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Packard’s Snowflakes

In a 1984 paper, N. Packard proposed two models for snowflake growth:

• A variant of diffusion limited aggregation (DLA).
• A class cellular automata on a triangular lattice T with the property

that a site having exactly one occupied (i.e., frozen) neighbor always
becomes occupied at the next time, but a site with exactly two
occupied neighbors does not. Idea: in real snowflakes growth favors
the tips of the crystal.

A more realistic-looking DLA dynamics was developed by Reiter (2005),
while the CA approach was popularized by Wolfram in various papers
and his 2002 book.
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Comparison between a Packard’s CA and a real snowflake.
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Simulations

A fortuitous correspondence between T and Z2, with neighborhood of 0

N =
• •

• 0 •
• •

,

lets us use Cartesian coordinates, and easily simulate the dynamics.
Here we use MCell .

Examples:

• Hex 1. A site joins the crystal iff it has exactly one occupied neighbor.
• Hex 135. A site joins the crystal iff the number of occupied neighbors

is odd.
• Hex 134.
• Hex 1456.
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Realism?

Packard’s snowflakes have been widely publicized to illustrate how
very simple algorithms can emulate complex natural phenomena. For
example:

“An elementary schoolchild could look at any of the gorgeous
pictures of computer screens in Packard’s collection and instantly
identify it as a snowflake.”
– Steven Levy, Artificial Life, 1992
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Mathematical framework

Represent T by Z2, with the neighborhood N of (0, 0) consisting of itself
and the six sites (±1, 0), (0,±1), and ±(1, 1). The neighborhood of x is
then x +N .

At ⊂ Z2 is the set of occupied sites (or 1’s) at time t = 0, 1, 2 . . . .

Solidification: At ⊂ At+1.

Whether x /∈ At belongs to At+1 depends only on the number of sites
it sees in At, that is, on |(x + N ) ∩ At|. Thus there is a function π :
{1, 2, 3, 4, 5, 6} → {0, 1} such that, for x /∈ At, π(|(x + N ) ∩ At|) = 1 iff
x ∈ At+1. We specify π by listing all n for which π(n) = 1, e.g. Hex 13.
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Initial and final sets

Our canonical choice is A0 = {0}, although we are interested in arbitrary
finite initial sets.

For any solidification dynamics and every A0, the final set A∞ exists as
a sitewise limit of At, and A∞ = ∪t≥0At.

We assume that π(1) = 1, π(2) = 0 and analyze the growth of the
resulting 16 snowflakes.
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Asymptotic density

For S ⊂ Z2, let µε = ε2 · (counting measure on ε S). S has asymptotic
density ρ if µε → ρ ·λ as ε → 0. Here λ is Lebesgue measure on R2 and
the convergence holds in the usual sense:∫

f dµε → ρ ·
∫

f dλ

for any f ∈ Cc(R2).

Theorem 1. To each of the 16 digital snowflakes there corresponds a
ρ ∈ (0, 1], the asymptotic density of A∞, which is independent of the
finite seed A0.

Unlike stochastic systems, cellular automata rarely lose memory of their
initial states.
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Density values

Theorem 2. The densities are exactly computable in 8 cases:

ρ13 = ρ135 = 5/6 ≈ 0.8333,

ρ134 = ρ1345 = 21/22 ≈ 0.9545,

ρ136 = ρ1356 = ρ1346 = ρ13456 = 1.

In six other cases, one can estimate, within ±0.0008,

ρ1 ≈ 0.6353,

ρ14, ρ145 ≈ 0.9689,

ρ15 ≈ 0.8026,

ρ16 ≈ 0.7396,

ρ156 ≈ 0.9378.
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Finally,
ρ146 ∈ (0.995, 1), ρ1456 ∈ (0.9999994, 1).

Note: ρ14 > ρ134.

Open problem: Are ρ14 = ρ145 and ρ146 = ρ1456?

In computer simulations the two dynamics of each pair appear identical
starting from A0 = {0}. This is not persuasive: one would conclude,
from observing Hex 1456 from A0 = {0} on 106 × 106 array, that A∞ =
Z2!
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Macroscopic dynamics

Theorem 3. Assume that tn = a · 2n, for a ∈ [0, 1]. Then:

2−nAtn → Sa,

in the Hausdorff metric, as n → ∞, uniformly in a. Here Sa is a strictly
increasing family of closed subsets of the hexagon co(N ) ⊂ R2.

The 12 rules that do not have both π(3) = 1 and π(4) = 1 have a single
Sa. In the remaining 4 cases, Sa depends on the initial state, but not on
the rule!

∂Sa is often fractal, e.g. dimH(∂S14/15) = 5/4. Fractal dimension is not
known for irrational a.
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Why does this all work?

Starting from a single occupied cell, the light cone CA forms an
impenetrable web of occupied sites that divides further solidification into
independent finite domains with simple boundary conditions.

Boundary effects within each
domain are controlled. Finally,
the light cone CA is additive,
so the web from a general
finite seed is representable as
a superposition of webs from
each of its individual cells.
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Important steps in the proofs

• In the 8 non-exactly-solvable cases, the Renewal Theorem
is necessary for the existence of densities, as well as their
approximation.

• For Hex 1456, one needs a rescaling argument, very reminiscent of
those used in percolation theory, to show that the density is not 1.

• Extensive computer computations and mathematical arguments are
both necessary components of such research. Ignore either one at
your peril!
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Sensitivity to random perturbations

The set At now solidifies according to a
random rule:

• A site x /∈ At with exactly one occupied
neighbor becomes occupied automatically.

• A site x /∈ At with at least 2 occupied
neighbors becomes occupied with
probability p > 0.

Theorem 4. With probability 1, (t − R log t) ·
co(N ) ⊂ At, eventually. Here, R = R(p) > 0 is
a constant.

A stronger result should be true!
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Proof of Theorem 5

Assume that the light cone CA has, in the first quadrant, above y = x, a
horizontal interval of exactly L 0’s, e.g.,

1 0 0 0 0 1
· ·
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Proof of Theorem 5

Assume that the light cone CA has, in the first quadrant, above y = x, a
horizontal interval of exactly L 0’s, e.g.,

1 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1

For a ∈ Z2 within the above portion of the light cone

P (d(a,At) ≥ k) ≤
∑
L≥k

L
∑
n≥0

(1− p)L+n ≤ C · e−pk/2.

Now use that At grows at least as fast as f.p.p. with geometric (p)
passage time.
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Proof of Theorem 5, continued

Pick a ∈ (t−R log t) · co(N ). We need to show that uniformly in such a,

P (a /∈ At) ≤ C · t−4,

provided R is large enough.

To do this, we first bound

P (d(a,At−R log t) ≥ βR log t) ,

by choosing R ≥ 4/(βp). (Small β > 0 to be chosen later.)

Then, we need to deal with

P (d(a,At−R log t) ≤ βR log t, a /∈ At) ,
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which is bounded by

P

βR log t∑
k=1

ηk ≥ R log t

 ,

where η, ηk are i.i.d. geometric(p). This, by exponential Chebyshev, is at
most [

(Eeαη)β · e−α
]R log t

.

Here α > 0 is another parameter, and we only need to show that we
can choose α,β so that log[·] < 0. However,

Eeαη =
∞∑

k=1

eαkp · (1− p)k−1 =
eαp

1− eα(1− p)
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and so

log[·] = −α + β · α− β · log(1− (p−1 − 1)(eα − 1))

∼ −α + β · α + β · (p−1 − 1) · α

if αp−1 is small. This equals

α(βp−1 − 1),

so β = p/2 works.
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What could be improved?

Our result is
(t−R log t) · co(N ) ⊂ At,

if t is above some random time T .

From the proof we have R = 8/p2. Whereas it is clear that the distributio
of T should depend on p, this is probably not true for the optimal R!
The boundary of At appears to approach an invariant measure whose
density is bounded away from 0 for p > 0.

Possible idea: large intervals of 0 require large intervals of 1’s. What
makes large intervals of 1’s?
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