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RANDOM GROWTH MODELS WITH POLYGONAL SHAPES

JANKO GRAVNER, DAVID GRIFFEATH

1. Introduction.

Discrete local models for random growth and deposition have been a staple of rigorous research
in probability since the Hammersley—Welsh paper [HW] on first passage percolation about 40
years ago. Apart from their role as a testing ground for probabilistic techniques, a voluminous
physics literature ([Meal, [PV]) testifies to their importance in understanding the evolution of
natural systems far from equilibrium. The most basic tool, introduced in [HW] and ubiquitous
ever since, is subadditivity: the process dominates one restarted from an already occupied point.
Clearly, this imposes a monotonicity property on the model, but, as we will see, not much
more. The result is the existence of an asymptotic shape: started from a finite seed, and
scaled by time, the occupied set converges to a deterministic convex limit. Elegant as this
method is, it is nonconstructive and as a result fails to provide any detailed information about
the limiting set. Thus asymptotic properties of subadditive sequences are still an active area of
research ([Ale], [SY]). Are there cases when the shape can be exactly identified? Research on this
topic has so far primarily focused on growth from infinite initial states, also known as random
interfaces. Methods have ranged from hydrodynamic limits based on explicit identification
of invariant measures ([Sepl|, [Sep2]), to techniques arising from exactly solvable systems in
mathematical physics ([GTW], [Joh]), and to perturbation arguments based on supercritical
oriented percolation ([DL], [Gra]) which imply that some interfaces move with the speed of their
deterministic counterparts. For other related rigorous and empirical results see [NP], [KeS] and

[Gri2].

The main aim of this paper is to extend the perturbation approach to show that the finite
limit shape of a random growth model may also agree with that of a deterministic one. At issue
is not merely whether small random errors induce small changes (we will see that this is always
the case), but rather whether the shape can stay exactly the same. This property, which we call
exact stability, is only valid under substantial assumptions, as the model has to have opposite
structure, in an appropriate sense, from the additive one considered in [DL]. In the process,
we extend the result of [BoG] to obtain the Wulff characterization of the invariant shape. We
also show that exact stability is far from rare — in fact, almost all members of arguably the
most natural family of two—dimensional growth models, the threshold growth cellular automata
with square neighborhood, are exactly stable. Finally, we show how to employ exactly solvable

systems to construct one example which has a computable shape for every value of its probability



parameter. (Although they are invaluable in suggesting universal phenomena, exactly solvable

examples are extremely difficult to come by.)

The random rules we describe below can be thought of as discrete counterparts to the KPZ
equation, which in turn is touted as a universal scaling model for any local growth and deposition
process in physics ([Meal, [PV]), in particular for crystal growth ([PV]). This we mention because
the well-studied roughening transition in crystallography, whereby a crystal loses its polygonal
shape as the ambient temperature increases, produces pictures which are strikingly similar to
ours ([Set]). While this transition is usually thought to be an equilibrium phenomenon, the

present results at least suggest that it may have a dynamic counterpart.

We now proceed to precise formulations. Unfortunately, these require a large number of
definitions related to our previous work. Although we do not use any of the results from [GG2]

explicitly, a glance at that paper’s first two sections may help to motivate what follows.

Our basic framework consists of two-state cellular automata (CA). In general, such a CA
is specified by the following two ingredients. The first is a finite neighborhood N' C Z? of the
origin, its translate x + N then being the neighborhood of point x. By convention, we assume
that N contains the origin. Typically, N' = B,(0,p) = {x : ||z||, < p}, where || - ||, is the
¢’-norm. When v = 1 the resulting A is called the range p Diamond neighborhood, while if
v = oo it is referred to as the range p Box neighborhood. (In particular, range 1 Diamond and
Box neighborhoods are also known as von Neumann and Moore neighborhoods, respectively.)
The second ingredient is a map « : 2V — {0,1}, which flags the sufficient configurations for
occupancy. More precisely, for a set A C Z?, we define 7(A) C Z? by adjoining every z € Z>
for which m((A; — 2) NN) = 1. Then, for a given initial subset Ay C Z? of occupied points,
we define Ay, As, ... recursively by A;11 = T(A;). Accordingly, occupied and vacant sites will
often be denoted by 1’s and 0’s, respectively. Our main focus will be starting states Ag which
consist of a possibly large, but finite set of 1’s surrounded by 0’s. However, we will also consider

other initial states, namely half-spaces and wedges.

We restrict to two—dimensional dynamics for two main reasons. First, almost every step in
higher dimensions introduces new technical complications, some quite serious. In fact, there
are new phenomena, and the classification of Theorem 2 below becomes much more complex.
Second, some of our techniques are intrinsically two—dimensional, such as the explicitly solvable
example of Section 6, the lattice geometry and analytic number theory of Section 7, and even
combinatorial properties studied in [BoG]|. Nevertheless, some results — notably Theorem 1 — do

readily generalize to arbitrary dimension.



Our key assumption is that the CA dynamics are monotone (or attractive), that is, S; C Sa
implies 7(S1) < 7(S2). Note that specifying a monotone dynamics is the same as specifying an
antichain of subsets of A/: the inclusion minimal sets S with 7(S) = 1 having the property that
none of them is a subset of another. Surprisingly, the number of possible monotone dynamics
(known as a Dedekind number) is possible to estimate for large /. Some typical properties of
monotone CA are also known ([KoS]). Unfortunately, it turns out that for large box neighbor-
hoods the asymptotic proportion of supercritical rules (see the definition below) is negligible.
Other interesting properties seem to present great difficulties. In studying typical monotone CA

rules, it is therefore desirable to restrict to a simpler class.

A natural such class consists of totalistic monotone CA, those for which 7 (S) depends only
on the cardinality |S| of S. In other words, there exists a threshold 6 > 0 such that 7(S) =0
whenever |S| < 6 and 7(S) = 1 whenever |S| > 6. This much studied case is also known by the
name Threshold Growth (TG) CA.

Induced by 7 is a growth transformation 7 on closed subsets of R?, given by
T(B)={rcR?*:0cT((B—2)NZ%}.

In words, one translates the lattice so that z € R? is at the origin, and applies 7 to the
intersection of Euclidean set B with the translated lattice. It is easy to verify that the two
transformations are conjugate,

T(BNZ?* =T(B)NZ.

It will become immediately apparent why 7 is convenient. Let S' C R? be the set of unit

vectors and let
H, ={x € R*: (z,u) <0}

be the closed half-space with outward normal v € S'. Then there exists a w(u) € R so that
T(H,)=H; +wu) u

and consequently
T'(H, NZ%) = (H, +tw(u)-u) N Z>.

u

If w(u) > 0 for every u we call the CA supercritical. A supercritical CA hence enlarges every
half-space. This is equivalent to existence of a finite set Ay which fills space, i.e., Uy>0A; = Z?
([GG2], [BoG]). All initial sets will be assumed to fill space from now on. Set

Ky =U{[0,1/w(u)] - u:ue S}



and let L be the polar transform of K, that is,
L=Kj,,={r€ R? : (z,u) < w(u)}.

Then one can prove the following limiting shape result for any finite Ag:

where the limit is taken in the Hausdorff metric. In short, the shape L = L(r) is obtained as
the Wulff transform of the speed function w : S' — R, which for small neighborhoods is readily
computable by hand or by computer. Furthermore, L is always a polygon and the Hausdorff
distance between A; and tL is bounded in time ¢ ([Wil], [GG1-5]).

To formulate the stability properties of L under random perturbations, we begin by introduc-
ing a general monotone random dynamics. The function 7 differs from the one described above
in that it has values in [0, 1]. Upon seeing a set of occupied sites x + S in its neighborhood at
time t, a site becomes occupied at time ¢ + 1 independently with probability 7(S). To obtain a

monotone rule we require that 7(S;) < 7(S3) whenever S; C S.

More precisely, introduce i.i.d. vectors &, 4, © € Z%, t = 0,1,2,... with 2T coordinates
€4.¢(5), which are Bernoulli(7(S)) for every S C N. We assume that these are coupled so that
£2,¢(S1) = 1 implies that &, ;(S2) = 1 whenever S; C S;. The construction of such a coupling is

left as an exercise for the reader. The random sets Ay, As, ..., are now determined by

A ={z: & (@ + N)NA) — ) = 1}).

To avoid some trivialities and inessential complications, we assume that 1’s only grow by
contact: w(@) = 0, and that 7 is symmetric: —N = N and 7(—S) = «(S). Much more
substantial is the assumption that 7 solidifies: 7w(S) = 1 whenever 0 € S. These three properties,

together with monotonicity, will be our standing assumptions throughout the paper.

For every random 7, we set p = min{n(S) : 7(S) > 0}, define the associated deterministic
dynamics by its map 74(S) = 1{r(s)>0}, and label the iteration transform 7" as before. We will
say that 7 is a p—perturbation of the CA 7. For many purposes the standard p—perturbation,
which has 7(S) = p whenever 7(S) > 0, suffices.

We say that a p—perturbation of 7 has shape L, if
Ay

lim — =L,



almost surely, in the Hausdorff metric, for every finite initial set Ag which fills space. We say that
T has exactly stable shape L if there exists a p < 1 such that L, = L (which of course subsumes
the existence of the shape L, ) for the standard, and hence any, p—perturbation 7. For a standard
perturbation, we also write L, = L. Thus L; = L. Recall that the deterministic growth at

time t is included in a constant fattening of ¢L1; hence the same is true of any p—perturbation.

As already mentioned, such considerations are in the general direction of the vintage Durrett—
Liggett flat edge result ([DL]). To describe their result in our context, recall that a deterministic
CA is additive if 7(S) equals 1 precisely when S is non-empty. In this case K/, = N* and
L = co(N). Moreover, any standard perturbation is a first passage percolation model, and as
such has an almost sure (deterministic) limiting shape L, for each p > 0 ([Ric], [Dur]). For the
von Neumann neighborhood, Durrett and Liggett proved that, if p is close to 1, then L, is close
to L and in fact inherits from L flat edges in the four diagonal directions. However, they show
that L, is not equal to L, due to the fact that its extent in the coordinate directions is strictly

less than 1.

The existence of a limiting shape L, for general random dynamics does not immediately
follow from standard subadditivity arguments. A sufficient condition is a property of 7 we call
local reqularity. Namely, for every initial state Ag there exists a constant C so that the following
is true for every fixed (deterministic) assignment of &, ;: every x € A, at distance at least C

from Ay has an occupied set G C A; entirely within distance C of x such that G fills space.

Note that local regularity is a combinatorial condition involving every possible way A; can
evolve, and thus has nothing to do with probability. At first it seems a condition not likely to
be often satisfied, but the opposite appears true. One can easily check local regularity directly
for many cases with small A/, and it holds generally for box neighborhood TG CA. All known
counterexamples involve “strange” neighborhoods ([BoGJ). Under this condition, it can readily

be shown that L, exists.

Besides finite shapes, limiting profiles from half-spaces are of considerable interest. The first
reason is that their Monte Carlo approximations can be computed much more efficiently (see
Remark 2 in Section 8). The second is that they are important for shapes from other infinite
sets, such as wedges and holes (|[GG5]). For finite seeds also, the Wulff transform (see Corollary
1.1 below), which expresses the asymptotic shape in terms of half-space velocities, is very handy.
However, the limit theorem in [BoG| does not extend to infinite seeds, as restarting requires an
a priori upper bound on fluctuations. Here we provide the missing step, which establishes the
following large deviations bound, referred to as the Kesten property in [GG5]. (See [Kes] for a

similar result in the first passage context.)



Theorem 1. Let w be a p-perturbation of a locally reqular supercritical CA and let the initial
set be Ag = H;, NZ? for u € S. Then there exists a deterministic wy(u) > 0 such that

H, +t(we(u) —€)-uC Ay C H, +t(wg(u) +¢€)-u

within the lattice ball of radius t* with probability at least 1 — exp(—cct). Here c. > 0 as soon as

€ > 0.

Corollary 1.1. For a p—perturbation m of a locally reqular CA and finite initial sets which fill
space,
Ay .

T _)Lp: 1/we?

in the Hausdorff metric, almost surely.

Next is a generalization of the flat edge result ([DL]). In particular this implies that L, — L;

when p — 1, as promised.

Proposition 1.2. Given a standard p—perturbation of a locally regular CA and any € > 0, there
exists a p < 1 close enough to 1 that L, agrees with L, outside the e-neighborhood of the set of

corners of L.

Our second theorem provides necessary and sufficient conditions for exact stability. Before
its statement, it is instructive to look at the three supercritical Moore TG CA. The 6§ = 1 case is
additive and exact stability cannot hold. (This can be proved by the methods of [DL] or [Mar],
but we give a different argument in Section 3.) For # = 2 one finds that K/, = co(N) and
hence this is a quasi-additive case, i.e., a CA with convex K, /,,. Quasi-additive CA share many
properties with additive ones ([GG2,3,5]), and lack of exact stability turns out to be among
them. Finally, in the 6 = 3 case K/, has 16 vertices, of which three successive ones are (0, 1),
(1,2), (1,1), and the remaining 13 are then continued by symmetry. (This set, which the reader
is invited to compute, is the innermost region of Figure 7.) Eight of these are the only points
that K/, shares with the boundary of its convex hull. In a sense, the fact that these 8 vertices
form a discrete set makes this CA as unlike a quasi—additive one as possible. This turns out to

be the precisely the condition needed for exact stability.

Accordingly, we denote
OK' = 8([{1/11)) N 8(C0(K1/w))7

and describe the relevance of properties of this set in our main result.
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Theorem 2. Consider a supercritical locally reqular CA (which also satisfies our standing as-
sumptions) given by T, with limiting shape Ly, and its standard p—perturbation. There are three

possibilities:
Case 1. OK' consists of isolated points, no three of which are collinear.
Then the following hold for p < 1 close enough to 1:

($1) L, = L.

(S2) Convergence to Ly is tight: for any € > 0, there exists an M so that, for any t and
x € tLy, P(x is within M of A;) > 1 —e.

(S3) There exists a large C so that, with probability 1, (t — C'logt)Ly NZ? C A; eventually.
Case 2. OK' consists of isolated points, three of which are collinear.

Then (S1) and (S3) still hold for p < 1 close enough to 1, but tightness (S2) no longer does.
Instead, for any p < 1 there exists a ¢ > 0 so that a corner of tL1 is eventually at distance at

least clogt from A, a.s.
Case 8. OK' includes a line segment.

Then (S1) no longer holds. Instead, for any p < 1 there exists a ¢ > 0 so that a corner of

tLq is at distance at least ct from A, a.s.

Figure 1. The three cases of Theorem 2.

Figure 1 above shows a box neighborhood TG example for each of the three cases, from left



to right, with periodic shading of updates: Case 1 (range 1, § = 3, p = 0.9), Case 2 (range 2,
0 =17,p=0.95), and Case 3 (range 2, § =8, p = 0.95).

The fundamental difference between Moore § = 2 and § = 3 TG CA is their mistake fixing
ability, which we now illustrate. Suppose we start each case with a large copy of the invariant
shape and remove a finite chunk of occupied sites at the boundary. Regardless of the location
of such a hole, the # = 3 case eventually repairs (or “erodes”) it and thus the hole’s effect
is bounded in time. Figure 2 provides a demonstration. This eroding property can be used
to favorably compare the random dynamics on infinite wedges, determined by the corners of
Ly, to Toom rules ([Tool]). The corners are then patched together by an oriented percolation
comparison in the middles of the edges. In Case 2, mistakes are still fixed, but for wider wedges

than in Case 1, and corners must be rounded off accordingly.

By contrast, the 8 = 2 TG CA can only repair holes away from the corners, while those at
the corners have a lasting effect, as also seen in Figure 2. In a random dynamics, such mistakes

pile up and induce a linear slowdown.

Figure 2. Error correcting for # = 2 and 6 = 3.

Given the exact stability criterion of Theorem 2, it is natural to ask whether a typical su-
percritical CA has an exactly stable shape or not. As already mentioned, properties of typical
monotone CA seem difficult to characterize. We will thus restrict or attention to a special family,
TG CA with range p box neighborhoods N,. These are supercritical for § < p(2p+ 1) (|[GG2]).
The smallest examples are already illuminative. As N7 has already been discussed, N3 is next
in line and turns out to have # = 1,2,3,5,8 in Case 3, 8 = 7,9,10 in Case 2, and § = 4,6 in



Case 1. For wvery large ranges, 0’s in Case 3 form a small minority, as the following theorem

demonstrates.

Theorem 3. Fiz an arbitrary € > 0. Among all supercritical range p box neighborhood TG

CA, the proportion of those which are not exactly stable is for large p between 1/10gthE

1/log" p. Here h = 2(1 —1/log 2 — loglog2/log 2) ~ 0.172.

p and

The proof of Theorem 3 connects the number of 8’s which lack exact stability to the number
of distinct products of pairs of natural numbers between 1 and p. This latter is known as the
Linnik—Vinogradov—Erdos problem, for which sharp asymptotic bounds were given by Hall and
Tenenbaum ([HT]). We have no result on the division between Cases 1 and 2, but conjecture

that Case 2 is much more prevalent.

The rest of the paper is organized as follows. Section 2 contains the proof of a slightly weaker
version of Theorem 1 and its Corollary 1.1. Section 3 deals with Case 3, while Section 4 lays
the geometric groundwork for the remaining cases and proves Proposition 1.3. In Section 5 we
introduce Toom’s method and complete the proof of Theorem 2. Section 6 is devoted to a single
example for which we can compute the shape for all values of the probability parameter p. In
Section 7 we take a closer look at the collection of K,,,’s for fixed range box neighborhoods,
an analysis which culminates with the proof of Theorem 3. Finally, in Section 8 we finish the

proof of Theorem 1 and discuss other related issues in lesser detail.

2. Proof of Theorem 1.

Recall that Theorem 1 deals with supercritical locally regular CA and their p—perturbations.
These will be our context throughout this section. We will allow all constants C' and ¢ to
depend on 7 and p in addition to their explicitly stated dependencies. (We emphasize that
these constants will not, however, depend on the direction w.) In this section we only obtain a

lower bound of the form 1 — exp(—c.t/log?t) on the probability of the event in Theorem 1.

Many times below we will restart the random dynamics at a deterministic time or a random
stopping time 7. This simply means that only &, ; with ¢ > 7 are used, with an initial state at

time 7 which will be specified.

Lemma 2.1. Assume that a finite Ag 3 0 fills the plane. Assume that x is at distance n from the
origin. Then there exists constants ¢,C > 0 (depending on Ag) so that P(z ¢ T*(Ap)) < e~k
for k> Cn.
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Proof. Call x surrounded at time t if x + Ay C A;. By supercriticality, there exist a time tg at
which +e; and +ejy are all surrounded in the deterministic dynamics. Let Cy = |T%(Ay)|. If
po = p©°, then +e; and e, are all surrounded at time to with probability at least py. Take
a shortest lattice path p : 0 = xg,21,...,2, = x. We now define i.i.d. geometric(py) random
variables 17, ..., T, as follows. Run the dynamics for time #y. If 1 is surrounded at this time,
Ty = 1, otherwise restart the dynamics with Ay at time t5. Now run the restarted dynamics
for time tg; if it surrounds z; at this time, 77 = 2, otherwise restart again with Ag, etc. In
general, on the event {7; = k}, T;41 is the minimal ¢ > 1 for which the dynamics restarted at

time k + (¢ — 1)to with x; + Ag surrounds ;41 at time ¢.
By monotonicity and exponential Chebyshev,
Pz ¢ T (A)) < P(Ty + -+ T, > k) < e M E (exp(AT1))",

for any A > 0. To conclude the proof, choose A small enough that E (exp(AT1)) < co. O

Note that this lemma implies that w, (u), if it indeed exists, is bounded away from 0 uniformly

in u, for any p > 0.

Lemma 2.2. Assume that |T (Ag) \ Ao| = n, and start the p—perturbation from the same initial
set Ag. If 7 =inf{t: T (Ag) C A;}, then E(1) < p~'(logn + 3).

Proof. Note that all such sites attempt to get occupied simultaneously, each of them at each
time with probability p. Hence 7 is geometric(p) for n = 1. For n > 2, write a = —log(1 — p)

and divide the sum below into terms with k£ < a~'logn and with & > a~' logn to obtain

E(T):i(l—(l—e_“k)n)

k=0

[ee]
Safllogn—|—1+z<1— (1—67“1171)”)
i=0

[ee]
<a llogn+1 —Zn-log(l —e_‘”n_l)
i=0

Sa_llogn—|—1+226_ai
i=0
:afllogn+1+2(1—e*“)_1,

andp=1—e"*<a. U
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Proof of Theorem 1 with weaker probability estimate.

Without loss of generality, we can assume that u lies on or above y = |z|, i.e. (u,es) > 1/v/2.
Let ftZU{fx,slsét—l,xG ZQ}, t=1,2,....

Let T;, be the first time (0,n) becomes occupied started from H, and set T}, = T),, A Cn. By
Lemma 2.1, P(T), # T,,) < e~“", for a large enough C and some ¢ > 0. The crucial step is this
L bound:

(2.1) \E(T, | Fst1) — E(T,, | Fs)| < C'logn,
for any s < C'n and some constant C”.

Recall that T;, is a deterministic function of &, ; where (z,t) ranges over all space-time sites.
As N is finite, T,, depends only on a small subset of these variables. To be more precise, let
L, comprise the sites (z,t) for which T, depends on &, ;. Then |£,| < Cn3 and we can assume
that the filtration ignores all other sites. At time s < Cn, let 0 A consist of all the sites outside

A, which would become occupied if the deterministic dynamics were applied to A,. Trivially,

|0As| < |L,].

Restart the dynamics at time s + 1 with A,. Let 7, be the waiting time after this at which
all sites in DAy are occupied, i.e., 7, = inf{k : 0A; C As114%}. By Lemma 2.2, E(1s|Fs) <
C" logn.

We now prove (2.1). We will repeatedly use the strong Markov property and monotonicity of
the dynamics. To get the lower bound in (2.1), assume the worst case: no sites outside A (i.e.,
in 0A;) get occupied, and therefore the dynamics faces an unchanged situation at time s + 1.

Therefore,

E(T, | Fey1) < BE(T, | Fs) + 1.

For the upper bound, assume that Fs,q reveals that all sites in JA, get occupied. Before
we know Fsy1, we can only assume this happens after time 7, and so the dynamics with the
additional information is dominated by the one restarted at time s + 7, from the occupied set
A, UOA,. Tt follows that

E(T, | Fy) < E(Ty | Foyr) + E(1s | Fs) < E(T, | Foyr) + C" logn.

This proves (2.1).
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Now let a,, = E(T},), a, = E(T},). By (2.1) and Azuma’s inequality ([JLR], [Ste]),
(2.2) P(|Ty, — an| > 5) < 2exp(—cs?/(nlog?n)).

However,

‘an - dn‘ < E(Tnl{TnzCn})a

which is bounded by Lemma 2.1. From this it follows that
P(T,, — a,| > s) < P(|T,, — a,| > 5/2 - C) + P(T,, — T}, > s/2),
and after another application of Lemma 2.1 and suitable redefinition of c,

(2.3) P(|T, — an| > s) < 2exp(—cs®/(nlog?n)) + e~ <.

For an integer 4, let y; be the largest j for which (i,5) € H, . Then let T be the first time at
which all sites in B’ = {(i,y; +n) : |i| < n?} are occupied. Moreover, let T/ be the first time at
which all the sites B” = {(i,7) : |i| < n? y; +n — C < j < y; + n} are occupied, where C' is the
diameter of the neighborhood A. Restart the dynamics at time 7, with the occupied set at this
time. Note that local regularity implies that within a constant time the deterministic dynamics
occupies a large ball within a constant distance of any occupied point. By monotonicity, the
deterministic dynamics would occupy B in t; additional time steps, where ¢; is a constant

which only depends on 7. Applying Lemma 2.2 ¢; times one thus obtains

BE(T, —T,) < Clogn.

Furthermore, let 7} (i) be the time the dynamics reaches (i,n + y;) and let T,,(7) be the first
time (i,n + y;) becomes occupied from the modified initial set y;eo + H, . The reason for this
convoluted condition is that 7, (i) with the same n are identically distributed, but this is not
true for T/ ().

To deal with different starting sets for 77 (i), let S,, be the time the random dynamics fills
H, N B(0,n?) from —ey + H,, (which is contained in all starting sets). By a similar argument
as in the previous paragraph

E(S,) < Clogn.

Therefore, with a, (i) = E(T (7)),

0<al(i)—a, < FE(S,) <Clogn.
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Furthermore, the argument leading to (2.3) can be carried out with 7,, replaced by T (i) and
ap, by al, (i).

Therefore, for s > C'logn,

P(T, =T}, > 5) < P(|T,, — an| > s/4) + Y P(IT;,(i) — an(i)| > s/4)

ji|<n?

< Cn?exp(—cs?/nlog® n) + Cne™c.

It follows that

E(T, —T,) < Cy/nlog*n +/ P(T, — 1T, > s)ds,
Cy/nlog?n

which after a short computation implies that E(T}, — ') < Cy/nlog®n.

We are almost done, but need an estimate for yet another approximation to 7,,. Let T/ be
the first occupation time of (0,n) started from B” — ney = {(i,]) : i| < n?%y;, — C < j < y;}.
Then, for 0 < k < Cn,

P(T" =T, > k) < P(T"" #T,) < P(T,, > Cn) < e~ ",

while for £ > Chn,
P(T" —T, > k)< P(T) > k) <ek

by Lemma 2.1. Hence E(T)” — T,,) is bounded above by a constant.
Now assume that 0 < m < n. Restarting the growth process at time T,,, we get
Uman < Gm + an + E(T = T,)) + E(T" —T,,) < @y + an + Cv/nlog? n.

By the deBruijn-Erdés subadditive theorem ([Ste]), a,,/n converges to a finite positive number

a, which of course depends on p and u. We declare w,(u) = (u, ez)/a.

To finish the proof, take first an (i,j) outside H, + twr(u)(1 +€)-u. Let n = j —y; >
twy(u)(1 4 €)/{u,e2) =t(1 + €)/a. Then

P((i,j) € Ar)

P(T) (i t)
P(T;, (i) < na/(1+¢))
P(|T (i) — a!,(i)| > nae/2) < exp(—en/log®n),

IN

)
)

IN

IN
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for a large enough n. This proves the weaker version of the upper bound in Theorem 1. The

lower bound is proved similarly. [J

Several remarks are in order. First, note that the proof avoids the subadditive ergodic theorem

altogether, by combining properties of subadditive sequences with large deviation estimates.

Second, it is in fact possible, by the same methods, to obtain a superadditive relation for a,,
of the same order, namely,
mtn = Gm + Gy — C’\/ﬁlog2 n.

A closer look at the proof of deBruijn-Erdds theorem (from [Ste]) then gives a rate of convergence
for a,: |a, —al = O(log? n/y/n), which can be used to show that, within a lattice ball of radius
t2, A, is a.s. between (t + Cv/tlog®t) - wy(u) - u+ H .

Third, the proof uses supercriticality and regularity only to “fill in.” For any monotone, local,
interface solidification with automatic coherence the proof remains valid. While we will not
attempt to precisely define the concept, automatic coherence certainly holds when the interface
moves upward (i.e., u = eg) and the growth is such that an empty site can never have an
occupied site directly above it. Perhaps the simplest example is the random dynamics in which
a site becomes occupied for sure with two or more occupied neighbors in its von Neumann
neighborhood and with probability p with an occupied site directly below. Another class of
examples are the K—exclusion processes ([Sep2]). For some of these examples, the fluctuation

estimates mentioned above may be new.

Finally, and curiously, there seems no way to make the proof work for general monotone

dynamics which do not solidify. Such cases thus remain an intriguing challenge.

Lemma 2.3. Fiz an a > 0 and € > 0. Then there exist constants c¢,C so that the following
holds. Start the dynamics from Aq consisting of sites inside (H,, \ (—Cu + H, )) N B(0,Cn).
Then, A,, includes all sites inside B = ((H, +nw,(u)(1—e€)u)\ H, )N B(0,Cn) with probability

at least 1 — e—cn/ 108",

Proof. Let T'(x) (resp. T'(x)) be the first occupation time of z € B started from the stated
Ag (resp. from H ). By Lemma 2.1, P(sup,cp T(z) > Cn) < e~“". However, by a “speed of
light” argument, on {sup,cp T (z) < Cn} the equality T(x) = T"(x) holds for all x € B. The

claim now follows from Theorem 1. O

Lemma 2.4. The function w, : S* — R is continuous.
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Proof. Again assume that (u,e;) > 1/4/2. For a fixed large C' and small € > 0, H, — Cteey C
H.  C H, + Cteeq, within the lattice ball of radius Ct, provided ||u — v||a < €/2. Let E,(k,t)

be the event that all sites on the y—axis up to k are occupied at time ¢ started from H, .

By Lemma 2.3 and Theorem 1, both the events E,((1 — Ce)w,(u)t/{v,es),t) and E,((1 +
e)wy(v)t/(v,e2),t)¢ happen with probability (very) close to 1. This is only possible if (1 —

Ce)wr(u) < (14 €)wy(v). An analogous reverse inequality is proved similarly. O

Proof of Corollary 1.1.
An e > 0 will be fixed throughout this proof.

For any direction u, Theorem 1 implies that with probability exponentially close to 1
Ay C H, +twe(u)(1+¢€)-u

It follows that with probability 1

A
—CH; +wr(u)(l+6)
eventually. This is therefore true simultaneously for any finite collection of u’s and then by

Lemma 2.4,

A
2 () Hy +wa(w)(1+ € u=(1+€°K7,
t u€e St )

eventually.

For the lower bound, take a bounded, strictly convex, C? set K. D K/, (1 +¢€). Then
L. = K* is C? and has for small enough § > 0 the property described in the next paragraph.

Start with Ay comprised of sites inside nL.. Take k = n?/§ Euclidean points g, ...,x;_1 on
the boundary of nL., chosen so their directions are equidistant vectors in S*, and let uq, . .., ur_1

be the outside normals to nL. at the chosen points. The enlarged set
k—1

Ln(8) = () @i + (1 — 6)v/mwn (us)u; + H,,
i=0

includes (n + v/n)L..

Now run the random dynamics from Ay for \/n time steps. Since L. has C? boundary, we

need to go just a constant distance inside to “see” the relevant portion of H, . To be more
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precise, ((—Cu; + H,) \ (=2Cu; + H,)) N B(x;, C/n) is included in nL, for all i. By Lemma
2.3, with probability at least 1 —exp(—cy/n/log? n), all the sites in (n+4+/n)L. become occupied.

Repeat the above procedure (running the random dynamics for \/n time steps) 3+/n times.
As a result, (n + jyn)Le C A, 5 for j = 1,...,3y/n (in particular, 4nL. C Ay,), with
probability at least p, = 1 — exp(—cy/n/log? n).

Now fix an @ < 1 and find a large ko so that [[,, <52, Pn > a. Let Ty be the first time
2%ko . C A;. By what we proved so far,

P((2% + j2")L. C Agoryjor gy, for j=0,...,3-2" k=1,2,...) > a.
We thus have a strictly increasing sequence of integers b, with b,,+1 — b, = 0(b,), such that
bm(l — E)Le C Abm

eventually, with probability at least a, thus a.s., as a was arbitrary. For any ¢ between b,, and

bm+17
t(1 —€)?Le C byp(1 —€)L C Ay, C Ay

m

eventually, finishing the proof of the lower bound. [J

3. Lack of exact stability in Case 3.

Fix a u € S*. Let £, be the boundary line of —w(u) - u + H,, . Note that w(u) is the largest
number h > 0 for which 7((—=h-u+ H; )NN) = 1. Therefore, N'N ¢, must contain at least one

site.

In general, for any line £ in the plane which does not go through the origin, let its open
(resp. closed) lower cut L£°({) (resp. L7 (¢)) be the set of points in A which lie in the open
(resp. closed) half-space of ¢¢ which does not contain the origin. We emphasize here (as this
convention will be used extensively), that the points in £°(¢) will be called below the line ¢, and
that left and right on the line are from the perspective of an observer who stands on £ and looks

toward the origin.

We will make good use of duality between lines in K/, and points of N in the sequel.
The next lemma is our first example of this duality. To illustrate its statement (as well as the
introduced terminology), let us consider an example. Assume that we are dealing with a TG CA
and fix a direction u. Suppose also that £, contains an x, € N such that a line ¢ obtained by a

small rotation of ¢, around z,, has exactly § — 1 sites in £°(¢). Note that for a sufficiently small
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rotation no other site but z,, is in N N. (An example for the range 2 Box TG CA with § =8
is depicted on the right side of Figure 3.) Therefore, for v close enough to u, ¢, is obtained by
rotation of ¢, around z,. A little geometric argument involving polar coordinates then shows
that the boundary of K/, must be flat at u/w(u). The lemma makes a stronger and more

general statement and is illustrated by the left side of Figure 3.

Cy

Figure 3. Illustration of Lemma 3.1 and its proof.

Lemma 3.1. The following are equivalent for a u € S*.

(1) There exists a line through u/w(u) which in a small neighborhood of u/w(u) lies in K /.

(2) There exists a point x, € £, NN so that if £ is a line through x, and is a rotation of £,
by a small enough angle, w(L°(¢)) = 0.

In case 0Ky, is locally a line at w/w(u), x, in (2) is unique. In fact, the smaller angle

between 0Ky, and u/w(u) is the same as the smaller angle between the vector x, and £,,.

Proof. Note that a short line segment through u/w(u) perpendicular to the vector ug € St is

given in polar coordinates (with the angle represented by a unit vector v) by the collection of

Vo vy ol <o,

vectors
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for a small « > 0.

Assume first that the statement (2) holds. Let ug = —x,/||z,|| be the unit vector pointing
from z, to the origin. Then (2) says that for v close enough to u, w(v) < w(w)(v,ug)/(u,ug).
It follows that
1 N 1 (u,up)

(3.1) w(v) = w(u) (v,up)

The polar representation of a line mentioned above immediately demonstrates the implication
(2)=().

To prove the reverse implication, note that (1) implies that (3.1) holds for some wg, and let

x), = —w(u)ug/{u,up). Then x] has the properties required of x,,, except it may not lie in N.
However, we can let z,, to be the closest site in £, NN . (We can in fact go in either direction
from x,.) The fact that N is discrete ensures that a parallel translation from z!, to z, of any

line ¢ close to ¢, does not pass through any site of . Thus (2) is satisfied.

To prove the last statement, note that two different z,, would, by (3.1), produce two distinct
open line segments, which would meet at u/w(u) and which would both be included K, Jw- But

then a flat portion of 0K/, near u/w(u) would be impossible. (]

Lemma 3.2. Fiz au € S* which satisfies the condition of Lemma 3.1 and pick a corresponding
x,,. Forv close enough to u, the concave wedge Q = H; UH, satisfies T(Q) C —x,+Q. When
0Ky, 48 locally a line at u/w(u), Q is invariant: T(Q)=—x,+Q.

Proof. The first part follows from Lemma 3.1: a point in 7(Q) N (—x, + Q)¢ would imply that
a point on the boundary of —z, + @ sees a sufficient configuration in the interior of (), but
clearly —z,, is in the most advantageous position for this. This would translate, for ¢ as in (2) of
Lemma 2.1, into w(£°(¢) U L°(¢,,)) = 1, but if the rotation is sufficiently small (by discreteness
of N) (Le(0) U LO(¢,)) NN = L°(£) NN, a contradiction.

The second part also follows because in this case w(L£~(¢)) = 1. For, otherwise x, could be
moved to the next point in £, NN for which (£~ (¢)) = 1. (Again, such a point must exist or

else w(u) could be decreased.) This would contradict uniqueness. [

When u satisfies the assumption of Lemma 3.2 there exists an invariant wedge of the following
form:
Q =(-Mvi+H; )U(-Mv,+H,)UH,,
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where vy and v are close to, but on different sides of, u and M is large enough. In particular,
a hole of shape " dug into H,, may be translated by the dynamics, but is never filled. If the
creation of such holes is random they pile up and, as we will demonstrate by the comparison

process we now introduce, slow down the interface.

The following randomly growing surface will be useful here and in Section 8. At every time
t=0,1,2,... asite x € Z has a height n;(z) € Z,, with n; = 0. We will use two versions,
which we call fast and slow, of the rule for increase in heights. Let b(z,t) be Bernoulli random

variables with P(b(z,t) = 1) = p’. The slow version evolves according to the following rule:

ny(x) +1 if b(z,t) =1 and n,(y) > n;(x) for all y with |y — x| <1,

ne () otherwise,

My (2) = {

while the fast version updates as follows:

ny(x) +1 if b(z,t) =1 or ny(y) > n;(x) for some y with |y — x| < 1,

My (2) = {

N () otherwise.

Note that the reverse dynamics, n:(xz) =t — n;(x) changes the version and replaces p’ by 1 —p'.
We will assume that b(z,t) are not necessarily independent, but have finite range dependence

in space: if either t; # ty or |z — xo| > 7, then b(xy,t1) and b(xs,ts) are independent.

Lemma 3.3.
(1