ = λn = EW =

(

k

a

)

n−a−1 =
ka

a!na−1
+ O

(

ka

na−1

)

,

if a is large. Take k = kn = c · n(a−1)/a. This makes

λ =
ca

a!
+ O

(

1

n(a−1)/a

)

.

This is a local problem, so we seek to apply Theorem 2, with Γi = {j : i ∩ j 6= ∅} \ {i}. We have

∑

i

p2
i =

(

k

a

)

n−2(a−1) = O
(

ka

n2(a−1)

)

= O
(

1

na−1

)

,

and
∑

i,j∈Γi

pipj =

(

k

a

) a−1
∑

`=1

(

a

`

)(

k − a

a − `

)

n−2(a+1) = O
(

kaka−1

n2(a−1)

)

= O
(

1

n(a−1)/a

)

,

and

∑

i,j∈Γi

E(IiIj) =

(

k

a

) a−1
∑

`=1

(

a

`

)(

k − a

a − `

)

n−(2a−`−1)) = O
(

ka
a−1
∑

`=1

ka−`n−(2a−`−1))

)

= O
(

1

n1/a

)

.

So Theorem 2 (together with Proposition 2) implies

dTV (W, Pca/a!) = O
(

1

n1/a

)

.
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Example 3: Runs . Build a vector (X1, . . . , Xn) in which each component is independently 1 with proba-
bility p and 0 with probability 1 − p. Declare X0 = 0. Think of p as fixed and n as large. A run at i of
size at least t is the pattern 0111 . . .1, with t 1’s, the first of which is in i. The initial 0 is important – it
is used for “declumping,” as long runs occurs in clumps. How many such runs do we have?

Let Ii indicate the event that there is a run for size at least t at i, i = 1, . . . , n− t+1, and W = Wn,t =
∑

i Ii. So
EW = pt + (n − t)(1 − p)pt = npt(1 − p) + (1 + t(1 − p))pt.

Take t = tn = − logn/ log p + c, where c = cn is bounded. (Note that t must be an integer, so we cannot
assume that c is a constant.) Then pt = pc/n and

λ = EW = pc(1 − p) + O
(

log n

n

)

.

Also
∑

i,j∈Γi

E(IiIj) = 0

and
∑

i,j∈Γi

pipj ≤ n(2t + 1)p2t = O
(

log n

n

)

.

Therefore,

dTV (W, Ppc(1−p)) = O
(

log n

n

)

.

It follows that P (no contiguous interval of 1’s of size ≥ t) = P (W = 0) = epc(1−p) + O
(

log n
n

)

.

Example 4: Isolated vertices in random graphs . Build a random graph on {1, . . . , n}, with an (undirected)
edge between each pair {i, j} independently with probability p. The number of edges is thus Binomial
with parameters

(

n
2

)

and p. Let Ii indicate the event that the vertex i is isolated (not connected to any

other vertex). Then λ = λn = EW = n(1 − p)n−1, and the question is how large should p = pn be so
that W is not likely 0. If we take

p =
log n

n
+

c

n
,

then

λ = e−c + O
(

log2 n

n

)

.

Clearly Ii and Ij are dependent for all i and j, so the local approach will not work. This however
is one of the simplest coupling cases. In fact, Jji can be defined on the original probability space: let
Jji indicate the event that j is isolated after all the edges (if any) emanating from i are removed. The
conditional distribution property (8) is then clearly satisfied. (The event that Ii = 0 is exactly the event
that the n − 1 specific edges emanating from i are missing.) Moreover, Ij ≤ Jji, so we need to estimate

∑

i

p2
i = n(1 − p)2(n−1) =

λ2

n
= O

(

1

n

)

,

and
∑

i,j,i6=j

E(IiIj) = n(n − 1)(1 − p)2n−3 = λ2(1 − p)−1 − λ(1 − p)n−2

= λ2 + O
(

pλ2 +
λ2

n

)

= λ2 + O
(

log n

n

)

.
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This proves that

dTV (W, Pe−c) = O
(

log2 n

n

)

.

and thus that

P (W = 0) = e−e−c

+ O
(

log2 n

n

)

.

A well known theorem for random graphs shows that no matter how p varies with n, P (W = 0, graph
not connected) → 0 as n → ∞. So this formula also gives us a probability estimate for connectedness of
a random graph.

Another note is that one can play this game for other values of p and get useful estimates. For example,
if p = cn−1 log n, c < 1, then λ = n1−c + O

(

n−clog2 n
)

,

∑

i

p2
i = O

(

n1−2c
)

,

and
∑

i,j,i6=j

E(IiIj) = λ2 + O
(

n1−2clog n
)

.

It follows that

dTV (W, Pλ) = O
(

1

λ
· n1−2clog n

)

= O
(

log n

nc

)

.

and consequently

dTV (W, Pn1−c) = O
(

log2 n

nc

)

.

It follows that n−(1−c)/2(W − n1−c)
d−→ N(0, 1), by the CLT for Poisson.

Example 5: Fixed points in random permutations . Let (π(i))n
i=1 be a random permutation, Ii = 1{π(i)=i}

and

Jji =

{

Ij , if π(i) = i,

1{j fixed after i and π(i) are interchanged}, otherwise.

Now to check (8), imagine the random permutation as ordering of numbers 1, . . . , n, and imagine it being
constructed by first choosing the place for i (i.e., π(i)), then independently choosing the order of the
other n− 1 numbers. The final deterministic step then builds the ordering of n numbers. What we need
to check to verify (8) is that the second case above (interchanging i with the number in place i) keeps the
n − 1 numbers in the uniform random order. Assume that π(i) = j > i. Then this operation cyclically
permutes j − i numbers in the (n − 1)-ordering, which of course does not spoil uniformity. (In fact, any
deterministic permutation applied to the (n − 1)-ordering preserves uniformity, hence any independent
random permutation also does.)

The rest is easy. First, Jji ≥ Ij , we already know that EW = VarW = 1, and
∑

i p2
i = 1/n. It follows

that

dTV (W, P1) = O
(

1

n

)

,

which looks good, but is in fact very far from a realistic estimate. It is relatively easy to do explicit
calculations to show that in this case

dTV (W, P1) = O
(

2n

n!

)

,
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so there is practically no difference between µW and P1 for large n. Barbour et al. has an entire chapter
on when the Chen-Stein method gives correct order of dTV .

Another example in this vein are “approximate fixed points.” Let Ii indicate the event that |π(i)−i| ≤
1. In this case

Jji =

{

Ij , if Ii = 1,

1{j fixed after i and a random number among π(i−1),π(i),π(i+1) are interchanged}, otherwise.

(Omit π(i− 1) above if i = 1 and π(i + 1) if i = n.) Checking (8) is very similar to the above case. Then
Jji ≥ Ij if |j − i| ≥ 3. Also, we have λ = EW = 3 + O(1/n),

∑

i p2
i = O(1/n),

∑

i,j,j∈Γn

i

(2pipj + E(IiIj)) = O
(

n · 1

n2

)

= O
(

1

n

)

,

and
∑

i,j,j /∈Γn

i

E(IiIj) =
∑

i,j,|j−i|≥3

9

n(n − 1)
+ O

(

1

n

)

= 9 + O
(

1

n

)

.

Therefore, in this case we also have

dTV (W, P3) = O
(

1

n

)

.

Example 6: Coupon collector . In this example we have k coupons, chosen independently at random from
{1, . . . , n}. Let Ii be the indicator of the event that i is missing from the collection. The coupling in this
case is

Jji =

{

Ij , if Ii = 1,

1{j missing after all existing i are indep. exchanged for random coupon not i} , otherwise.

This is a negatively related case: Jji ≤ Ij .
Take k = n log n + cn. Then

λ = EW = n

(

1 − 1

n

)k

= e−c + O
(

log n

n

)

and

∑

i,j,j 6=i

E(IiIj) = n(n − 1)

(

1 − 2

n

)k

= n(n − 1)e−2k/n+O(k/n2)

=

(

1 − 1

n

)

e−2c

(

1 + O
(

log n

n

))

= e−2c + O
(

log n

n

)

.

It follows that

dTV (W, Pe−c) = O
(

log n

n

)

.

So in particular if Tn is the first time the collector has full collection,

P (Tn ≤ k) = P (W = 0) = e−e−c

+ O
(

log n

n

)

,
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so n−1(Tn − n log n) converges in distribution.
A very similar argument shows that with Ii indicating the event that the number of representatives of

i is at most 1, then the correct scaling for Poisson limit is k = n logn + n log log n + cn.

Example 6: Hypergeometric distribution. Arrange m 1’s and N − m 0’s at random to form a random
N -vector. Let Γ = {1, . . . , n} and let Ii indicate the event that a 1 is in the position i. Then W has
hypergeometric distribution

P (W = j) =

(

m
j

)(

N−m
n−j

)

(

N
n

)

with

λ = EW =
nm

N
, VarW =

mn(N − n)(N − m)

N2(N − 1)
.

(This is a straightforward, but tedious computation.) Also Ii are negatively related with

Jji =

{

Ij , if Ii = 1,

1{1 at position j after a randomly chosen 1 has been switched to 0}, otherwise.

Therefore

dTV (W, Pλ) = min(1, λ−1)
N

N − 1

(

n

N
+

m

N
− nm

N
− 1

N

)

.

This works well if both n and m are o(N).


