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1 Introduction

Six-sided ice crystals that fall to earth in ideal winter conditions, commonly known as snowflakes,
have fascinated scientists for centuries. They exhibit a seemingly endless variety of shape and
structure, often dendritic and strangely botanical, yet highly symmetric and mathematical in
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their designs. To this day, snowflake growth from molecular scales, with its tension between
disorder and pattern formation, remains mysterious in many respects.

Study of snowflakes dates back at least to the 16th century [Mag], and includes early con-
tributions from such scientific giants as Kepler [Kep], Hooke [Hoo], and Descartes [Des]. With
the advent of cameras came the first snow crystal album: more than 5,000 photos collected
by W. Bentley beginning in 1885 (see [BH]). Although rather few people have ever seen such
crystals with their own eyes, Bentley’s images helped establish snowflake designs, simplified and
idealized, as universal icons for wintertime. The most significant scientific advances of the past
century were due to Nakaya [Nak] in the 1930s, who classified natural crystals into dozens of
types, first grew synthetic crystals in the laboratory, and discovered an elaborate, still perplex-
ing morphology diagram, which predicts the predominant type of snowflake arising at any given
temperature and supersaturation level. (In particular, the familiar, essentially two-dimensional
crystals arise only for certain parameter values; in other conditions columnar “needles” form.)
All this and much more is explained superbly in a recent popular account by Libbrecht and
Rasmussen [LR], which also contains a great many state-of-the-art photographs of breathtaking
beauty. There is a companion web site [Lib1]; see also [Lib2] for a current scholarly review.

Over the past century, geometric structures inspired by snow crystals have begun to adorn the
world of mathematics. Most celebrated is the Koch snowflake [Kin], introduced by H. von Koch
[Koc] in 1904. One of the earliest known fractals, this closed curve with Hausdorff dimension
2 log 2/log 3 is obtained in the limit by starting from an equilateral triangle (with • markers at
its vertices) and repeatedly applying the substitution scheme

to each piece between markers. More recent variations on Koch’s construction include Gosper’s
flowsnake [Gar] and the pentaflake [Dix]. While none of these designs resembles a real snow
crystal to any great extent, their blend of elementary polygonal shapes with infinitely fine
branching detail evokes the same iconography as Bentley’s album.

The building blocks for snowflakes are hexagonally arranged molecules of natural ice (Ih).
Just how the elaborate designs emerge as water vapor freezes is still poorly understood. Only
very recently have a few rudimentary movies of synthetic crystal growth been produced (cf.
[LR, p. 57]). The solidification process involves complex physical chemistry of diffusion limited
aggregation and attachment kinetics. Theoretical research and mathematical modeling to date
have mainly focused on the evolution of dendrite tips. See [Gle, pp. 309–314] for a popular
account of the challenges, [Mea] and [PV] for recent scholarly monographs, and [Ada] for a
current review.

In 1984, Packard [Pac] introduced a supremely simple cellular automaton (CA) model for
crystal solidification. On a honeycomb lattice of hexagonal cells, start with a single “seed” cell
of ice surrounded by vapor. At each subsequent discrete-time update, any vapor cell neighboring
the requisite number of frozen cells turns to ice. Since real snowflake growth favors the tips of the
crystal, Packard proposed that exactly one occupied (frozen) neighbor should cause solidification,
but exactly two should not. Thus, in one of his digital snowflakes a site joins the crystal if and
only if it has exactly one occupied neighbor, while in another it joins if the number of occupied
neighbors is odd. In the present paper we will refer to these rules as Hex 1 and Hex 135 ,
respectively.
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Packard’s snowflake automata have been widely publicized since the 1980s to illustrate how
very simple mathematical algorithms can emulate complex natural phenomena. A multicolor
image of Hex 135 occupies nearly all of p. 189 in Wolfram’s 1984 article [Wol1], and the same
graphic is reproduced as the first color plate of Steven Levy’s 1992 book [Lev]. More recently,
the first 30 updates of Hex 1 are illustrated on p. 371 of [Wol3]. The central tenet of [Wol1],
already familiar from the established universality of Conway’s Game of Life [BCG], was that
“Simulation by computer may be the only way to predict how certain complicated systems
evolve.” Implicit in this perspective is the inadequacy of mathematics to analyze complexity.
In the discussion of Hex 135 and the corresponding caption, he writes:

“Snowflakes grown in a computer experiment from a single frozen cell according to
this rule show intricate treelike patterns, which bear a close resemblance to real
snowflakes. [. . . ] The only practical way to generate the pattern is by computer
simulation.”

Levy’s account reiterates the claimed verisimilitude:

“An elementary schoolchild could look at any of the gorgeous pictures of computer
screens in Packard’s collection and instantly identify it as a snowflake.”

So how do these digital snowflakes evolve? The left frame of Fig. 1 shows a representative
snapshot of Hex 134 after 218 updates starting from a single occupied cell. (The graphic
in [Wol1] and [Lev] is quite similar.) Letting At denote the crystal at time t, started from
A0 = {0}, it turns out that A2n occupies, with a certain density, the hexagon of lattice cells
within 2n steps of the origin for each n, but that shapes with apparently fractal boundary arise
in the limit along intermediate subsequences of the form tn = ⌊a2n⌋ when a is not a dyadic
rational. For instance, the limit shape for Hex 1 and Hex 135 along the a = 1/3 subsequence
is exactly the Koch-type snowflake starting from a regular hexagon (with • markers now in the
middles of edges) and based on the substitution scheme, applied to each non-straight segment
between markers, Here, the top and the bottom choices apply to a concave and a convex vertex,

respectively. (A vertex is convex (resp. concave) if one makes a right (resp. left) turn at it while
moving counterclockwise on the curve.)

In other words, the crystal oscillates between hexagonal shapes and other familiar mathe-
matical forms with increasingly complex boundary. To illustrate the scientific insight offered
by such simple CA rules, Wolfram makes the following intriguing prediction based on his time
trace of Hex 1 up to time 30 [Wol3]:

“For example, one expects that during the growth of a particular snowflake there
should be alternation between tree-like and faceted shapes, as new branches grow
but then collide with each other. And if one looks at real snowflakes, there is every
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indication that this is exactly what happens. And in fact, in general the simple
cellular automaton shown above seems remarkably successful at reproducing all sorts
of obvious features of snowflake growth.”

We intend to address the level of realism of digital snowflakes and other lattice models for
ice crystal growth in a sequel to this paper [GG2]. Here our goal is a rigorous study of the
complete family of Packard rules. For instance, we will show that each crystal fills the lattice
with a characteristic asymptotic density, independent of the finite initial seed. We also identify
a subclass of exactly solvable rules for which the density is a computable rational number (e.g.,
Hex 135 and Hex 134 have densities 5/6 and 21/22, respectively), and a complementary class
with inherently more computational complexity of the limit state A∞. Ultimately, our story
here has two main morals:

• As CA dynamics go, Packard’s digital snowflakes are not very complex. The patterns
they trace are not periodic, but nearly so, and in some cases exactly described by a finite
recursion. Consequently, they are quite amenable to mathematical methods.

• While computer visualization and empirical calculation are indispensable tools, subtle
properties of these dynamics cannot possibly be gleaned from simulations alone. Deductive
reasoning plays a fundamental role in the analysis.

Turning to formalities, our basic set-up features solidification CA on the triangular lattice T

(to reflect the arrangement of water molecules in ice crystals).1 For notational and computational
convenience, we represent T by Z

2, with the neighborhood N of (0, 0) consisting of itself and
the six sites (±1, 0), (0,±1), and ±(1, 1). The neighborhood of an arbitrary x is then x +
N . This representation is handy because integers are much more familiar than Cayley graph
representations of T. On the other hand, some symmetries are not so easy to spot. (Figs. 1
and 8 are the only ones in which dynamics on T are depicted.) The CA simulator MCell [Woj]
is ideally suited for empirical investigation of digital snowflakes since its Weighted Life rule set
supports this Z

2 embedding. Indeed, MCell was a crucial resource during the early stages of
our work, and any conscientious reader of this paper will surely need to enlist its aid, or that of
some similar program.

We denote by At ⊂ Z
2 the set of occupied sites at time t. Often we call sites in At 1’s and

sites in Ac
t 0’s. The set At grows in discrete time t = 0, 1, 2, . . . . That is, At ⊂ At+1; such CA are

called solidifying . Whether x /∈ At belongs to At+1 depends only on the number of sites it sees
in At, that is, on |(x+N )∩At|. Thus, the rule is given by a function π : {1, 2, 3, 4, 5, 6} → {0, 1}
such that, for x /∈ At, π(|(x + N ) ∩ At|) = 1 iff x ∈ At+1. As above, we specify π by listing
all n for which π(n) = 1. Our canonical choice of the initial set is A0 = {0}, although we will
also study the dynamics started from an arbitrary finite set, and use assorted infinite initial sets
as props. Note that, for any solidification dynamics and every A0, the final set A∞ exists as a
sitewise limit of At, and A∞ = ∪t≥0At.

Our basic assumption on π, reflecting the fact that tips of a growing snow crystal are favored,
is that π(1) = 1. We call solidifying CA with this property digital snowflakes. It is not clear
what else should be assumed about π, so we propose to catalog all possible behaviors of such
automata.

1We have chosen to conform to accepted mathematical terminology, although T is often called the hexagonal

lattice in the popular and scientific literature.
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There are 32 candidates for digital snowflakes. Of these, 16 are trivial: when π(2) = 1, the
appropriate version of the extreme boundary dynamics (see Section 2) is very easy to analyze,
and causes the dynamics to grow a full hexagon from a singleton, while from any other finite
seed they grow a full hexagon apart from a region at finite distance from the rays defined by the
extreme points of the hexagon. (Many real snowflakes also grow as expanding hexagons, but
there is no mystery here.) From now on, we only refer to the remaining 16 rules, i.e., to those
with π(1) = 1 and π(2) = 0, as digital snowflakes. Next, let us explain our basic approach and
summarize our asymptotic density results.

Fig. 1. The occupied set of Hex 134 at time 218, started from {0}. Let τx = inf{t :
x ∈ At} be the time x is occupied and d the distance on the triangular lattice. The
two frames depict periodically shaded contours of constant τx (left) and constant
σx = τx − d(x, 0) (right, where only the 0 contour {x : σx = 0} is black).

The right frame of Fig. 1 highlights key structural features that underlie our analysis. Note
first that any digital snowflake advances at speed 1 along the axes of the lattice, since the closest
unoccupied site in these directions always has only one occupied neighbor. Within each of six
wedges formed by the axes, the black cells are those that solidify at the edge of the light cone,
i.e., at the maximum speed of propagation allowed by a nearest neighbor rule. This process
induces symmetric copies of the space-time pattern of a one-dimensional CA. Because π(1) = 1
and π(2) = 0, this is the additive xor rule, arguably the most familiar of all cellular automata.
Consequently the black cells form discrete versions of a famous fractal known as the Sierpinski
triangle. Of course digital snowflakes continue to solidify after the edge of the light cone passes,
as seen in the gray portions of the right frame of Fig. 1. But the Sierpinski lattice effectively
divides the crystal into independent finite regions with all 1 boundary conditions, within which
subsequent dynamics evolve.

To summarize, Packard’s snowflakes enjoy three important properties (to be precisely de-
scribed in Section 2):

• Starting from a single occupied cell, the light cone CA forms an impenetrable web of oc-
cupied sites that divides further solidification into independent finite domains with simple
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boundary conditions;

• Boundary effects within each domain are controlled;

• The light cone CA is additive, so the web from a general finite seed is representable as a
superposition of webs from each of its individual cells.

The first two properties ensure a recursive representation of the dynamics, while the last is
crucial for the asymptotic density’s independence of A0.

The delicacy of our results is conveyed effectively by comparison to analogous solidification
on Z

2 with range 1 Box neighborhood consisting of a central cell and its 8 nearest neighbors:
(0, 0), (0,±1), (±1, 0), (±1,±1). There are 128 such rules with π(1) = 1; see [Gri] for a brief
introduction and colorful graphics of Box 1, 157, 1357 , and 136 crystals. Although snowflake-
like recursive carpets emerge in a great many cases, any and all of the three properties above
may fail. For instance, we will see in Section 6 that the density of Box 1 , provided it exists at all,
can depend on the initial seed. Also, for the “odd” rule, Box 1357 , the light cone web “leaks”
and growth is apparently chaotic. Although there are many fascinating problems connected with
the Box neighborhood, and exact computations are feasible in some cases, there is no hope of a
complete analysis as in the present Hex setting.

Fix a set S ⊂ Z
2. Let µǫ be ǫ2 times the counting measure on ǫ · S. We say that S has

asymptotic density ρ if µǫ converges to ρ · λ as ǫ → 0. Here λ is Lebesgue measure on R
2 and

the convergence holds in the usual sense:

(1.1)

∫

f dµǫ → ρ ·
∫

f dλ

for any f ∈ Cc(R
2).

Theorem 1. To each of the 16 digital snowflakes there corresponds a ρ ∈ (0, 1], the asymptotic
density of A∞, which is independent of the finite seed A0.

We will index the densities by our notation for the respective rules, and give more information
on their values in the next theorem.

Theorem 2. The densities are exactly computable in 8 cases:

ρ13 = ρ135 = 5/6 ≈ 0.8333,

ρ134 = ρ1345 = 21/22 ≈ 0.9545,

ρ136 = ρ1356 = ρ1346 = ρ13456 = 1.

In six other cases, one can estimate, within ±0.0008,

ρ1 ≈ 0.6353,

ρ14, ρ145 ≈ 0.9689,

ρ15 ≈ 0.8026,

ρ16 ≈ 0.7396,

ρ156 ≈ 0.9378.

Finally,
ρ146 ∈ (0.995, 1), ρ1456 ∈ (0.9999994, 1).
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Perhaps surprisingly, ρ14 > ρ134, testimony to the fundamentally nonmonotone nature of
these rules.

We refer to the first 8 rules in Theorem 2 as exactly solvable. In Section 9, we will develop
a rigorous foundation for this terminology.

It is tempting to conjecture that ρ14 = ρ145 and ρ146 = ρ1456 since the two dynamics of each
pair are identical starting from A0 = {0} on finite arrays up to 500 × 500 in size. This question
remains open, but one should resist such empirical conclusions. For instance, as we shall see
later, observing Hex 1456 from A0 = {0} on even the world’s most extensive graphics array,
with millions of sites on a side, one would still be led to the conclusion that A∞ = Z

2. In fact,
the four dynamics are all distinct eventually and presumably have different densities less than
one.

In contrast to density results, which are macroscopic in nature, our next result addresses the
most basic microscopic properties of final configurations. Call a set S ⊂ Z

2 thick if

sup{d(x, S) : x ∈ Z
2} < ∞.

Here, d is distance in any chosen norm, say || · ||∞. For snowflakes with density between 0 and 1,
thickness of A∞ and Ac

∞ is one rough notion of an almost periodic final state. In the following
theorem, A0 is assumed to be an arbitrary finite set.

Theorem 3. The 8 exactly solvable rules have the following properties:

(1) The final set A∞ is always thick.

(2) Hex 13456 always has A∞ = Z
2. For the other rules with density 1, there exist initial

conditions for which A∞ contains infinitely many 0’s.

(3) Ac
∞ is always thick for rules with density < 1, and never thick for those with density 1.

For the 8 rules that are not exactly solvable, A∞ is never thick, and Hex 1 always has thick Ac
∞.

It is an intriguing open question whether Ac
∞ is thick for the 7 rules not covered by Theorem

3. We suspect it is for all of them, but have no argument.

The rest of the paper is organized as follows. Preliminaries in Section 2 describe precisely
various structural properties of the additive web that decomposes a digital snowflake into in-
dependent regions of finite size. Slight variations in how these regions solidify are identified
case by case. Sections 3–4 then detail the first 8 density calculations of Theorem 2 by deriving
and solving recursions for |A2n−1|. Section 3 handles exactly solvable cases – first the simplest
rules: 13 , 135 , 136 , and 1356 , and then those obeying slightly more complicated dynamics:
134 , 1345 , 1346 , and 13456 . For all these snowflakes the limit of |A2n−1|/(3 · 4n) is evaluated
explicitly. Next, Sections 4–5 develop and analyze corresponding recursions for Hex 1 and the
other 7 rules that are not exactly solvable. Now, due to certain messy interactions, existence of
the normalized limit of occupied cells is established by a novel application of the renewal theo-
rem, but this density is implicit and can only be approximated numerically. Section 4 handles
six densities that we are able to estimate within 0.0008. The cases 146 and 1456 in Section 5
require a different rescaling argument for the upper bound since their densities are extremely
close to, but less than, 1.

In Section 6 we complete the proof of Theorem 1 by showing that A∞ has an asymptotic
density ρ starting from {0} in the formal sense of (1.1), that ρ agrees with the corresponding
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value obtained in Sections 3–6, and that the same asymptotic density occurs when the initial
seed is an arbitrary finite set A0. (A technicality for rules with π(3) = 0 is also handled at
the end of this section.) Then, Section 7 introduces two distinct, rule-dependent macroscopic
dynamics Sa for the limit of 2−nAtn , where tn = ⌊a · 2n⌋. Theorems 4 and 5 thereby extend to
general a the already mentioned substitution scheme limit for Hex 1 and Hex 135 in the case
a = 1/3. A more sophisticated approach is required to handle both holes formed by colliding
branches of the snowflake and the case of irrational a. Examples are given to illustrate the
exotic dependence on a of the Hausdorff dimension of the boundary of Sa. Finally, Sections 8
and 9 address thickness (Theorem 3) and exact solvability, respectively. Theorems 1–3 yield a
natural and precise division of digital snowflakes into two complexity classes (Section 9). This
distinction, based on the notion of automaticity of the final set, is potentially widely applicable
in the computational theory of cellular automata.

2 Extreme boundary dynamics

Our basic tool is the additive dynamics Tn, also referred to as xor , addition mod 2 , or rule 90
(see, e.g., [Wil]). Among several equivalent definitions, we choose the following. We declare
the neighborhood of 0 to consist of (−1, 0) and (−1,−1), and the additive rule to be exactly
one solidification dynamics with this two-point neighborhood, i.e., according to this rule a site
changes its state to 1 iff exactly one of x + (−1, 0) and x+ (−1,−1) is in state 1. The initial set
T0 will always be a subset of the y-axis, our default choice being the singleton {0}. If we want
to emphasize that T0 = A, we use the notation TA

n . Many properties of this rule are well known
and easy to check. Nevertheless, we will explain them briefly as they are used.

Observe first that, with the canonical choice T0 = {0},

(2.1) {(x, 0) : 0 ≤ x ≤ n} ∪ {(x, x) : 0 ≤ x ≤ n} ⊂ Tn ⊂ {(x, y) : 0 ≤ y ≤ x ≤ n}.

One can also prove by induction that

T2n−1 ∩ {(x, y) : x = 2n − 1} = {(2n − 1, y) : 0 ≤ y ≤ 2n − 1},(2.2)

T2n ∩ {(x, y) : x = 2n} = {(2n, 0), (2n, 2n)},(2.3)

since the two “buds” at time 2n create two versions of the dynamics that do not interact through
time 2n+1 − 1. The name of the dynamics stems from the fact that it preserves exclusive union:
TAxor B

n = TA
n xor TB

n . This is immediate for n = 1, and then again follows by induction.

It is helpful to consult Figs. 2–4 while reading the remainder of this section. The darker
sites in those figures form initial conditions (the reasons for which will be explained later). For
growth from a single seed at the origin, the lowest row (resp. 2 rows) in the top three frames of
Figs. 2 and 3 (resp. Fig. 4) should be deleted, and then the origin placed at the leftmost lowest
site. Also, time should be diminished by 1 in Figs. 2 and 3.

The relevance of additive dynamics to digital snowflakes becomes apparent when we note
that if A0 does not include any site to the right of the y-axis,

(2.4) An ∩ {(x, y) : x = n} = TA0∩y-axis
n ∩ {(x, y) : x = n}

in any of our 16 dynamics. For a general solidification CA, the light cone of a set L0 is the
set Ln = L0 + N + N + · · · + N , where N is repeated n times, i.e., the set of points than can
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possibly be influenced by L0 at time n. In particular, if L0 = A0, which we assume from now
on, An ⊂ Ln. The extreme boundary comprises sites y ∈ Ln with (x +N ) ∩Lc

n 6= ∅. Then (2.4)
means that our rules perform six copies of the additive dynamics (appropriately mapped) at
their extreme boundaries, and create an “additive web” consisting of black sites x with σx = 0
in the right frame of Fig. 1. We will call this the extreme boundary dynamics, and the sites so
created primary boundaries. Also note that properties (2.1–2.2) dictate impenetrable boundaries
for our rules. For example, if A0 = {0}, then after time 2n − 1 the dynamics create a triangle
of 1’s given by (2.1) and (2.2) and after that time the dynamics inside and outside the triangle
are independent. Even (2.1) itself, as it extends all the way to the extreme boundary, separates
the dynamics into six independent wedges. For many purposes, then, it will suffice to look at
one of these wedges, typically the one in the first quadrant and below the line y = x.

Digital snowflakes do more than add sites at their extreme boundaries. At time 2n, for
example, the two buds in (2.3) do not merely spread into two new triangles outlined by the
additive dynamics; they also grow into the empty triangle between them. To be more precise,
in the 8 rules with π(3) = 1, there is a pair of occupied sites (2n, 1), (2n, 2n − 1) ∈ A2n+1; in
the remaining 8 cases, (2n + 1, 2), (2n + 1, 2n − 1) ∈ A2n+2. In fact, it is more convenient to
interpret the initial buds as being at sites below and above these two – they are marked • in
the top left configurations of Figs. 2 and 4. As we explain below, these two buds generate their
own secondary extreme boundary dynamics (spreading into the two smaller triangles outlined
in the figures) until they collide.

Assume first that π(3) = 1. Then the two buds generate exactly (appropriately rotated
and deformed) additive dynamics at their extreme boundaries. This is because one of the two
endpoints (sites generating the leftmost set in (2.1)) sees 3 occupied sites, two of which are
contributed by the boundary conditions (occupied sites in primary boundaries), while the other
endpoint is shared by the neighboring additive dynamics. Therefore, the said two extra buds
generate two copies of additive extreme boundary dynamics (in the smaller triangles), which
at the time 2n + 2n−1 − 1 generate an occupied secondary row and diagonal of length 2n−1,
separated by a 0 at (2n, 2n−1). This 0, let us call it the four-site, sees 4 occupied sites.

If π(4) = 0, the four-site (marked by ◦ in the top middle of Fig. 2) will not get occupied
immediately, and the vertex of the wedge between the row and the diagonal of 1’s is “dead.”
The two secondary boundaries, together with the primary ones {(x, 2n), (x, x−2n) : 2n +2n−1 ≤
x ≤ 2n+1 − 1} form a “hole,” which is invaded by dynamics that emanate from two one-buds at
(2n + 2n−1, 2n−1) and (2n + 2n−1, 2n), created at time 2n + 2n−1 (each marked by • in the top
middle of Fig. 2). This hole is in turn divided into two smaller holes (by secondary 1’s) at time
2n+2n−1+2n−2−1, etc. This hole-filling mechanism is illustrated in the bottom of Fig. 2, where
the two descendant holes are outlined in the first two frames. It is important to note that the
parallelogram hole in the top row of this figure is equivalent, modulo boundary corrections, to
the small square hole with darker shaded 1 boundary conditions. (Match the marked first two
occupied sites with the same marks in the parallelogram hole.) This consequence of symmetries
of T will be exploited throughout. Armed with these observations, we will begin our study of
the Hex 13 rule in the next section.

We emphasize that some of the sites which we use as initial conditions are not present
initially; the hole “frames” are typical examples. Indeed, some of these initial sites may never
be created, as in the Hex 1 case. However, they are very convenient for definitions and for
symmetry considerations. In each case, it is straightfoward to verify that the dynamics behaves
as if these sites were present initially.

9



On the other hand, if π(3) = π(4) = 1, then the four-site (now marked • in Fig. 3) becomes
occupied at time 2n + 2n−1 and the resulting “live” vertex gives rise to another secondary
dynamics in the hole. Three secondary boundary dynamics originating at the four-site and the
two one-buds all collide at time 2n + 2n−1 + 2n−2 − 1 to create a triangularly shaped hole (as
in the middle top of Fig. 3). The remaining two secondary boundary dynamics collide at the
same time and create a smaller quadrilateral hole. This one, however, is of a different type than
the original, as only two of its vertices are live. This mechanism is iterated, as illustrated by
a larger hole example in Fig. 3. Our analysis of Hex 134 dynamics will therefore require three
types of hole dynamics, generated by different initial conditions.

The situation is again different when π(3) = 0. Now the two secondary buds are a little
off center (by one site, to be precise). They still generate additive boundary dynamics, but
the final interaction inside the resulting hole generates two holes of different sizes, and each
successive generation of holes has one of a smaller size. We give a more precise description for
the Hex 1 rule; others are similar. In this case, all points (2n, y), 1 ≤ y ≤ 2n − 1, see at least 2
occupied sites to their left at time 2n − 1 (hence thereafter) and thus will never get occupied.
The two secondary buds collide at time 2n + 2n−1, but the secondary row and diagonal (created
at time 2n + 2n−1) are now not separated. Nevertheless, the 0 at (2n + 2, 2n−1 + 1) (marked ◦
in Fig. 4) sees 4 occupied points, so it never gets occupied and the resulting vertex of the wedge
is dead 2. The two secondary boundaries, together with primary ones, create a hole. This hole
starts being filled by buds that appear at time 2n + 2n−1 + 2 at (2n + 2n−1 + 1, 2n−1 + 1) and
(2n + 2n−1 + 1, 2n). The fact that these buds are off center has two consequences. The first
is minor and technical: it is necessary to start the analysis with a basic wedge and holes that
incorporate the buds in their initial conditions. The second fact is crucial for the analysis of
these rules. Namely, the two holes that result when the additive dynamics from two secondary
buds collide are of unequal size, their sizes differing by exactly 2. This in turn creates holes
of a larger and larger variety of sizes (as shown in the two bottom frames of Fig. 4, where the
second generation descendant holes are also outlined, since they evolve slightly out of phase and
are thus difficult to identify). That the interaction in smaller holes still creates impenetrable
boundaries and dead wedge vertices is guaranteed by the following lemma.

Lemma 2.1. Assume that the initial configuration consists of two points, A0 = {(0, 0), (2n −
k, 2n − k), 0 < k ≤ 2n−1}. For any digital snowflake,

{(y, 2n − 1) : 0 ≤ y ≤ 2n−1 − k + 1} ⊂ A2n−1.

Proof. This is a simple consequence of the speed of light. Namely, consider the light cone of the
point (2n − k, 2n − k) at time t. Outside this light cone, the dynamics started from {(0, 0)} and
the one started from A0 agree through time t. Apply this observation at time t = 2n − 1.

3 Densities for exactly solvable rules

We begin with the Hex 13 rule, as it represents the simpler of two exactly solvable cases with
nontrivial density.

Assume first that the initial occupied set is the origin, A0 = {0}, and define

ρ13 = lim
n→∞

|A2n−1|
3 · 4n

.

2In rules with π(4) = 1, such as Hex 14 , this 0 becomes a 1, but then growth from the vertex stops.
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We will see shortly that the limit exists, and that

ρ13 = lim
n→∞

bn

4n
,

where bn are defined by certain wedge dynamics. Namely, run the dynamics An inside the first
quadrant with 1 boundary condition on the axes. Let

Bn = {(x, y) : 1 ≤ x ≤ 2n, 1 ≤ y ≤ 2n}.

Then bn is the size of the final occupied set inside Bn,

bn = |A∞ ∩ Bn| = |A2n ∩ Bn|.

The second equality, i.e., the fact that these dynamics do not occupy any site on Bn past time
2n, can be proved by induction along the lines of arguments given below.

Fig. 2. Hex 13 : Basic wedge dynamics (top) at times 18, 24, and 32; final configu-
ration of a hole of size 10; size 34 hole dynamics at times 16, 24, and 32.

Smaller wedge numbers are obtained with the same initial condition as for bn but counted
only inside

Wn = {(x, y) : 1 ≤ x ≤ 2n, 1 ≤ y ≤ x}
and defined by

wn = |A∞ ∩ Wn|.
The dynamics inside this wedge (with given initial conditions) will be called the basic wedge
dynamics. See the top row of Fig. 2. Note that bn = 2wn − 2n.

11



By direct enumeration, b0 = 1, b1 = 4, b2 = 14, b3 = 54, etc. Moreover, as A2n−1 started
from A0 = {0} contains, modulo boundary corrections, six copies of the dynamics on Wn,

(3.1) |A2n−1| = 3bn − 3 · 2n + 1.

Next, consider the dynamics on the {0, . . . , L} × {0, . . . , L} box with initial occupied sites
consisting of the frame {(x, y) : either x ∈ {0, L} or y ∈ {0, L}}. We call L the size of such a
hole. Holes of sizes 10 and 34 are featured in Fig. 2. Let H(L) be the final occupation count
minus the frame,

H(L) = |A∞ ∩ {(x, y) : 0 < x < L, 0 < y < L}|.
We define

hn = H(2n + 2).

Thus h0 = 2, h1 = 6, h2 = 20, etc. Actually it is slightly more convenient to use h′
n = hn−2n+1.

By observing the wedge dynamics from time 2n to time 2n+1, we obtain our first basic recursion:

wn+1 = 3wn + 2(wn−1 − 2n−1) + h′
n−1.

This recursion is illustrated by the top row of Fig. 2, where the 5 smaller wedges are outlined.
Here one thinks of the sites in Z

2 as centers of the squares, and the outlined regions include their
boundaries. The sites outside the outlined regions correspond to the interior of the pictured size
10 hole, from which the bottom row and rightmost column are removed. Therefore

(3.2) bn+1 = 3bn + 2bn−1 + 2h′
n−1.

A second basic recursion is obtained by observing the hole dynamics until time 2n−1:

hn = 2bn−1 + 2hn−1.

This is illustrated in the bottom row of Fig. 2, where the interiors of the first descendant holes
are outlined. Equivalently,

(3.3) h′
n = 2bn−1 + 2h′

n−1.

Express h′
n in terms of b’s using (3.2), and then plug into (3.3) to obtain the second order

equation bn+2 = 5bn+1 − 4bn, valid for n ≥ 1. Hence bn = α · 4n + β. Computing the constants
α, β from b1 and b2, we get

bn = 5
6 · 4n + 2

3 .

Thus, starting from A0 = {0}, by (3.1),

|A2n−1| = 5
2 · 4n − 3 · 2n + 3,

and ρ13 = 5
6 .

Hex 135 , Hex 136 , and Hex 1356 all satisfy precisely the same recursions (3.2)–(3.3). Also,
it is easy to check that for small holes and wedges Hex 13 and Hex 135 evolve identically. Thus,
it follows by induction that Hex 13 and Hex 135 crystals agree exactly for all t when A0 = {0}.
In particular, ρ135 = ρ13 = 5

6 . Since Hex 136 and Hex 1356 both fill small holes and wedges, it
also easily follows that these two rules solidify completely from a singleton.

12



Fig. 3. Hex 134 : Basic wedge dynamics (top) at times 24, 28, and 32; final config-
uration of a hole of size 10; size 34 hole dynamics at times 16, 24, and 28.

We turn next to Hex 134 , another exactly solvable rule with density less than 1. The domain
counts bn and wn are defined in exactly the same manner as before, giving b0 = 1, b1 = 4, b2 = 16,
b3 = 62, b4 = 246, etc.

As mentioned in Section 2, the hole interactions (see Fig. 3) are more complicated now.
There are three different types of hole dynamics, all run in the {0, . . . , L} × {0, . . . , L} box. We
define the frame F = {(x, y) : x ∈ {0, L} or y ∈ {0, L}}. All occupation numbers are counted
strictly inside this frame, and in addition exclude any other initially occupied sites. We will
always use L = 2n + 2 and count occupation numbers at time 2n (which in every case differ by
1 from the final occupation numbers).

The principal hole dynamics use initial occupied sites consisting of the “frame minus 3 corner
sites”: F\{(0, L−1), (0, L), (1, L)}, and defines the occupation numbers hn. Then h0 = 3, h1 = 7,
h2 = 22, etc. Again, we set h′

n = hn − 2n+1.

The secondary hole dynamics start with two opposite corners missing: F \ {(0, L − 1),
(0, L), (1, L), (L − 1, 0), (L, 0), (L, 1)}. Call the resulting occupation numbers sn. Then s0 = 2,
s1 = 6, s2 = 20, etc.

The third and last hole dynamics start with a triangular shaped hole, i.e., the initially
occupied set (F \{(0, L−1), (0, L), (1, L)})∪{(x, y) : y < x}, and define tn. Then t0 = 2, t1 = 5,
t2 = 13, etc.

13



Our system of recursions is given by (3.2), again illustrated in the top frames of Fig. 3, and

hn = 2bn−1 + wn−1 + tn−1 + sn−1

sn = 2bn−1 + 2sn−1

tn = 2wn−1 + hn−1.

To understand these new equations, consult the bottom row of Fig. 3. The first successor holes
(outlined) are a triangular one and a square one of secondary type. The former creates a hole
of the principal type, while the latter creates two holes of the secondary type, as seen in the
bottom middle frame. Therefore, we have

(3.4)

h′
n = 5

2bn−1 + tn−1 + sn−1 − 7
42n

sn = 2bn−1 + 2sn−1

tn = bn−1 + h′
n−1 + 3

22n.

At this point the problem could be solved by matrix manipulation, but it is easier to eliminate
sn and tn using the first and third equations of (3.4), then eliminate h′

n using (3.2). This yields
the equation bn+3−5bn−2 +3bn−1 +4bn = 0. It follows that bn is a linear combination of 4n, φn,
and (−φ−1)n, where φ = (1 +

√
5)/2 is the golden ratio. Computing constants, the final result

is, for n ≥ 1,

bn = 21
22 · 4n + 15−

√
5

55 ·
(

1+
√

5
2

)n
+ 15+

√
5

55 ·
(

1−
√

5
2

)n
.

Again (3.1) holds, so ρ134 = 21
22 .

Once more, it is easy to prove that from A0 = {0}, Hex 1345 generates exactly the same
A∞ as Hex 134 , while Hex 1346 and Hex 13456 solidify completely.

4 Density of Hex 1 and its cousins

In this section we will analyze, in this order, Hex 1, 14, 145, 15, 16 , and 156 . We still use the
definition,

(4.1) ρ = lim
n→∞

|A2n−1|
3 · 4n

,

where A0 = {0}. However, for these rules we cannot give the exact value of the density; instead
we will demonstrate that the limit exists. It is, for now, convenient to redefine

ρ = lim
n→∞

bn

4n
;

we prove that (4.1) also holds at the end of Section 6. The numbers bn are defined by appropriate
wedge dynamics, defined slightly differently than before. Namely, these dynamics run inside the
first quadrant with 1 boundary condition on the axes, and with the initial occupied set A0

consisting of the single point (apart from the axes) (1, 2). Now set

Bn = {(x, y) : 1 ≤ x ≤ 2n, 1 ≤ y ≤ 2n + 2}.

and let bn be the size of the final occupied set inside Bn, i.e.

bn = |A∞ ∩ Bn|.
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We also make use of the smaller wedge

Wn = {(x, y) : 1 ≤ x ≤ 2n, 2 ≤ y ≤ x + 1},

and define
wn = |A∞ ∩ Wn|.

Note that bn = 2wn − 1 − (2n − 1) = 2wn − 2n,

Appropriate hole dynamics on the {0, . . . , L} × {0, . . . , L} box have initial occupied sites
consisting of the frame {(x, y) : either x ∈ {0, L} or y ∈ {0, L}} together with (1, 2) and
(L − 2, L − 1). As before,

H(L) = |A∞ ∩ {(x, y) : 0 < x < L, 0 < y < L}|,

but now we need a much larger variety of hole counts:

hk
n = H(2n − 2k), k = −1, 0, 1, . . .

Here we view k as fixed and n large enough that this makes sense. We also abbreviate hn = h−1
n .

Two basic recursions will be derived in a manner similar to the Hex 13 analysis. The only
difference between the six rules is the correction term in (4.2) below. Equation (4.3) is the same
in all cases.

We now proceed with Hex 1 .

Fig. 4. Hex 1 : Basic wedge dynamics (top) at times 18, 24, and 32; final configura-
tion of hole of size 10; size 34 hole dynamics at times 17, 26, and 32.
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The first recursion is obtained by observing Wn from time 2n to 2n+1:

wn+1 = 3wn + 2(wn−1 − 2n−1) + hn−1 − 2(2n−1 − 1)(1)

= 3wn + 2wn−1 + hn−1 − 2n+1 + 2.(2)

Note (as in the top left frame of Fig. 4) that two rows and columns are now removed from the
size 10 hole to match the sites not covered by the five wedges. Therefore

(4.2) bn+1 = 3bn + 2bn−1 + 2hn−1 − 2n+1 + 4.

For example, b0 = 1, b1 = 4, b2 = 14, b3 = 50, b4 = 182, . . . ; and h0 = 0, h1 = 2, h2 = 8,
h3 = 36, h4 = 154, . . . .

Our second recursion is generated by hole dynamics run until growth from the initial two
buds collides:

(4.3) hk
n = 2bn−1 + hk

n−1 + hk+1
n−1 − ek, 2n−1 ≥ 4k + 8.

The restriction on n, obtained from Lemma 4.1 below, is not optimal, but is one that works in all
cases. (For small k one can get away with a less restrictive condition, which varies from case to
case and is useful for computations.) The error terms ek, which keep this recursion from closing,
are the result of slightly “dirty” interaction between the two growing buds (cf. the bottom of
Fig. 4).

We bound ek using the following fact about additive dynamics. Starting from T0 = {0},
perform 2n −1 steps to generate T2n−1. Fix an ℓ, 0 < ℓ ≤ 2n and let Z = Z(n, ℓ) be the union of
all connected components (in the triangular lattice sense) of 0’s in T2n−1 ∩ {(x, y) : y ≥ 2n − ℓ}.

Lemma 4.1. Every (x, y) ∈ Z has y ≥ 2n − 2ℓ.

Proof. Focus on the line {y = 2n − ℓ} and consider an interval of a 0’s flanked by 1’s at both
ends. Find the first 1 below, say at distance b, the leftmost 0 of this interval. Paint this occupied
site red . Then the column of b + 1 sites (b 0’s and the red site) must have to its immediate left
a column of b + 1 1’s. The dynamics now ensures that a = b and that the red site is connected
by an occupied diagonal to the 1 at the right border of the initial interval of 0’s.

This proves that the worst case is when T2n−1 ∩ {y = 2n − ℓ} consists of ℓ− 1 0’s flanked by
2 1’s, in which case b = ℓ − 1.

One can in principle compute ek for any k from quantities ew
k and eh

k which we now define.
First, ew

k is the final occupation count in the region at the tip of the growth that gives bn,
consisting of a (2k + 3)× (2k + 3) box together with two lattice triangles, a (2k + 3) × (2k + 3)
and a (2k + 1) × (2k + 1) one. Here is the region for k = 1, labeled with x’s:

1 1 1 1 1 x x x x x
x x x x x x

x x x x x x x
x x x x x x x x

x x x x x x x x x
x x x x x 1 x x x 1

1 x x 1
1 x 1
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Next, eh
k is the final count of occupied sites in the interaction area in the middle of H(2n−2k).

This area consists of a (2k + 3) × (2k + 3) box and four triangles – the two above and their
reflections across the main diagonal of the box. (The set of occupied sites is symmetric with
respect to this reflection at all times.)

In all small cases we use, we have checked that the last occupied site in the interaction area
(or in fact anywhere outside the two smaller holes that are filled recursively) gets added at
time 2n−1. If this is the case, a speed of light argument shows that ew

n can be computed in the
(2k+3)× (2k+3) box with an additional row of 2k+3 sites at the bottom, while the interaction
area for computation of ew

k adds to this an additional column of 2k + 3 sites on the right. Then
(4.3) holds under the restriction 2n−1 ≥ 2k + 6. As mentioned earlier, we use this property of
small cases for computations.

In any case, by Lemma 4.1 above (and its proof),

ek = 2ew
k − eh

k .

Direct enumeration gives e−1 = 2, e0 = 10, e1 = 24, e2 = 44, e3 = 66, e4 = 92, e5 = 128,
e6 = 170, e7 = 212, e8 = 258.

Observe that if we know hK
n , n ≤ N , and ek, k ≤ K − 1, then we can use (4.2) and (4.3) to

compute bn up to n ≤ N + K + 3.)

An explicit formula for ek is apparently too much to hope for, but using the trivial facts
that eh

k and ew
k are nonnegative and bounded above by the number of sites in their respective

regions, we do have the bounds

−3(2k + 3)2 < −eh
k ≤ ek ≤ 2ew

k < 4(2k + 3)2.

Write

η(n) =

n−1
∑

k=0

k
∑

i=0

(

k

i

)

(2i + 1)2 = n22n − n2n + 2n − 1.

Using (4.3) repeatedly, and the above bounds, one obtains

hn =

n
∑

k=1

2kbn−k − e′n.

where

(4.4) −3η(n) ≤ e′n ≤ 4η(n).

Therefore

(4.5)

bn+1 =3bn + 2bn−1 + 2

n−1
∑

k=1

2kbn−1−k − e′n−1 − 2n+1 + 4

=3bn +

n
∑

k=1

2kbn−k − e′′n,

where e′′n = e′n−1 + 2n+1 − 4 for n ≥ 1 and e′′0 = −1.
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The sequence bn/4n satisfies a renewal equation, and the renewal theorem ([Fel, p. 330])
gives

(4.6) ρ1 = lim
n→∞

bn

4n
=

1 − 1
4

∑∞
n=0 4−ne′′n

3
4 + 1

2

∑∞
k=2 k2−k

= 5
6 − 1

6

∞
∑

n=1

4−ne′′n.

Summability of 4−ne′′n guarantees existence of the limit, but ρ1 could be 0 or 1 in principle.

To obtain nontrivial bounds on ρ1, we enumerate h9
n for n ≤ 11 directly, employ (4.2) and

(4.3) to compute bn exactly for n ≤ 23, and then use (4.5) to compute e′′n for n ≤ 22. For n ≥ 23,
we estimate e′′n as follows.

The lack of symmetry between the upper and lower bounds in (4.4) can be removed by
counting 0’s instead of 1’s. That is, write bc

n = 2n(2n + 2) − bn and hc
n = (2n + 1)2 − hn. Then

the analogues of (4.2) and (4.3) lead to

(4.7) bc
n+1 = 3bc

n +

n
∑

k=1

2kbc
n−k − e′n−1 − 4 · 2n − 6.

Although these e′n are different from the previous ones, we do not introduce new notation,
because they satisfy the same bounds (4.4). Changing (4.7) into an equation for bn, and using
the result to obtain the upper bound for e′′n in (4.5), we get

(4.8) −3η(n − 1) + 2n+1 − 4 ≤ e′′n ≤ 3η(n − 1) + 2n · 2n − 3 · 2n − 6.

The dominant term in both upper and lower bound is 3n22n. This can in fact be improved to
5
2n22n, as a better bound for ek is obtained by considering where the two wedge dynamics and
the hole dynamics must agree. A little geometric argument demonstrates that this agreement
is achieved at least within a region between lines of slope 2 and 1/2 through the center of the
interaction region. We omit the details, as it is much easier to improve the bounds on ρ1 by
computing more ek’s for small k than by trying to improve (4.8).

Our computations yield 4−23b23 ≈ 0.635280, and so, using (4.6) and (4.8), the rigorous
bounds

0.635248 ≤ ρ1 ≤ 0.635312.

Our second rule is Hex 14 . With minor changes our analysis also applies to Hex 145 , so we
will omit that case.

The first basic recursion now reads, for n ≥ 3,

wn+1 = 3wn + 2wn−1 + hn−1 − 2 · 2n − 2,

and this time
bn = 2wn + 2n.

This yields, with corrections computed separately for low n,

(4.9) bn+1 = 3bn + 2bn−1 + 2hn−1 − 6 · 2n − 4 − 1{n=1} + 2 · 1{n=2},

for n ≥ 1. We have b0 = 3, b1 = 8, b2 = 24, b3 = 78, b4 = 280, . . . , and h0 = 4, h1 = 8, h2 = 25,
h3 = 80, . . . . The second recursion remains (4.3).
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What does change in this case is computational. Namely, in all small cases we use for our
estimates, the computation for bn ends at time 2n + 1, and at time 2n−1 + 1 in the interaction
area. For computation of eh

k this forces us to add two layers of 2k +3 sites at the bottom and on
the right of the central (2k+3)× (2k+3) box and one layer of 2k+5 sites at the top and on the
left of that box. For computation of ew

k , the added layers are of course only at the bottom and
on the left, creating a (2k + 5) × (2k + 4) box. (The restriction in (4.3) then is 2n−1 ≥ 2k + 8.)
In this way, we get e−1 = 2, e0 = 11, e1 = 27, e2 = 49, e3 = 82, e4 = 125, and e5 = 170.

Thus

bn+1 = 3bn +

n
∑

k=1

2kbn−k − e′′n,

where e′′n = e′n−1 + 6 · 2n + 4 + 1{n=1} − 2 · 1{n=2} for n ≥ 1, e′′0 = 1, and e′n satisfies the same
bounds (4.4). In this case the renewal theorem gives

ρ14 = lim
n→∞

bn

4n
=

3 − 1
4

∑∞
n=0 4−ne′′n

3
4 + 1

2

∑∞
k=2 k2−k

= 11
6 − 1

6

∞
∑

n=1

4−ne′′n.

The estimates of e′′n for large n are as follows (this time we do not bother to symmetrize):

−3η(n − 1) + 6 · 2n + 4 ≤ e′′n ≤ 4η(n − 1) + 6 · 2n + 4.

For this case we compute bn up to n = 20, to get 4−20b20 ≈ 0.968854 and

0.968618 < ρ14 < 0.969044.

Next, we turn to Hex 16 .

All definitions, as well as recursions (4.2) and (4.3), remain exactly the same as for Hex 1 .
Note that the “6” part of the rule only influences sites that have no further influence elsewhere,
so this rule has exactly the same interactions as Hex 1 . For example, we can obtain A∞ for Hex
1 and then perform a single Hex 16 step to obtain A∞ for Hex 16 .

The extra step does affect the computation of ek, making in small cases the interaction areas
the same as for the Hex 14 rule. To repeat: for eh

k we add two layers of 2k + 3 sites at the
bottom and on the right of the central (2k + 3) × (2k + 3) box and one layer of 2k + 5 sites at
the top and on the left of that box, while for ew

k the added layers are only at the bottom and
on the left. The restriction in (4.3) is 2n−1 ≥ 2k + 8.

We get b0 = 1, b1 = 4, b2 = 16, b3 = 58, b4 = 212, etc., and e−1 = 4, e0 = 15, e1 = 32,
e2 = 56, e3 = 83, e4 = 115, and e5 = 157. By computing h6

n up to n = 9, we obtain
2−18b18 ≈ 0.739664 and

0.738902 < ρ16 < 0.740279.

Next in line is Hex 156 .

The first recursion now is similar to (4.9);

(4.10) bn+1 = 3bn + 2bn−1 + 2hn−1 − 6 · 2n + 10 − 6 · 1{n=1},

while (4.3) is still the second recursion. In addition, bn = 2n(2n + 2) up to n = 3; after that
permanently empty triangles (of 6 sites) appear. Much later (as per the discussion in Section
8), larger permanently empty regions appear.
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In this case, two extra steps are required (again, for the small cases we have checked) to
finalize the configuration in Bn. The last of these two steps, however, merely fills two sites next
to the axes and thus does not affect any computations. The interaction areas are therefore the
same as for Hex 16 .

This time, we get b0 = 3, b1 = 8, b2 = 24, b3 = 80, b4 = 276, etc., and e−1 = 1, e0 = 9,
e1 = 25, e2 = 55, e3 = 84, e4 = 106, and e5 = 151. By computing h6

n up to n = 9, we obtain
2−18b18 ≈ 0.937935 and

0.937183 < ρ16 < 0.938559.

Our last rule in this section is Hex 15 . In this case, the first recursion is

(4.11) bn+1 = 3bn + 2bn−1 + 2hn−1 − 6 · 2n + 8 − 6 · 1{n=1},

and we get b0 = 3, b1 = 8, b2 = 22, b3 = 70, b4 = 238, etc., and e−1 = 0, e0 = 6, e1 = 18, e2 = 42,
e3 = 66, e4 = 84, and e5 = 120. By computing h6

n up to n = 9, we obtain 2−18b18 ≈ 0.802578
and

0.801822 < ρ16 < 0.803199.

We note that again small cases require two steps to finalize the configuration in Bn. Both steps
fill two sites next to the axes and are thus not problematic. The new feature is different hole
dynamics, requiring one extra step (beyond 2n−1) to resolve. Therefore the interaction areas are
the same as for Hex 16 .

5 Density of Hex 1456 and Hex 146

For concreteness, we will concentrate on Hex 1456 . The same techniques applied to Hex 146
yield the bounds in Theorem 1.2. The definitions of bn and hn are the same as in Section 3.
The first recursion now is

(5.1) bn+1 = 3bn + 2bn−1 + 2hn−1 − 6 · 2n − 2,

while the second is still (4.3). We note that, if hn ≡ (2n + 1)2, then bn ≡ 2n(2n + 2). That is, if
every hole fills completely, then An fills the lattice and ρ1456 = 1. At first, simulations suggest
that this indeed happens.

However, after more systematic experimentation one discovers that H(82) and H(84) do
not fill completely; a final triangle of 0’s consists of 25 sites. For the lower bound, it is also
important to observe that all the other holes of sizes at most 130 do fill in. Therefore, all boxes
of sizes 2n−44, n ≥ 7 do not fill in. (In fact, they leave 2(n−7)+1 unfilled triangles of size 25.)
Since there are infinitely many such boxes generated by the dynamics, the number of unfilled
0’s is infinite. This however does not establish that ρ1456 < 1. In fact, we do not even have a
nontrivial lower bound for the density yet, so we start with this easier task.

A zero-creating hole will occur for the first time inside a H(2n + 2) when 2n−22 − 44 ≥ 84,
hence n ≥ 28. Thus bn = 2n(2n + 2) for n ≤ 29. (This explains why a naive simulation started
with a single occupied site will never produce a hole – one would need a system of a size more
than 230 ≈ 109.)

As in (4.7), let bc
n = 2n(2n + 2) − bn and hc

n = (2n + 1)2 − hn. Then

bc
n+1 = 3bc

n + 2bc
n−1 + 2hc

n−1
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and hc
n satisfy the analogue of (4.3), with the same bounds (4.4) on ek. Hence

(5.2) bc
n+1 = 3bc

n +
n

∑

k=1

2kbc
n−k − e′n−1,

where e′n = 0 for n ≤ 28. Furthermore, e′n satisfies the bounds (4.4). The renewal theorem
therefore guarantees the existence of a density, and, by (4.4),

1 − ρ1456 = lim
n→∞

bc
n

4n
= − 1

24

∞
∑

n=29

4−ne′n < 1
8

∞
∑

n=29

4−n · n22n <
282

8 ln 2 · 228
< 5.3 · 10−7.

Unfortunately, a nontrivial upper bound seems very difficult to produce by a brute force
approach along the lines of Section 4. Instead, we devise a rescaling argument.

Let R be a time at which there is a permanent 0 in AR (with the initial condition that
produces bn). Clearly we can choose R to be a power of 2, and arbitrarily large. We can also
ensure that the 0 is at distance at least R/2 (in || · ||∞ distance, say) away from the part of the
boundary of AR strictly inside the first quadrant.

Now run the dynamics in time steps of size R, with the proviso that, whenever a hole is
formed, the clock inside this hole is reset so that time 0 corresponds to the formation of the
hole. The dynamics then uses different clocks on different regions of the plane. The point is
that every second time, starting with time 1, every added occupied site is part of a version of
AR (its translation and/or rotation). The other times are used for filling in, and holes cannot
be guaranteed.

As we know, the buds inside the holes interact, but the interaction will not reach the existing
0 until it is of size R/2, therefore up to (unrescaled) time at least 2R/4. Up to that time, therefore,
all the occupied sites will see a permanent 0 within distance 4R.

Next, let dn be the site count of sites within distance 4R of a permanent 0, at time 2n + 1.
As the interaction can destroy a 0 and therefore affect sites at distance 4R from the interaction
area, dn satisfy the same recursion as bn, but with error bounds multiplied by 81 · R2. If
dc

n = 2n(2n + 2) − dn, then

(5.3) dc
n+1 = 3dc

n +
n

∑

k=1

2kdc
n−k − e′n−1,

where in this version
|e′n| < 103R2n22n.

Moreover, we already know that e′n = 0 for n ≤ R/4. Therefore

lim sup
dc

n

4n
<

∑

n≥R/2

103R2n22−n,

which clearly can be made arbitrarily small for large enough R.

It follows that a positive proportion of occupied sites sees a permanent 0 within a fixed
distance. Therefore the final density of 1’s is necessarily strictly less than 1.

21



6 Proof of Theorem 1

We start with the case A0 = {0}. What we need to prove, roughly, is that the proportion of
A∞-sites in any nice large subset of Z

2 is about ρ. We accomplish this by the division of space
into “mesoscopic” units filled in by the basic wedge dynamics (which gives wn) and much smaller
problematic regions.

To this end, let us return to the recursion for wn. This recursion can be “unrolled.” That
is, when not both π(3) and π(4) are 1, wn can be written in terms of wn−m−1, . . . , wn−m−ℓ,
and hk

n−m−ℓ, for some m ≥ 0, ℓ ≥ 2, and suitable k’s. This is the case we will focus on

for the remainder of the proof. When π(3) = π(4) = 1, hk
n−m−ℓ is replaced by a suitable

linear combination of hn−m−ℓ, sn−m−ℓ and tn−m−ℓ, and the proof is easily adapted. (The right
side of Fig. 5 illustrates the difference between resulting divisions.) The unrolled recursion
corresponds to a division of Wn into smaller triangles and parallelograms. If n is large, and
Wn is normalized by 1/2n, this partition approximates a partition of the unit triangle W =
{(x, y) : 0 ≤ y ≤ x ≤ 1}. In this way, W is divided into covering triangles (corresponding to
wi) and parallelograms. We define these sets to be closed, so there is some intersection along
boundaries. Here, m determines the largest size of a triangle used, which is 1/2m+1 times the
size of W . Furthermore, ℓ gives exactly the number of different triangle sizes used. The left side
of Fig. 5 pictures the division for m = 1 and ℓ = 3, with the remaining parallelograms shaded.
The maximum diameter of sets in the division clearly halves with each successive m. Moreover,
the area covered by the parallelograms (uncovered by triangles) halves with each successive ℓ.
View m and ℓ as large, but much smaller than n.
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Fig. 5. The division of W for m = 1 and ℓ = 3 in two cases.

Fix an ǫ > 0. It is clear that |4−(n−m−i)wn−m−i − 1
2ρ|, i = 1, . . . , ℓ, can be made simultane-

ously smaller than ǫ if n is chosen large enough. (Note that 1
2 · 4−(n−m−i) is exactly the area of

the corresponding triangle in the division.)

Pick a closed set S ⊂ W , with nice boundary. For example, we may assume that S is convex
and ∂S consists of finitely many linear pieces. How many points from 2−n(A∞ ∩ Wn) does S
contain? In the sequel, C is a “generic constant,” which is allowed to vary from one appearance
to another.

First, the triangles that intersect ∂S together contain at most C · length(∂S) · 22n−m points.
Second, all the parallelograms in W have combined area at most C · 2−ℓ and so they contain
at most C · 22n−ℓ points. A crude upper bound on the total length of the boundaries of the
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division sets is 4 times the number of division sets, which can be (equally crudely) bounded
by the reciprocal of the area of the smallest set in the division. Therefore, the total boundary
length is at most C · 4m+ℓ and so within (microscopic) distance C of these boundaries there are
at most C · 2n+2m+2ℓ points. Finally, we know that the error terms (if any) contribute at most
C · n2 · 2n points.

Therefore, S contains at least

(

(ρ − ǫ) · area(S) − C · length(∂S) · 2−m − C · 2−ℓ − C · 2−n+2m+2ℓ − C · n2 · 2−n
)

· 4n

points, for large enough n. An analogous upper bound also holds. By letting first n → ∞, then
m, ℓ → ∞, and finally ǫ → 0, it follows that

1

4n
|S ∩ 2−n(A∞ ∩ Wn)| → ρ · area(S).

The proof of Theorem 1 for A0 = {0} is now concluded in a straightforward manner.

For general finite A0, Theorem 1 mostly follows from properties of additive dynamics, as we
explain below. The proof is somewhat delicate, which is not a complete surprise since sensitivity
to perturbations in initial condition is widespread among generic cellular automaton rules. In
fact, there is a “box snowflake” for which the density of A∞ has been proved to depend on the
initial set. Namely, we have shown in [GG1] that Box 1 solidification yields density 4/9 starting
from a singleton. Later, Dean Hickerson [Hic] engineered finite initial seeds with asymptotic
densities 29/64 and 61/128. For instance, the latter is achieved by an ingenious arrangement of
180 carefully placed occupied cells around the boundary of an 83 × 83 grid. We do not know
the highest density with which Box 1 solidification can fill the plane, nor whether any seed fills
with density less than 4/9.

To return to hexagonal digital snowflakes, we will assume that A0 has sites on the y-axis,
the lowest of which is at 0 and the highest at (0, h), but no sites to the right of y-axis. We will
concentrate on proving the density result for the part of A∞ between lines y = 0 and y = x+ h,
which, by symmetry and the extreme boundary dynamics, is clearly enough. We start with the
following fact about additive dynamics. Assume the seed is T0 = A0 ∩ y-axis. By additivity,
when 2n−1 > h, the rightmost column of T2n consists of two copies of T0, separated by 2n−1−h
0’s. The column immediately to the left of these 0’s either consists of all 1’s (flanked by two
0’s) or else of all 0’s, flanked on the top by a 1 and on the bottom by an additional 0, below
which there is a 1. In the second case we can iterate and continue moving to the left until we
encounter a column of 1’s (flanked by a 0 on both ends). Assume this column consists of D 1’s.
An important point is

2n − h ≤ D ≤ 2n.

Furthermore, if this column is created (by the boundary dynamics) at time t, then at time t+D+1
the boundary dynamics creates a horizontal and a diagonal segment which together with the
above column seal off a triangle of 0’s. Into this triangle (which is a bounded perturbation of
the one started from a singleton), the Hex dynamics spread as when they fill basic wedges.

However, interaction between the secondary boundary dynamics is slightly more complicated.
When the boundary dynamics from the two secondary buds (cf. Section 2) collide, they (together
with the primary boundaries) create a hole which is equal or smaller in size to that from
A0 = {0}. In fact the hole’s side can be diminished by at most h − 1. By Lemma 4.1 the hole
generates smaller holes (all of which are smaller, and bounded perturbations of the A0 = {0}
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case), provided all the wedge vertices that were dead before are still dead . The problematic
vertices are created in the middle of the holes when secondary boundary dynamics collide. If
π(3) and π(4) are not both 1, collisions always result in dead vertices, as is easy to check. We
will deal with this case first.

Pick a closed convex set S ⊂ W with piecewise linear boundary and an ǫ > 0. In the first
step, perform m steps of the Sierpinski triangle construction. That is, take out of W the central
triangle congruent to W/2, then 3 triangles congruent to W/4, . . . , and finally 3m triangles
congruent to W/2m. Discard the points in W outside these triangles (see top left of Fig. 6 for
the m = 3 example). In the second step, mark by M the two smaller triangles from each triangle
obtained in the first step, as in Fig. 6. In the third step, mark 4 triangles in the remaining
quadrilateral hole, then 4 triangles in each of the remaining two holes, and so on, for a total
of m iterations and 4 · 2m triangles. The top of Fig. 6 illustrates these three steps for m = 3.
Note that when m = m(ǫ) is large enough, the area of the exceptional set, i.e., the set of points
outside of marked triangles is below ǫ/4. For a small enough δ = δ(ǫ,m), the area of We, the
δ-neighborhood of the exceptional set, is below ǫ/2.

Now, take a large n and consider 2−nA∞ ∩ W on one of the marked triangles WM , off We.
By Lemma 2.1, this configuration exactly equals the configuration of sites in a basic wedge if
n ≥ n0(δ). Therefore, by taking n even larger if necessary,

|2−nA∞ ∩ WM ∩ W c
e ∩ S| ≥ ρ · area(WM ∩ W c

e ∩ S) − 6−m−1ǫ,

by the already proved result for basic wedges. Since the number of marked triangles is less than
2 · 6m, it follows that

|2−nA∞ ∩ S| ≥ ρ · area(S) − ǫ,

for n ≥ n0(ǫ), as desired. The analogous upper bound is proved in the same fashion.

When π(3) = π(4) = 1, then the middle vertices in the holes are live as soon as D < 2n.
Although h > 0 does not necessarily imply that D < 2n, there is for each h a unique T0 which
has D = 2n, namely the one generated by the additive dynamics starting from {0} and run for
h time steps (and translated back so that its lowest site is at 0).

In this case, therefore, the division into marked triangles in step 3 has two possible forms,
one for D = 2n and one for D < 2n. Both are indicated in the bottom of Fig. 6. In either case,
the proof is then a minor modification of the above.

This concludes the proof of Theorem 1. To finish this section, we assume π(3) = 0 and prove
(4.1), or equivalently, that for the dynamics on Wn,

4−n|A2n−1 ∩ Wn| → 1
2ρ.

In fact, the recursion for wn can be used to show that A2n+Cn2 ∩ Wn = A∞ ∩ Wn, since the
largest interaction area inside the holes is on the order of n2. (It is possible that in all cases
A2n+c ∩ Wn = A∞ ∩ Wn, for some small constant c, but we cannot prove this.) Then, in the
division as in the case A0 = {0} above, only the dynamics inside triangles that intersect the
right edge of W is not done by time 2n. These contain at most C ·22n−m points and the proof is
concluded as before. (Growth inside some parallelograms might also persist, but such sites are
already incorporated into the error.)
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Fig. 6. The three steps and marked triangles for m = 3. Regions outside them are
shaded.

7 Macroscopic dynamics

In this section we assume A0 = {0} and study At for a large finite t instead of A∞. As the radius
of At increases linearly in t, it is natural to ask whether these dynamics have a hydrodynamic
limit as space and time are scaled proportionally. Computer simulations certainly suggest so,
and are validated by our analysis below.

There are two kinds of macroscopic dynamics for digital snowflakes, both denoted here by
Sa, a ∈ [0, 1]. The sets Sa will be a strictly increasing family of closed subsets of the hexagon
co(N ) ⊂ R

2. We start with the simpler case, which we call Simple Hole Dynamics (SHD). This
evolution will be associated with the 12 rules for which π(3) and π(4) are not both 1.

Assume a < 1 and write the dyadic expansion a = 0.a1a2 . . . with infinitely many 0’s. We
denote a′ = 0.a2a3 . . . , a′′ = (a′)′, etc., and use the following transformations: reflection σ
about the line y = x, rotation ρα by an angle α, and deformation δ by the linear transformation
(x, y) 7→ (x − y, y). We will only define the portion of Sa inside the triangle W = {(x, y) ∈ R

2 :
0 ≤ x ≤ y ≤ 1}; other parts are then obtained by symmetry, i.e., by an appropriate use of the
above transformations.

We will first recursively define Sa ⊂ W , and a corresponding hole dynamics Ha ⊂ W on
dyadic rationals a that have only finitely many 1’s in their dyadic expansion, starting with
Sa = {(0, 0)} and Ha = ∅ for a = 0. The rules described in the next paragraph and Fig. 7
are a natural extension of the recursions for wn and hn for the corresponding 12 rules. (We
remark that when no two successive ai’s are 1, one can define the boundary of Sa by a Koch-
type substitution scheme, as outlined in the Introduction for a = 1/3 and in [GG1] for Box 1
solidification; such algorithms are in general precluded by collisions inside the holes.)
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If a1 = 0, then take Sa = 1
2Sa′ . If a1 = 1 and a2 = 0, then Sa consists of five pieces:

Sa = 1
2W ∪

(

1
2 , 0

)

+ 1
2Sa′ ∪

(

1
2 , 1

2

)

+ 1
2Sa′

∪
(

1
2 , 0

)

+ 1
4σSa′′ ∪

(

1
2 , 1

2

)

+ 1
4ρ−π/2δSa′′ .

If a1 = 1 and a2 = 1, then Sa consists of seven pieces:

Sa = 1
2W ∪

(

1
2 , 0

)

+ 1
2Sa′ ∪

(

1
2 , 0

)

+ 1
2Sa′ ∪

(

1
2 , 1

2

)

+ 1
4σW

∪
(

1
2 , 1

2

)

+ 1
4ρ−π/2δW ∪

(

1
2 , 1

4

)

+ 1
4Ha′′ ∪

(

1, 1
2

)

+ 1
4ρπHa′′ .

If a1 = 0, then
Ha = (1, 1) + 1

2ρπσSa′ ∪ (1, 0) + 1
2ρπ/2δSa′ ,

and if a1 = 1,

Ha = (1, 1) + 1
2ρπσW ∪ (1, 0) + 1

2ρπ/2δW ∪ 1
2Ha′ ∪

(

1, 1
2

)

+ 1
2ρπHa′ .

Sa
′

Sa
′ Sa

′

Sa
′

Sa
′′

Ha
′

Ha
′′

a1 = 0

a1 = 0 a1 = 1

Sa :

Ha :

a1a2 = 10 a1a2 = 11

Fig. 7. SHD. Dark areas are fully covered by appropriately mapped W , while arrows
indicate the placement of suitably transformed sets.

It is clear from the construction that both Sa and Ha are well defined and increasing on
dyadic rationals. Moreover, we claim that |a − b| < 2−n implies

(7.1) dH(Sa,Sb) ≤
√

2 · 2−n, dH(Ha,Hb) ≤
√

2 · 2−n,

where dH is the Hausdorff metric. To prove (7.1), we proceed by induction on n. Note that we
can assume a < b and, by monotonicity, that ak = 0, for k ≥ n and bn = 1. The assumption
also means that ak = bk for k < n. As diameter(W ) = diameter(δW ) =

√
2, (7.1) is easy to

verify for n = 0 and n = 1. For n ≥ 2, we can use the induction hypothesis on a′, a′′ and b′, b′′.
Note that all a′ sets are normalized by 1

2 and all a′′ sets by 1
4 , which yields (7.1).

The uniform continuity (7.1) immediately implies that we can extend both Sa and Ha

uniquely to a ∈ [0, 1], so that (7.1) holds for a, b ∈ [0, 1], S1 = H1 = W , and

Sa = ∩b>aSb = closure(∪b<aSb),Ha = ∩b>aHb = closure(∪b<aHb),
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where b in all cases ranges over dyadic rationals. The following result identifies Sa as a subse-
quential limit of At.

Theorem 4. Assume that tn = a · 2n, for a ∈ [0, 1] and A0 = {0}. The 12 rules that do not
have both π(3) = 1 and π(4) = 1 exhibit subsequential convergence to SHD:

2−nAtn → Sa,

in the Hausdorff metric, as n → ∞, uniformly in a. 3

Proof. For dyadic rationals a, the proof follows from arguments in Section 6. The case of general
a ∈ [0, 1] is then a consequence of monotonicity of At and St.

The sets Sa are difficult to visualize for a’s that are not dyadic rationals. In particular, it is
clear that they have a very complicated boundary. It is therefore natural to ask whether one can
determine the fractal (Hausdorff) dimension dimH of the said boundary. The answer in many
cases is yes, and we turn to this task now.

As in [GG1], we need to count the number of buds of size 2−n. Let us denote this number
by fn(a) for the triangle and gn(a) for the (half) hole dynamics. Then

fn(a) =











fn−1(a
′) if a1 = 0,

2fn−1(a
′) + 2fn−2(a

′′) if a1a2 = 10,

2fn−1(a
′) + 2gn−2(a

′′) if a1a2 = 11,

and

gn(a) =

{

2fn−1(a
′) if a1 = 0,

2gn−1(a
′) if a1 = 1.

When a is rational, these equations reduce to a finite linear recursion, so that fn(a) ∼ cλn,
for some c > 0 and λ ∈ (0, 4]. If λ ≤ 2, then it follows immediately that dimH(∂Sa) = 1. If
λ > 2, then these are Maudlin-Williams [MW] fractals. Hence the box counting and Hausdorff
dimensions agree, and dimH(∂Sa) = log λ/ log 2.

To illustrate, for N ≥ 2 let us take a with periodic binary representation that repeats N − 1
initial 1’s and then a single 0, so a = (2N − 2)/(2N − 1). Index the shifted configurations with
superscripts. We get

g1
n = 2g2

n−1 = 4g3
n−2 = · · · = 2N−2gN−1

n−(N−2)
= 2N−1fn−(N−1).

Also,

fN−1
n = fN

n−1 = fn−1,

fN−2
n = 2fN−1

n−1 + 2fN
n−2 = 4fn−2,

fN−3
n = 2fN−2

n−1 + 2gN−1
n−2 = 12fn−3.

Recursively thereafter we get fN−k
n = ckfn−k, using

fN−k
n = 2f

N−(k−1)
n−1 + 2g

N−(k−2)
n−2 = (2ck−1 + 2k−1)fn−k.

3The limit also equals ρSa in the weak sense, but Hausdorff convergence seems more to the point.
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Fig. 8. Occupied set of Hex 13 , started at {0}, at times ⌊a · 210⌋ for a = 2/3,
14/15, and 62/63 in darker, lighter, and darker shade, respectively. This illustrates
problems with surmising fractal properties from pictures: the 2/3 case appears to
have the “most fractal” boundary, which in fact has dimension 1. The fairly large
fractal dimension in the other two cases is a consequence of growth that appears at
the exposed corners and is not visible at this scale.

Therefore c1=1 and for k ≥ 1, ck satisfy the recursion ck = 2ck−1 + 2k−1. It follows that
ck = k · 2k−1, so fN = N · 2N−1fn−N , and λ = 2 · (N/2)1/N . Hence

dimH(∂Sa) = 1 − 1

N
+

log2 N

N
.

For example, dimH(∂S2/3) = 1, dimH(∂S14/15) = dimH(∂S245/255) = 5/4, the dimension
achieves its maximum (within this collection of examples) of approximately 1.289 at a = 62/63,
and tends to 1 as N → ∞. See Fig. 8.

Note that we do not know how to determine dimH(Sa) when a is irrational, nor the maximum
possible value of dimH(Sa).

The Diverse Hole Dynamics (DHD) is associated with the 4 Hex rules that have π(3) =
π(4) = 1. Besides Sa, there are now three hole dynamics Hi

a ⊂ W , i = 1, 2, 3, all initialized at ∅
when a = 0 (cf. Fig. 9). When a1 = 0 or a1a2 = 10, the recursion for Sa is the same as before,
while if a1a2 = 11,

Sa = 1
2W ∪

(

1
2 , 0

)

+ 1
2Sa′ ∪

(

1
2 , 0

)

+ 1
2Sa′ ∪

(

1
2 , 0

)

+ 1
4W

∪
(

1
2 , 1

2

)

+ 1
4ρ−π/2δW ∪

(

1
2 , 1

4

)

+ 1
4H1

a′′ ∪
(

1, 1
2

)

+ 1
4ρπH3

a′′ .

If a1 = 0, then

H1
a = 1

2S ′
a ∪ (1, 1) + 1

2ρπσSa′ ∪ (1, 0) + 1
2ρπ/2δSa′ ,

H2
a = H3

a = (1, 1) + 1
2ρπσSa′ ∪ (1, 0) + 1

2ρπ/2δSa′ ,
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Sa
′

Sa
′

Sa
′′

a1 = 0

Sa :

a1a2 = 10 a1a2 = 11

Sa
′

a1 = 0 a1 = 1

Sa
′

a1 = 0 a1 = 1

Sa
′

H3

a
′′

H1

a
:

H2

a
:

Sa
′

a1 = 0 a1 = 1

H3

a
:

H3

a
′

H1

a
′′

H2

a
′

H3

a
′

H1

a
′

Fig. 9. DHD. Live vertices within the H’s are indicated by arrows.

while if a1 = 1,

H1
a = 1

2W ∪ (1, 1) + 1
2ρπσW ∪ (1, 0) + 1

2ρπ/2δW ∪ 1
2ρπH2

a′ ,

H2
a = (1, 1) + 1

2ρπσW ∪ (1, 0) + 1
2ρπ/2δW ∪ 1

2ρπH1
a′ ∪

(

1, 1
2

)

+ 1
2ρπH3

a′

H3
a = (1, 1) + 1

2ρπσW ∪ (1, 0) + 1
2ρπ/2δW ∪ 1

2ρπH3
a′ ∪

(

1, 1
2

)

+ 1
2ρπH3

a′ .

These are extended to a ∈ [0, 1] in the same way as before, yielding the following result.

Theorem 5. Assume that tn = a · 2n, for a ∈ [0, 1], and A0 = {0}. The 4 rules with π(3) = 1
and π(4) = 1 exhibit convergence to DHD:

2−nAtn → Sa,

in the Hausdorff metric as n → ∞, uniformly in a.

It follows from Section 6 that for these 4 rules, most finite seeds give rise to macroscopic
dynamics different from DHD. The more general construction is quite analogous, however, so
we will not describe it in detail.

Dimension computations are similar to those for SHD, but more complicated. Now there are
fn(a) and gi

n(a), i = 1, 2, 3, that satisfy

fn(a) =











fn−1(a
′) if a1 = 0,

2fn−1(a
′) + 2fn−2(a

′′) if a1a2 = 10,

2fn−1(a
′) + g1

n−2(a
′′) + g3

n−2(a
′′) if a1a2 = 11,
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and

g1
n(a) =

{

3fn−1(a
′) if a1 = 0,

g2
n−1(a

′) if a1 = 1,

g2
n(a) =

{

2fn−1(a
′) if a1 = 0,

g1
n−1(a

′) + g3
n−1(a

′) if a1 = 1,

g3
n(a) =

{

2fn−1(a
′) if a1 = 0,

2g3
n−1(a

′) if a1 = 1.

For the same example a = (2N − 2)/(2N − 1) as in the SHD case, a similar but more involved
computation yields

dimH(∂Sa) =
1

N
· log2

(

1
3N · 2N + 7

92N − 11
9 − 5

91{N even}
)

.

8 Thickness and related issues

Let us begin the proof of Theorem 3 by considering the 8 digital snowflakes that are not exactly
solvable. For the argument that A∞ is never thick, we address only the hardest case, Hex 1456 ;
the same method applies equally well to the other 7 rules.

Fig. 10. Dynamics in H(84) at times 34, 49, 56, 58, 66. Arrows indicate which
directions of boundary dynamics (from nearby buds) lead to the residual hole.

The key fact (initially suggested by simulations) is that holes of sizes in the sequence below,

30



obtained by doubling and subtracting 4,

84, 164, 324, 644, . . . ,

create holes, each of which is twice as large as the previous one. Although this should follow from
a general rescaling property of the dynamics (which we do not even know how to formulate),
the property is a consequence a finite chain of basic interactions, as illustrated by a sequence of
intermediate times for H(84) in Fig. 10.

Before we write out the details, note that the configuration in the hole is symmetric with
respect to the map (x, y) 7→ (L−y, L−x), and write L = 2n+2n−2+4, n ≥ 6. The first important
configuration to consider occurs at time t1 = 2n−1 +2 (t1 = 34 when n = 6). Concentrate on the
extreme boundary dynamics generated by two buds: b1 at (2, 2n−1+4) (moving eastward) and b2

at (2n−1 + 2, 2n−1 + 4) (moving diagonally towards the northwest), and their two symmetrically
located counterparts b′1 and b′2. Now let us pause at the time t2 = t1 + 2n−2 − 1 (49 in the
example). The two buds b2 and b′2 would have created two diagonals

(2n−1 + 2 − 2n−2 + 1, 2n−1 + 4) to (2n−1 + 2, 2n−1 + 4 + 2n−2 − 1)

(L − (2n−1 + 4) − 2n−2 + 1, L − (2n−1 + 2)) to (L − (2n−1 + 4), L − (2n−1 + 2) + 2n−2 − 1)

if not for the interaction between them. By additivity, we need to eliminate the intersection
between the two, which consists of 2 sites, as is easy to check. At the same time, b1 creates a
column

(2n−2 + 2, 2n−1 + 4) to (2n−2 + 2, 2n−1 + 4 + 2n−2 − 1).

Note that this does not interfere with the diagonal created by b2 (on which the smallest x-
coordinate is 2n−2 + 3).

Now it is easy to see that the gap of two sites created by the interaction between b2 and
b′2 creates two buds which generate the same boundary dynamics (in the northwest direction)
as would a single 1 at time t2 − 1 immediately southeast from the gap, at (2n−1 + 2, 2n−1 +
2n−2 + 2). Call this seed b3. Also consider the bud b4 (and its symmetric counterpart b′4) at
(2n−2 + 3, 2n−1 + 2n−2 + 4) (immediately northeast from the top of the column in the previous
paragraph), which creates extreme boundary dynamics moving eastward. The next time to
pause is just before these two interact, at time t3 = t2 + 2n−3 − 1 (which is 56 in our example).
At this time, b3 creates a diagonal

(2n−1 + 2 − (2n−3 − 1), 2n−1 + 2n−2 + 2) to (2n−1 + 2, 2n−1 + 2n−2 + 2 + 2n−3 − 1)

plus two new buds at its ends, one to the west of the bottom point, one to the north of the top
point. It follows that the boundary dynamics from b4 is free to make one more step free from
interruption from b3 to create a column

(2n−1 − 2n−3 + 2, 2n−1 + 2n−2 + 4) to (2n−1 − 2n−3 + 2, 2n−1 + 2n−2 + 4 + 2n−3 − 3).

This column would be higher if not for interference from b′4 which creates a horizontal column
at the same time. These two, together with an additional site from b3, seal the hole at time
t3 + 1. Three new sites are occupied inside at the next time, but the remaining sites remain 0
forever (if n ≥ 6).

Since the dynamics create a hole of every size in the sequence, infinitely many times and no
matter what the finite seed A0 (cf. Sections 4 and 6), it follows that there are arbitrarily large
islands of 0’s in the final state A∞. Therefore A∞ is not thick.
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The argument that Ac
∞ is always thick for Hex 1 is quite simple. Namely, we will show that

every 1 in A∞ that is at ℓ∞-distance 3 or more from A0 must have a 0 within ℓ∞-distance 2.
Assuming this is not the case, let a 1 at x be a counterexample. Let t be the time at which
x becomes 1. We label 0x the 0 at x at the time t − 1. We will also assume, without loss of
generality, that the single 1 in x + N at this time is to the left of x.

0 0
0 02 01

0 1 0x

0 01

0 0

Fig. 11. Local configuration at time t − 1.

It follows that the two 0’s labeled 01 in Fig. 11 must also become 1 at time t (to avoid being
a 0 with two neighboring 1’s), and then so does 02. This forces the remaining 0’s in Fig. 11 and
yields a contradiction, as the 1 cannot be isolated from other 1’s.

Let us turn next to the exactly solvable rules. To show that A∞ is thick when A0 = {0},
we simply note that the smallest wedges and holes contain 1’s, and choose a suitable R, an
upper bound on the distance between any 0 and the set of 1’s. Any easy induction shows that
R provides the same bound for larger wedges and holes. General initial sets are handled by
arguments in Section 6. (Note, however, that the maximal distance of a 0 from the set of 1’s in
A∞ may not be bounded independently of A0.) Thickness of Ac

∞ is equally easy to establish.

To finish the proof of Theorem 3, we need to demonstrate (2).

We start with Hex 13456 . First note that a finite seed will generate six rays of 1’s via the
extreme boundary dynamics. Assume that there is a nonempty connected (in the hexagonal
lattice sense) set of 0’s in A∞. If this set is infinite, then it must extend to infinity, say, between
the eastern and northeastern ray of 1’s. Hereafter we refer to the sites within that portion of
A∞. Start at some point between the rays, and move up to the topmost 0, call it 01. Assume
first that its northeast neighbor is 0, call it 02. There cannot be any 0’s above 02 (or else the
topmost 0 would see at least three 1’s). Then the northeast neighbor of 02 must be a 0, call it 03,
again with no 0’s above it. Continuing in this fashion, we create an infinitely extended diagonal
of 0’s. But the boundary dynamics alone precludes this, for otherwise they would never create
a 1 directly above the diagonal, and then directly above that, etc., finally eliminating the ray
of 1’s. Therefore the right neighbor of 01 must be a 0, again call it 02, and the entire column
above 02 must be 1’s. By the same argument, the right neighbor of 02, named 03, must be a 0
and the entire column above it 1’s. This procedure eventually creates a horizontal ray of 0’s,
which is equally impossible by the boundary dynamics. The only remaining possibility is that
the connected set of 0’s is finite. But then simply observe that the rightmost among its top 0’s
must see at least three 1’s. This contradiction demonstrates that Ac

∞ = ∅, as claimed.

We conclude this section by showing that Hex 13456 is the only case for which A∞ does not
have infinitely many 0’s regardless of A0. It is easy to observe that the other three candidates
(i.e., rules with density 1) may leave some 0’s: Hex 136 and Hex 1346 will not fill a domino 00
in a sea of 1’s, while Hex 1356 will not fill a triangle 00

0 in a sea of 1’s.

To generate infinitely many 0’s, let the initial set A0 consists of a column of L 1’s. Then the
primary boundary encloses a triangle with this column as one side, at time L. This repeats every
time the boundary dynamics recreates the initial set, hence infinitely many times. To show that

32



there is an A0 with infinitely many 0’s in A∞, it is therefore enough to find an L for which the
described triangle does not completely fill in. By exhaustive computer search, the smallest such
L’s for rules Hex 136 , Hex 1346 , and Hex 1356 are, respectively, 5, 19, and 42. We do not know
if there are smaller seeds with this property, but it seems that very small random initial seeds
(those that fit into 5 × 5 box, say) are very likely to have A∞ = Z

2.

9 Exact Solvability

The phrase “exact solvability” is popular in statistical physics [Bax], but its exact meaning is
difficult to pin down. By contrast, as we will now explain, in the discrete world of deterministic
CA this concept does have a natural rigorous framework based on computational complexity. We
will restrict our formulations to the final set A∞, although generalization to the entire space-time
evolution is straightforward. (In fact, at the cost of an extra dimension, it is easy to represent
the evolution of any two-state CA as the final configuration of a solidification rule.) Intuitively,
we require that “for a given x ∈ Z

2, it is computationally easy to decide whether x ∈ A∞.” This
notion of course depends on an initial set A0, which will be assumed to be {0} unless otherwise
specified. Formally, we call a solidification CA exactly solvable (from A0) if there exists a finite
automaton which, upon encountering x as input, decides whether x ∈ A∞. Representation of
x as input is given as (±i11,±i21, i

1
2, i

2
2, . . . ), where i11, i

2
1 are the most significant binary digits of

the first and second coordinate of x; i12, i
2
2 the next most significant, etc. (Some initial i1k’s or

i2k’s may be 0, and the representation is finite but of arbitrary length.) This means that A∞
is automatic [AS], or equivalently a uniform tag system [Cob]. More general representations of
inputs are sometimes desirable, particularly if one wants to study CA on more general lattices,
but this one suffices for our present purposes. Note that exact solvability puts a limit on the
computational complexity of a CA: for example, it cannot be universal.4 Also, by [Cob, Theorem
6] such A∞ cannot have an irrational density, in contrast to the limit set in [GriH] generated by
a suitable initial seed in the Game of Life.

To our knowledge, the simplest nontrivial example of an exactly solvable CA is Diamond 1
solidification, which is a modification of Hex 1 using the neighborhood {(0, 0), (0,±1), (±1, 0)}.
In this case (the “intricate, if very regular, pattern of growth” depicted on p. 171 of [Wol3]),
it can be shown by induction that x /∈ A∞ iff max{k : i1k = 1} = max{k : i2k = 1}. It is
easy to construct a (two-state) finite automaton that checks this condition, and the density ρ
of A∞ evidently must satisfy the equation ρ = 1/2 + ρ/4, so that ρ = 2/3. It is also worth
noting that the first quadrant portion of this A∞ is a fixed point of the substitution system
1 → 10

11 , 0 → 10
01 . Although, by Cobham’s theorem ([Cob, Theorem 3], [AS, Theorem 14.2.3]),

a substitution representation of A∞ must exist in any exactly solvable case, we have no simple
explicit construction for our Hex examples.

The proof that Hex 13 is exactly solvable is quite a bit messier than the recursion for bn,
as symmetry seems difficult to exploit. We now sketch the construction of the required finite
automaton, as encoded in Fig. 12. The number of states will be determined by a number of
possible division squares. Except in three cases, these squares are further divided into two
triangles by the northeast diagonal. Each of these triangles is either a wedge, in which case it
is equipped with an arrow at the vertex from which the wedge propagates in the dynamics, or

4Note that, since there are one-dimensional universal CA [Coo], there are two-dimensional universal solidifi-
cation CA. A universal CA can generate any recursive language, hence one which is not recognizable by a finite
automaton.
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Fig. 12. Division algorithm. Transition according to the value of i1, i2 is indicated
in the top line, and pieces are labeled in the obvious fashion.

a half hole which is equipped with two arrows. The half hole encodes dynamics filling in one
half of the diamond-shaped holes. We need to distinguish wedges and half holes with different
orientations, so there are 6 of the former and 4 of the latter. The first exceptional (undivided)
division square is a full hole, which has a single representative and encodes filling a square hole.
The other two exceptions, arbitrarily named B-square and C-square, have four representatives
each and encode filling the “complex” part of a wedge. (A B-square is marked by 3 arrows,
while a C-square is marked by a single arrow, as shown in Fig. 12.) The number of possible
division squares can be reduced by observing that two half-holes cannot appear, and neither can
two wedges with arrows which originate at the corners of the southeast diagonal. This makes a
total of 29 possible division squares.

Assume that both initial signs are +. Draw the initial division square, representing the initial
state of the automaton, which has two wedges, each with an arrow at the lower left corner. The
situation is reflected when both the initial signs are −, while in the case of a + and a − the
initial state is a C-square.

After reading (i11, i
2
1), the next state is one of the 4 subsquares, two of the same type as the

initial one, the other two B-holes. This division is of course dictated by how the dynamics fills
the square. The next two bits induce further division, and so forth. Fig. 12 provides a check
that any of the 29 division squares gets divided into 4 division squares.

A minor final complication is that the holes are not divided into two smaller holes by ex-
act wedges, but by their translation in a coordinate direction by 1. These corrections do not
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accumulate, as they go in opposite direction from one scale to the next, as illustrated by Fig. 13.

One can also prove that Hex 134 is exactly solvable by the same method. The algorithm is
a little more involved, as it necessitates several more types of full and half holes, but there is
nothing conceptually new, so we omit the details.

Fig. 13. Hole correction. First correction (on the larger scale) is in the direction
(0, 1), next in the direction (0,−1).

As it turns out, we have already established enough structure to establish the relative com-
plexity of the 8 remaining digital snowflakes. Indeed, the following result [GraH], together with
Theorems 1–3, proves that none of them can be exactly solvable from any initial set.

Lemma 9.1. If an automatic set S ⊂ Z
2 has a strictly positive asymptotic density, then it is

thick.

In conclusion, we remark that complexity analysis of cellular automata by means of finite
automata was initiated by S. Wolfram in [Wol2]. The perspective of Wolfram’s paper is in a
sense opposite to ours, in that it measures how complexity of the set of all possible configurations
increases over time. In contrast, we consider a single configuration at the “end of time.”
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[Des] R. Descartes, “Les Météores,” 1637; éd. Adam et Tannery, Paris, Vrin, t. IV, 1965.

[Dix] R. Dixon, “Mathographics,” Dover, 1991.

[Fel] W. Feller, “An Introduction to Probability Theory and Its Applications, Volume 1,” Wiley,
1968.

[Gar] M. Gardner, Mathematical games, Scientific American 133 (December 1976), 124–128.

[GG1] J. Gravner, D. Griffeath, Cellular automaton growth on Z
2: theorems, examples and

problems, Advances in Applied Mathematics 21 (1998), 241–304.

[GG2] J. Gravner, D. Griffeath, Modeling snow crystal growth II , in preparation.

[GraH] J. Gravner, D. Hickerson, Asymptotic density of an automatic sequence is uniform, in
preparation.

[GriH] D. Griffeath, D. Hickerson, A two-dimensional cellular automaton with irrational den-
sity . In “New Constructions in Cellular Automata,” edited by D. Griffeath and C. Moore,
Oxford Univ. Press, 2003.

[Gle] J. Gleick, “Chaos: Making a New Science,” Penguin Books, 1987.

[Gri] D. Griffeath, http://psoup.math.wisc.edu/extras/1ormore/1ormore.html.

[Hic] D. Hickerson, personal communication.

[Hoo] R. Hooke, “Micrographia,” 1665; Dover, 2003.

[Kep] J. Kepler, “Strena Seu de Nive Sexangula,” 1611. Translated as “The Six-Cornered Snow-
flake,” trans. Colin Hardie, Clarendon Press, Oxford, 1966.

[Kin] B. W. King, Snowflake Curves, Math. Teacher 57 (1964), 219-222.

[Koc] H. von Koch, Sur une courbe continue sans tangente, obtenue par une construction
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